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1 Introduction

Since Hotelling�s (1929) seminal paper, spatial competition has been a popular topic in economic
theory. In economic literature, economists have assumed that there is only one space (city) and
have ignored any e¤ects from outside the city. In the real world, transportation networks have
continually progressed and the linkage between cities is strengthening. Therefore, �rms that
consider the location problem care not only about the spatial distribution of rivals inside their
locating city but also about competition from other cities. The objective of this paper is to
clarify such global e¤ects in spatial competition by incorporating an additional city. In other
words, we study a spatial competition with twin cities that have market interactions with each
other. More speci�cally, we address twin circular spaces that have several competing �rms when
each consumer chooses one of the spaces as her shopping place.1

In this paper, we consider a location-quantity game (spatial Cournot) to highlight the role
of multiplicity of space. Spatial Cournot competition was developed by Hamilton et al. (1989)
and Anderson and Neven (1991). As a result, they found spatial agglomeration in equilibrium.2

Pal (1998) developed a spatial Cournot duopoly model with circular space and showed maximal
di¤erentiation (i.e., one �rm located at 12 a.m. and one at 6 a.m.). Matsushima (2001) con-
sidered an arbitrary even number of �rms in the framework and showed that half of the �rms
agglomerate at 12 a.m. and the rest do so at 6 a.m. These studies showed that the spatial
Cournot models enable �rms to agglomerate, but circular space makes �rms separate to some
extent.3

One of the interesting questions is whether all �rms agglomerate at one point in a circular
space (full agglomeration). For the full agglomeration to appear in equilibrium, we need addi-
tional components in the standard setting. Sun (2010) assumed directional delivery constraints
and showed that two �rms agglomerate at a point in a circular city when they deliver their
products in di¤erent directions. Ago (2013) incorporated a demand-enhancing e¤ect at a �rm�s
location, which led to such an agglomeration.

In this study, we also observe agglomeration as a result of competition between cities. Ag-
glomeration in a city reduces prices there owing to �ercer competition, which is a negative e¤ect
for �rms. In contrast, a positive feature of agglomeration is that reduced prices lead to increased
demand by reducing consumption in a rival city. The link between cities is positively correlated
with the e¤ect level, which establishes agglomeration in equilibrium (Proposition 1).

Early in the study, we assume that �rms cannot move between the cities. After that, the
restriction is relaxed: Firms can both move inside a city and between cities. In other words, there
are two dimensions in which �rms di¤erentiate: where to locate inside a city and in which city to
locate. Hence, the paper is closely related with multidimensional models of spatial competition.
Tabuchi (1994) and Irmen and Thisse (1998) analyzed such models and showed that �rms
di¤erentiate in only one dimension.4 Interestingly, the title of the latter paper is �Hotelling was

1See Henkel et al. (2000) for a model with two marketplaces and consumers� choice of shopping place. In
contrast to our model, their marketplaces are just points and lack internal spatial structure.

2Gupta et al. (1997) showed dispersed locations in a non-uniform distribution of consumers in a linear city.
3See Shimizu and Matsumura (2003), Gupta et al. (2004), and Matsumura and Matsushima (2012) for further

examples.
4Anderson et al. (1989) and De Fraja and Norman (1993) also showed a similar result. When the good is

su¢ ciently di¤erentiated, �rms agglomerate. This can be interpreted as di¤erentiation in one dimension.
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almost right,� implying that the principle of minimal di¤erentiation led by Hotelling (1929) is
almost reproduced against the famous refute by d�Aspremont et al. (1979). Unlike their results,
our equilibria contain di¤erentiation in both dimensions (Proposition 5). Further, in contrast
to their duopolistic models, we address more than two �rms, although the spatial structure of
our models and theirs di¤er.

We conduct a welfare analysis and show the possibility of excess agglomeration because the
agglomerating incentive causes harmful �erce competition and a very small producer surplus.

The remainder of the paper is organized as follows. In Section 2, our model is presented.
Section 3 leads to the equilibrium. Section 4 is devoted to a welfare analysis. Section 5 addresses
some extensions: We allow the �rms to move between cities, and we address an n-�rm oligopoly.
Section 6 concludes.

