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Abstract 

 

 

Entropic consideration plays the essential role in understanding equilibrium in the macroeconomy 

comprising heterogeneous agents. Curiously, it has been long ignored in economics. In fact, the idea 

of entropy is completely opposite to that of mainstream macroeconomics which is founded on 

representative agent models. Macroeconomics is meant to analyze the macroeconomy which 

consists of 10 million households and one million firms. Despite a large number of micro agents, the 

standard model focuses on the behavior of the representative micro agent. We show that entropy 

serves as a key concept in economics as well as in physics by taking the distribution of labor 

productivity in Japan as an illustrative example. Negative temperature, which is abnormal in nature, 

turns out to be normal to explain the distribution of workers on the low-to-medium productivity side. 

Also, the empirical result on the high productivity side indicates limited capacities of leading firms 

for workers. We construct a statistical physics model that is valid in the whole range of productivity. 
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I. Introduction

In this paper, drawing on our previous research, we explain that the concept of en-
tropy can be usefully applied to macroeconomics. The macroeconomy consists of 107

heterogeneous households and 106 firms. Despite of this simple fact, entropy which
plays the essential role in statistical physics has been long ignored in macroeco-
nomics. It is physicists who first noticed the potential usefulness of the concept and
applied it to socioeconomic systems (Montroll, 1981, 1987). Following their lead, we
proposed a new concept of stochastic equilibrium in macroeconomics (Yoshikawa,
2003; Aoki and Yoshikawa, 2007; Iyetomi, 2012; Yoshikawa, 2014; Aoyama et al.,
2014). Especially, we focused on distribution of workers across different levels of
labor productivity. It is parallel to distribution of particles across different energy
levels in physics.

Although entropy serves as a key concept in economics as well as in physics, there
is crucial difference between the two disciplines. In macroeconomics, we can usefully
identify the level of labor productivity with that of energy. In physics, a free particle
tends to achieve lower energy whereas worker always tries to find a job with higher
productivity. Thus, reasonable measure of temperature necessarily becomes nega-
tive, not positive, in economics. Our data of one million Japanese firms shows how
labor productivity is distributed across firms and workers. A statistical theory based
on the entropy maximum principle, reinforced with a concept of negative tempera-
ture, works well to reproduce increasing distribution of workers on low-to-medium
productivity side; more than 90% of workers belong to this regime. The signifi-
cant difference in the economic temperatures was detected between manufacturing
and non-manufacturing sectors, indicating imbalance in effective demand across two
sectors; in contrast, they are almost in equilibrium with respect to exchanges of
workers.

Decreasing distribution of workers in a power-law form on high productivity side
requires another explanation. We made an additional assumption that a sector or
firm with high productivity can accommodate only a limited number of workers. The
macroeconomy consists of many firms with different levels of productivity. Differ-
ences in productivity arise from different capital stocks, levels of technology and/or
demand conditions facing firms. We call a group of firms with the same level of
productivity a cluster. Workers randomly move from a cluster to another for various
reasons at various times. Despite of these random changes, the distribution of labor
productivity as a whole remains stable because those incessant random movements
balance with each other. This balancing must be achieved for each cluster, and is
called detail-balance. We worked out a general treatment of this detail-balance us-
ing particle-correlation theory à la Costantini and Garibaldi (1989). In doing so, we
made an assumption that the number of workers who belong to clusters with high
productivity is constrained. We thus derived a general formula for the productivity
distribution to explain the two distinctive observational facts in a unified way, using
the detail-balance condition necessary for equilibration in the Ehrenfest-Brillouin
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model.
In this paper we give an integrated account of what have been achieved by us

in the previous works (Yoshikawa, 2003; Aoki and Yoshikawa, 2007; Iyetomi, 2012;
Yoshikawa, 2014; Aoyama et al., 2014), together with new additional contributions.
We use another dataset of financial statements of firms in Japan extracted from a
worldwide database. This allows us not only to confirm the empirical results previ-
ously obtained but also to study diversity of labor productivity from a global point of
view. Theoretically, we rederive the general formula for the productivity distribution
within equilibrium statistical physics not resorting to the Ehrenfest-Brillouin model.
This amounts to development of a grand canonical formulation for distinguishable
particles of the same kind, while identical particles are indistinguishable in quantum
theory. The new formulation encompasses the Maxwell-Boltzmann, the Fermi-Dirac,
and the Bose-Einstein distributions, three typical distributions in statistical physics,
on an equal footing.

The following section explains the motivation of the method of statistical physics
and the concept of stochastic macro-equilibrium. Section III obtains distribution
of labor productivity from an extensive financial database of Japanese firms. Sec-
tion IV then constructs a theoretical model to explain it using a grand canonical
formulation. Section V is devoted to validation of the model through comparison
with the empirical results, accompanied by derivation of equilibrium conditions for
multi-sector systems. The final section offers brief concluding remarks.