2 The model

We extend the typical spatial Cournot structure developed by Pal (1998) to a model with two
cities. In the twin city economy, there are four �rms, a homogeneous good, and consumers
whose total mass is normalized to 1. The cities, indexed using r (r = A;B), are symmetric
and circular, and their circumferences are both equal to 1. Let Lr = [0; 1) denote the space of
city r. Before Section 5, we assume that each city has two �rms that cannot move between the
cities. Each �rm only serves its own city. The market size (mass of consumers) of city r, Nr > 0
(NA +NB = 1), is endogenously determined in the model, as explained later.

There are three stages in the game. In the �rst stage, each �rm simultaneously chooses its
location in Lr. In the second stage, each �rm determines its supply amount simultaneously at
each z 2 Lr. That is, Cournot competition appears in each z. Finally, in the third stage, con-
sumers determine which city to go to. Our equilibrium concept is subgame-perfection. Further
details for each stage are presented in the following subsections.

2.1 Spatial Cournot game

First, we present our spatial Cournot competition through the �rst and second stages. For
notational simplicity, subscript r is omitted here owing to the symmetry of the cities. Consumers
are evenly distributed over each city. Hence, the density at each location z 2 L is N . As
explained in the next subsection, N is a function of �rms�spatial distribution. Therefore, �rms
decide their location considering consumers�reactions in the third stage.

Each consumer has the same inverse demand function for the homogeneous good as follows:

P = 1�Q; Q = q1 + q2; (1)

where P , Q, and qi are the price, the total supply amount, and the supply by �rm i (i = 1; 2 is
the �rm index), respectively.5 From (1), consumer surplus for a consumer is given by

cs =
Q2

2
: (2)

5 If we adopt P = a� bQ as a more general demand function, the essential results remain unchanged.
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The �rms have the same production technology, and their marginal costs are assumed to
be constant and normalized to zero. Meanwhile, they bear transport costs and can set an
independent supply amount at each location because arbitrage between consumers is assumed
to be prohibitively costly. The transport cost function is linear with regard to shipping distance.
Speci�cally, let x 2 L denote a �rm�s location. Then, to ship a unit of product from x to z, the
transport cost is given by

T (x; z) = minftjx� zj; t(1� jx� zj)g (3)

because the city is circular with a unit circumference, where t > 0 is a parameter and is assumed
to be su¢ ciently low such that

t < 1: (4)

This ensures that all �rms serve the entire city irrespective of their locations.6 Consequently,
the local pro�t at z for �rm i locating at xi is

�i(z) = Nqi(z) [P (z)� T (xi; z)] (5)

Summing over the entire city, the total pro�t is given by

�i =

Z 1

0
�i(z)dz for i = 1; 2. (6)

2.2 The market size

Next, we de�ne the market size in the third stage. Our consumers must choose which city to
shop in. Let ur be a payo¤ function for a consumer if she chooses city r 2 fA;Bg. Then,
she maximizes ur. After the second stage, all consumers know the spatial distribution of the
�rms and the supply schedule at any location. Hence, they can compute their consumer surplus
from (2). We assume that the surplus is a component of the payo¤ because it is an appropriate
measure of the bene�t from shopping.

Furthermore, we assume that the consumers have heterogeneous preferences for cities. To
present this heterogeneity, we adopt another spatial structure a lá Hotelling (1929): Consider a
line segment of unit length � = [0; 1], where cities A and B are exogenously allocated at �A = 0
and �B = 1, respectively. The consumers are uniformly distributed over �, and the density at
each point � 2 � is thus 1. Each consumer must pay the mismatch cost given by kd, where
k > 0 is a parameter and d is the distance between her location and the city to which she goes.
Consequently, we de�ne the payo¤ function as follows:

ur = csr � k j�� �rj ;

where csr is the consumer surplus in city r. Throughout the paper, we also assume that each
consumer always buys the good.7 Furthermore, we exclude the possibility that all consumers go
to one city before Section 5. To do so, we require a su¢ cient condition under which each city

6This threshold depends on the number of �rms. In Section 3.1, we provide a similar threshold for a case with
an arbitrary number of �rms (16).

7 It is su¢ cient that we assume that the payo¤ is less than �k when she does not buy the good.
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always has a positive market size. The condition is given later as (14). As a result, the market
size is given by

NA =
1

2
+
csA � csB

2k
; NB = 1�NA: (7)

Thus far, we have not de�ned the consumers�distribution inside a city. In our model, we
assume the following.

Assumption 1 Consumers are uniformly distributed inside each city (i.e., the density function
g(z) = Nr for all z 2 Lr), and this is common knowledge.

Assumption 2 No consumer knows her exact location inside the city.

From these assumptions, we assume that consumers care about their expected values from
decision-making. Let csr(z) denote consumer surplus generated at market z 2 Lr in city r.
Then, our consumers bene�t not from a speci�c consumer surplus, csr(z), but from the average
(expected)consumer surplus, csr, which is de�ned as csr =

R
cs(z)dz. In other words, csr

represents homogeneous preferences for the respective cities, while the mismatch cost represents
heterogeneous ones.

This type of assumption is typical in the literature on product di¤erentiation. Suppose that
our space is not geographical but characteristic. Then, the cities correspond to some product
categories (e.g., orange juice vs. grapefruit juice), and location space corresponds to product
characteristics (e.g., the degree of sweetness). It is often assumed that consumers do not know
their exact valuation of the product until they actually buy and use it.8 Another reason for this
formulation is to better compare our results with those of previous studies, where any location
in a circular city is featureless and consumers are uniformly distributed on the city (Pal, 1998).
Another interpretation may be as follows. Suppose that relocation costs for �rms are su¢ ciently
low and �rms change their locations often. Furthermore, consumers move less owing to high
relocation costs. Then, consumers must make decisions as if the �rms� locations may change
often, and they may then evaluate a city using average values in the long run.

3 Equilibrium

We solve our three-stage game using backward induction. The problem in the third stage is
solved in Section 2.2 as (7). Then, we proceed to the second stage.

3.1 Quantity equilibrium

From (5), the market size is just a multiplier and has no e¤ects on determining equilibrium
quantity. Owing to symmetry, we omit subscript r. The �rst-order conditions @�i(z)=@qi(z) = 0
yield the equilibrium quantity for �rm i at z as follows (the asterisk represents the equilibrium
value):

q�i (z) = [1� 2T (xi; z) + T (xj ; z)] =3 for i; j 2 f1; 2g; i 6= j: (8)

8See Takahashi (2013) for a recent example of a paper with a similar structure to ours. Ben-Akiva et al. (1989)
used a cylinder space to describe a two-dimensional space (i.e., location and brand speci�cation). Such a cylinder
can represent our model if we provide an appropriate assumption for consumer distribution.
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The total supply amount at z is

Q�(z) =

"
2�

2X
i=1

T (xi; z)

#
=3: (9)

Substituting (8) into (5), the local pro�t is

��i (z) = Nq
�
i (z)

2

and the total pro�t is obtained by

��i (xi) =

Z 1

0
��i (z)dz: (10)

From (2), the (average) consumer surplus is

cs� =

Z 1

0

Q�(z)2

2
dz: (11)

3.2 Location equilibrium

We consider the location equilibrium9 in the �rst stage when the quantities are given as in
Section 3.1. Owing to symmetry, we can assume without loss of generality that 0 � x1 � 1=2
and x2 = 0 in each city. For notational convenience, we omit the subscript representing two
�rms. Instead, let 0 � xr � 1=2 (r = A;B) denote the location of �rm 1 in city r. Then, from
(7), (8), (9), (10), and (11), we have the total pro�ts of both �rms10 and the average consumer
surplus in city r as

��(xr) =
Nr
108

�
12� 6t+ t2(1 + 24x2r � 32x3r)

�
; (12)

csr =
1

54

�
12� 6t+ t2

�
1� 3x2r + 4x3r

��
;

respectively, where

Nr =
1

2
+

t2

108k

�
4x3r � 3x2r � 4x3� + 3x2�

�
for r; � 2 fA;Bg; r 6= �: (13)

Because �1=4 � 4x3r � 3x2r � 4x3� + 3x2� � 1=4 for all xr; x� 2 [0; 1=2], we have

k >
t2

216
(14)

as a su¢ cient condition for 0 < Nr < 1.
The function in the square brackets of (12) increases through the �rms�separation (greater

xr), which implies that a dispersion force exists because �rms dislike �erce competition. Mean-
while, Nr increases by their approach (smaller xr), which shows an agglomeration force in the

9A location pair (x�1; x
�
2) is a subgame-perfect Nash equilibrium if and only if ��i (x

�
i ) � ��i (xi) for 8i and

8xi 2 [0; 1).
10Owing to symmetry, the pro�t function is the same for both �rms.
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Figure 1: Classi�cation of the equilibrium.

sense that �rms can attract more consumers through enhanced consumer surplus when �rms
approach each other (cf. @csr=@xr < 0). This trade-o¤ determines the location equilibria.

Calculations yield three types of equilibria: i) an agglomerated con�guration (full agglomer-
ation), where two �rms agglomerate in each city; ii) a fully dispersed con�guration (full disper-
sion), where two �rms are located at a maximal distance between them (1=2) in each city; iii)
a partially dispersed con�guration (partial dispersion), where the distance between the �rms is
less than 1=2 and is the same between the cities. The formal result is as follows.

Proposition 1 Let (4) and (14) hold. Then, there exists a unique location equilibrium: When
k � (t2 � 6t + 12)=432, the equilibrium is an agglomerated con�guration. When k � (t2 � 2t +
4)=144, the equilibrium is a fully dispersed con�guration. Otherwise, if (t2� 6t+12)=432 < k <
(t2 � 2t+ 4)=144, the equilibrium is a partially dispersed con�guration.

Proof. See Appendix A.
Figure 1 shows the classi�cation of an equilibrium in the parameter space. The intuition

behind the proposition is as follows: When k is low, �consumer-surplus elasticity�between cities
is high. Hence, the agglomeration incentive that leads to market expansion is stronger than that
of dispersion to avoid competition.11 When k is high, the elasticity is low. In other words, two
cities become more independent against each other. Recall that Pal�s (1998) one-city model has
already shown that a fully dispersed con�guration is the unique equilibrium.

11Our model addresses a homogeneous product. If we incorporate product di¤erentiation into our structure,
we can show that agglomeration can be reproduced. In other words, this main result is robust.
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4 Welfare

To determine whether the location equilibrium is desirable, we conduct a welfare analysis.12 Let
a social welfare function be the sum of consumer surplus and pro�ts as

SS =
X

r2fA;Bg

0@Nrcsr + X
i2f1;2g

�ir

1A ;
where Nr, csr, and �ir are the market size, consumer surplus, and total pro�t, respectively,
given in a similar manner as in the previous sections. The social planner maximizes SS. We
focus on the second-best scenario13, in which the planner can only control the location and
the supply amount is determined under Cournot equilibrium, as analyzed in Section 3.1 (the
conditions (4) and (14) hold here). The number of �rms in each city is maintained at 2 for a
comparison with the equilibrium. Then, we have the following result.

Proposition 2 In the second-best scenario, the social planner locates the �rms as a fully dis-
persed con�guration (the distance between the �rms is 1=2) in each city.

Proof. See Appendix B.
We �nd excess agglomeration when the condition for agglomerated con�guration or the par-

tially dispersed con�guration holds in Proposition 1 in the decentralized economy. As discussed
before, consumers bene�t from agglomeration (lower price by competition), while �rms do from
separation (relaxed competition) without a rival city. In this model, �rms must take care of
another city or consumer surplus of their own city. That incentive turns agglomeration into an
equilibrium. The loss of producer surplus by agglomeration is greater than the consumer surplus
gain; thus, excessive agglomeration may occur.

5 Extensions: Intercity move and an n-�rm oligopoly

Thus far, we have excluded the possibility of intercity moves by �rms. Here, we relax this
restriction. That is, the �rms can choose any location in both cities. Let nr be the number of
�rms in city r (nA + nB = n, where n is the total number of the �rms in the economy). The
other structure is essentially preserved: For example, the demand schedule (1) is rewritten using
P = 1�Q, where Q =

Pnr
i=1 qi and the linear transport costs (3) remain the same.

First, we show a spatial Cournot equilibrium. As in Section (3.1), the �rst-order conditions
yield the equilibrium supply amount for �rm i at z as follows:

q�i (z) =
1

nr + 1

0@1� nrT (xi; z) +X
j 6=i

T (xj ; z)

1A for i = 1; : : : ; nr: (15)

12See Matsumura and Shimizu (2005) for a welfare analysis in spatial Cournot.
13The �rst-best scenario is obvious. The planner should set a fully dispersed con�guration and marginal-cost

pricing, because it minimizes total transport costs and removes the distortion.
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Each �rm always serves the entire city irrespective of �rms�locations. In (15), becausemaxT (xi; z) =
t=2 and min

P
j 6=i T (xj ; z) = 0, min q

�
i (z) = (1� nrt=2)=(nr + 1). Hence, we assume that

0 < t <
2

n
(16)

as a su¢ cient condition. Summing (15), we have the total supply amount at z as

Q�r(z) =
1

nr + 1

 
nr �

nrX
i=1

T (xi; z)

!
:

Then, consumer surplus is

csr =

Z 1

0

Q�r(z)
2

2
dz (17)

The total pro�t for �rm i is given by

��r(xi) = Nr

Z 1

0
q�i (z)

2dz; (18)

where Nr is the market size that is to be endogenously determined.
Furthermore, we should de�ne what happens under nr = 0; 1. When nr = 0, we assume

that all consumers go to the other city for shopping. That is, Nr = 0. When nr = 1, the
standard monopoly structure is applied. In the monopoly, location does not matter owing to
symmetry, and we assume that the monopolist is located at xi = 0 without loss of generality.
Then, straightforward calculations yield the equilibrium supply schedule, consumer surplus, and
total pro�ts, as follows:

qmono(z) =
1

2
(1� T (0; z)) ; csmono =

1

96

�
t2 � 6t+ 12

�
; �mono =

Nr
48

�
t2 � 6t+ 12

�
:

Next, we consider the market size, which is determined in a manner similar to Section 2.2.
We do not exclude the case where a city loses all consumers (corner solutions). The market size
for city r, Nr, is de�ned as

NA = minfmaxf0;
1

2
+
csA � csB

2k
g; 1g; NB = 1�NA (19)

for nr 6= 0; 1, where csr is given by (17). When nr = 0, then Nr = 0. When nr = 1; we must
rewrite csr using csmono in (19). Substituting the market size into (18), we have total pro�ts as
a function of �rms�locations.

Including all equilibria may be too complicated, because there are some equilibrium candi-
dates like the partially dispersed con�guration derived in Section 3.2. Therefore, we only focus
on two equilibrium candidates: symmetric con�guration, where �rms locate equidistantly in each
city (xi = (i� 1)=n for i = 1; : : : ; n), or agglomerated con�guration, where �rms agglomerate at
a point in each city (xi = 0 for all i). Recall that these con�gurations appear in equilibrium in
the case where �rms cannot move between the cities (Proposition 1).
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5.1 Four-�rm case

First, let the total number of �rms be unchanged at four (n = 4) until the next subsection. This
requires t < 1=2 to maintain a positive supply at any location for any �rm, irrespective of the
spatial distribution. There are three combinations of nA-nB (omitting symmetric cases) for the
intercity �rms�distributions: 2-2, 3-1, 4-0, which we analyze in the order 3-1, 4-0, and 2-2.

We �rst consider a case where a city has three �rms and the other has one. Then, our
question is whether symmetric or agglomerated con�gurations can be an equilibrium. The
answer is negative, shown as follows.

Proposition 3 Neither symmetric nor agglomerated con�gurations can be an equilibrium under
which one city has three �rms and the other has one.

Proof. The proof details are available upon request. Its outline is as follows. In any con�g-
uration, some calculations show that no �rm in the three-�rm city has an incentive to change
its location if k � �k(t) and that the �rm in one-�rm city also does not have this incentive if
k � k̂(t). Yet, �k(t) < k̂(t), which proves the proposition.

Recall that a lower k increases the importance of consumer surplus for consumers and thus
for �rms as well. Therefore, a city with many �rms is sustainable under small k, but a city with
few �rms is sustainable when k is large. Thus, asymmetric distribution between the cities is
incompatible.

Second, we consider the case where all (four) �rms are located in a city. Clearly, agglomerated
con�guration cannot be an equilibrium because we can readily show that the pro�ts of a �rm
monotonically increase with regard to the distance from the agglomeration. Therefore, we
have to focus only on the symmetric con�guration in the four-�rm city. Furthermore, it is
su¢ cient to check whether a �rm has an incentive to change its location to the other city
(empty city), because none of the �rms have an incentive to move inside the city under this
symmetric con�guration.14 We obtain the following result.

Proposition 4 An agglomerated con�guration is never an equilibrium while a symmetric con-
�guration is an equilibrium if

k �
25
�
t4 � 16t3 + 92t2 � 240t� 240

�
128 (�31t2 � 102t+ 204)

under which one city has all four �rms.

Proof. Calculations show that the pro�t at the symmetric con�guration in the four-�rm city
is �s = (7t2 � 6t + 12)=300. When a �rm deviates to the empty city, it becomes a monopolist
and its pro�t is �d = (t2 � 6t + 12)[1=2 � (t2 � 10t + 20)=256k]=48 if k > (t2 � 10t + 20)=128
and �d = 0 if 0 < k � (t2 � 10t + 20)=128. Reducing �s � �d, we obtain the inequality in the
proposition.

When k is small, more consumers prefer the four-�rm city, where consumer surplus is high
under �erce competition. Therefore, no �rm has an incentive to move to the empty city because
only limited consumers travel to the isolated �rm.

14See Gupta et al. (2004) for the results of the one-city model.
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Third and last, we consider a case in which each city has two �rms. This case has been
partially analyzed up to Section 3.2, and hence, we can utilize some part of the result in Propo-
sition 1. Speci�cally, our question is whether agglomerated con�guration is preserved under
k � (t2 � 6t+ 12)=432 and whether symmetric con�guration holds under k � (t2 � 2t+ 4)=144.
Here, these preconditions for k ensure that no �rm has an incentive to move inside its locating
city from Proposition 1. Thus, we must consider only intercity moves.

Proposition 5 The equilibrium is never an agglomerated con�guration, while the equilibrium
is a symmetric con�guration if

k �
9
�
t2 � 10t+ 20

�
896

under which each city has two �rms.

Proof. First, we address an agglomerated con�guration under k � (t2 � 6t + 12)=432. Cal-
culations show that the pro�t in the agglomerated con�guration is �a = (t2 � 2t + 4)=72.
Suppose that a �rm deviates to the other city. We can readily show that the �rm maximizes
its pro�t when it locates as far as possible from the agglomeration in the destination city.
Then, the pro�t using this deviation is �d = (t2 � 6t + 12)=192. Because �a is always less
than �d, the former part of this proposition is established. Next, we proceed to a symmetric
con�guration under k � (t2 � 2t + 4)=144. The pro�t at the symmetric con�guration is given
by �s = (t2 � 2t + 4)=72. When a �rm deviates to the other city, the maximal pro�t becomes
�dd = (t

2�2t+4)(t2�10t+128k+20)=16384k if k � (t2�10t+20)=128 or �dd = (t2�2t+4)=64 if
(t2�2t+4)=144 � k < (t2�10t+20)=128. Reducing �s � �dd, we have k � 9

�
t2 � 10t+ 20

�
=896.

Summarizing these, we obtain our result.
This shows the e¤ect of an intercity move. In the case with no intercity moves, a symmetric

con�guration exists when k � (t2 � 2t + 4)=144 (Proposition 1). Because (t2 � 2t + 4)=144 <
9
�
t2 � 10t+ 20

�
=896, the intercity move breaks down the symmetric con�guration when (t2 �

2t+ 4)=144 � k < 9
�
t2 � 10t+ 20

�
=896.

5.2 n-�rm oligopoly with intercity migration

Next, we consider arbitrary oligopolies by n > 4 �rms with an intercity move. Because it is
di¢ cult to have all equilibria, similar to previous cases, we focus on some interesting candidates
as location equilibria: symmetric and agglomerated con�gurations. In addition, we only address
the case in which all �rms are located in one city, because there are too many combinations of
nA-nB. We obtain the following proposition.

Proposition 6 In any oligopoly with more than four �rms in the economy, the equilibrium is
never an agglomerated con�guration in one city, while it may be a symmetric con�guration in
one city if k is su¢ ciently small.

Proof. The former part of the proposition is straightforward. Suppose that all �rms agglomerate
at 0 in city A. Then, the pro�t of each �rm is maximized if it relocates to xi = 1=2. On the
latter part, as Gupta et al. (2004) have shown, no �rm has an incentive to relocate inside
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a circular city when a symmetric con�guration is achieved. Hence, we need to consider only
intercity migration. In a city of n �rms with a symmetric con�guration, we obtain consumer
surplus as css = n2(4� t)2=32(n + 1)2. If a �rm deviates to become a monopolist at the other
(empty) city, the consumer surplus in the monopolized city is given by csm = (12� 6t+ t2)=96.
When

0 < k <
2n2(t2 � 9t+ 18)� 2n(t2 � 6t+ 12)� t2 + 6t� 12

96(n+ 1)2
;

we �nd that css � k� > csm � k(1� �) for all � 2 [0; 1]. Then, the pro�t of the deviating �rm
becomes zero, which implies that the deviation is not pro�table. Summarizing this, we obtain
our desired result.

When k is small, consumer surplus matters more for consumers than transport cost does.
When one city has all �rms, no �rm can earn enough pro�ts by exiting from the city and be-
ing a monopolist in the other city. Interestingly, this can be interpreted as a reproduction of
multidimensional spatial competition (Tabuchi, 1994; Irmen and Thisse, 1998), that is, di¤er-
entiation occurs in only one dimension. On one hand, �rms require product di¤erentiation (i.e.,
the agglomerated con�guration is not an equilibrium). On the other hand, under the symmetric
con�guration, the dispersed distribution of �rms is considered a di¤erentiation in one dimension
(inside a city), but an additional di¤erentiation in another dimension (intercity migration) is
not necessarily required.

6 Concluding remarks

Spatial competition models have addressed a single city (space) and have shown that spatial
Cournot with a circular city does not lead to agglomerated con�guration. Yet, in the real world,
competition is hierarchical: Firms compete inside the city (inner-city competition) and against
�rms in other cities (intercity competition). The paper sheds light on this phenomenon, and
we have constructed a model of spatial Cournot with twin circular cities. By doing so, we
observe agglomerated con�guration as an equilibrium of the case with no intercity migration
when mismatch (transport) costs are low because of higher price elasticity between cities, which
is in a sharp contrast with the literature. This might be one reason why retail �rms often
agglomerate in a small district.

When we allow intercity move by �rms, we reproduce the results of multidimensional spatial
competition: di¤erentiation should appear in only one dimension. Furthermore, our welfare
analysis has shown that such agglomeration is not desirable from the viewpoint of the second-
best. This may be why governments rationalize locational restrictions on concentrated retail
districts. Finally, we assume a special form of hierarchy in the inner- and inter-city structure.
Other formulations may be considered in future research.
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Appendix

A. Proof of Proposition 1

We consider the best response of �rm 1, x�r , in city r. From (12) and (13), we have

@��(xr)

@xr
=

t2

1944k
xr(1� 2xr)f(xr); (20)

where
f(xr) = (16x

2
r(4xr � 3)� 8x2�(4x� � 3)� 1)t2 + 6t� 12 + 432k for r 6= �:

Di¤erentiating f(xr) with respect to xr, we have

@f(xr)

@xr
= 96t2xr(2xr � 1): (21)

First, we seek an interior solution, that is, a partially dispersed con�guration (0 < x�r < 1=2).
From (20), the �rst-order condition requires f(x�r) = 0. f(xr) is decreasing in [0; 1=2] from
(21), which implies that the equation f(xr) = 0 has a unique solution in (0; 1=2) if and only if
f(0) > 0 and f(1=2) < 0 (i.e., the solution satis�es the second-order condition). Furthermore,
we have

f(xA)� f(xB) = 24t2(xA � xB)g(xA; xB);
where g(xA; xB) = 4xAxB + 4x2A + 4x

2
B � 3x2A � 3x2B. We have g(xA; xB) = 0 () (xA; xB) =

(0; 0); (1=2; 1=2). Because f(xA)�f(xB) = 0 must hold from the �rst-order condition, a partially
dispersed con�guration, if any, must be symmetric (xA = xB). We can readily show that the
conditions of f(0) > 0; f(1=2) < 0 with xA = xB are equivalent to (t2 � 6t + 12)=432 <
k < (t2 � 2t + 4)=144. Then, the best response of �rm 1 is uniquely determined as x�r such
that f(x�r) = 0 in each city. Next, we proceed to �rm 2. Because of the symmetry of the pro�t
function, the optimal distance from �rm 1 is also x�r for �rm 2. In other words, the best response
of �rm 2 is 0 when �rm 1 chooses x�r . Consequently, we have the unique, partially dispersed
con�guration when (t2� 6t+12)=432 < k < (t2� 2t+4)=144, where two �rms are located with
the distance between them being x�r such that f(x

�
r) = 0 in each city.

The other candidate is a corner solution (x�r = 0; 1=2). Again, we analyze the behavior of �rm
1. Because f(xr) is a decreasing function from (21), we �nd that f(xr)jxr=0 � 0 () x�r = 0
and f(xr)jxr=1=2 � 0 () x�r = 1=2. In addition, owing to symmetry, we can exclude an
asymmetric equilibrium, (x�A; x

�
B) = (0; 1=2) or (1=2; 0). Reducing f(�) � 0 at xA = xB = 0,

we have k � (t2 � 6t + 12)=432. Then, the best response of �rm 2 is also 0; that is, the
agglomerated con�guration is a unique equilibrium in this case. Furthermore, reducing f(�) � 0
at xA = xB = 1=2, we obtain k � (t2 � 2t + 4)=144. In this case, the best response of �rm
2 is also 1=2. This implies that the fully dispersed con�guration is a unique equilibrium. In
summary, three types of equilibria uniquely exist in each of the three parameter domains, which
proves the proposition.

B. Proof of Proposition 2

Without loss of generality, we assume that �rm 2 is located at 0 in each city. We use the same
notation as in Section 3. From the results in Section 3, we have
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SS = 7t4
�
x2A(3� 4xA)� x2B(3� 4xB)

�2
=5832k � [48� 24t

�t2
�
7x2A(4xA � 3) + 7x2B(4xB � 3)� 4

�
]=108: (22)

First, we consider an interior solution (0 < xA; xB < 1=2). Di¤erentiating (22) with respect to
xr, we have

@SS

@xr
=

7t2

486k
xr(1� 2xr)f(xr);

where
f(xr) = t

2
�
x2r(4xr � 3)� x2�(4x� � 3)

�
+ 27k for r 6= �; r; � 2 fA;Bg:

Therefore, we require f(xA) = f(xB) = 0 for an interior solution. Next, we have

f(xA)� f(xB) = 2t2(xA � xB)g(xA; xB);

where g(xA; xB) = 4xAxB + 4x2A + 4x
2
B � 3x2A � 3x2B. We �nd g(xA; xB) = 0 () (xA; xB) =

(0; 0); (1=2; 1=2). Hence, an interior solution, if any, must be symmetric (xA = xB). Evaluating
f(xA) at xA = xB, we have

f(xA)jxA=xB = 27k > 0;

which implies that no interior solution exists.
Next, we consider a corner solution (xr = 0; 1=2). We �nd

@SS

@xA

����
xA=0

= 0;
@2SS

@x2A

����
xA=0

> 0

for 8xB 2 [0; 1=2], which implies that the agglomerated con�guration, xr = 0, cannot be a
solution. The only candidate for the second-best is xr = 1=2. We �nd that

SSj(xA;xB)=(1=2;1=2) � SSjxB=1=2

=
7cst2

93312k
(1 + 4xA)(1� 2xA)2

�
216k + t2(1 + 4xA)(1� 2xA)2

�
> 0

for 8xA 2 [0; 1=2). Hence, we conclude that a fully dispersed con�guration, (xA; xB) = (1=2; 1=2),
maximizes SS if the second-best is a corner solution. Thus, we prove the proposition.
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