II. Stochastic Macro-equilibrium — The Basic Idea

We consider distribution of workers across different levels of labor productivity.
Workers are always interested in better job opportunities, and occasionally change
their jobs. While workers search for suitable jobs, firms also search for suitable
workers. Firm’s job offer is, of course, conditional on its economic performance. The
present analysis focuses on the firm’s labor productivity. The firm’s labor productiv-
ity increases thanks to capital accumulation and technical progress or innovations.
However, those job sites with high productivity remain only potential unless firms
face high enough demand for their products; firms may not post job vacancy signs
or even discharge the existing workers when demand is low.

The motivation for the method of statistical physics is as follows. Though we
assume that firms with higher productivity make more attractive job offers to work-
ers, we do not know how attractive they are to which workers. Whenever possible,
workers move to firms with higher productivity, but we never know particular rea-
sons for such moves. For workers to move to firms with higher productivity, it is
necessary that those firms must decide to fill the vacant job sites, and post enough
number of vacancy signs and/or make enough hiring efforts. They post such vacancy
signs and make hiring efforts only when they face an increase of demand for their
products, and decide to raise the level of production. It also goes without saying
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that high productivity firms keep their existing workers only when they face high
enough demand.

The question we ask is what the distribution of employed workers is across firms
whose productivities differ. Because microeconomic shocks to both workers and
firms are so complex and unspecifiable, optimization exercises based on represen-
tative agent assumptions do not help us much. In particular, we never know how
the aggregate demand is distributed across firms. Besides, among other things, the
job arrival rate, the job separation rate, and the probability distribution of wages
(or more generally measure of the desirability of the job) differ across workers and
firms. This recognition is precisely the starting point of the fundamental method
of statistical physics. Foley (1994), in his seminal application of this approach to
general equilibrium theory, called the idea “statistical equilibrium theory of mar-
kets”. Following the lead of Foley (1994), Yoshikawa (2003) applied the concept to
macroeconomics. At first, one might think that allowing too large a dispersion of
individual characteristics leaves so many degrees of freedom that almost anything
can happen. However, it turns out that the methods of statistical physics provide
us not only with qualitative results but also with quantitative predictions.

In the present model, the fundamental constraint on the economy as a whole is
aggregate demand D. Accordingly, to each firm facing the downward-sloping kinked
individual demand curve, the level of demand for its product is the fundamental
constraint. The problem is how the aggregate demand D is allocated to these mo-
nopolistically competitive firms. Our model gives a solution to this problem. The
method is standard in statistical physics. The basic idea behind the analysis can be
explained with the help of the simplest case. We focus on productivity dispersion
here.

Suppose that nk workers belong to firms whose productivity is ck (k = 1, 2, · · · , K),
where there are K levels of productivity in the economy arranged in the ascending
order: c1 < c2 < · · · < cK . The total number N of workers and the total output Y
in the economy are then given by

N =

K∑
k=1

nk , (1)

and

Y =

K∑
k=1

cknk , (2)

respectively. A vector n = (n1, n2, · · · , nK) shows a particular allocation of workers
across firms with different productivities. The combinatorial numberWn of obtaining
this allocation, n is equal to that of throwing N balls to K different boxes. Because
the number of all the possible ways to allocate N different balls to K different boxes
is KN , the probability that a particular allocation n = (n1, n2, · · · , nK) is obtained
is
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Pn =
WN (n)

KN
=

1

KN

N !
K∏
k=1

nk!

(3)

It is the fundamental postulate of statistical physics that the state or the alloca-
tion n = (n1, n2, · · · , nK) which maximizes the probability Pn or (3) under macro
constraints is to be realized1. The idea is similar to maximum likelihood in statis-
tics/econometrics. Maximizing Pn is equivalent to maximizing lnPn. Applying the
Stirling formula for large number we find that the maximization of lnPn is equivalent
to that of S

S = lnWN (n) = −N

K∑
k=1

pk ln pk (pk =
nk

N
) , (4)

where S is the Shannon entropy, and captures the combinatorial aspect of the prob-
lem. Though the combinatorial consideration summarized in the entropy plays a
decisive role for the final outcome that is not the whole story, of course. The quali-
fication “under macro-constraints” is crucial.

The first macro-constraint concerns the labor endowment, (1). The second
macro-constraint concerns the effective demand. We assume that given aggregate
demand D is balanced by the total output Y , (2):

D = Y =

K∑
k=1

cknk . (5)

In our analysis, we explicitly analyze the allocation of labor (n1, n2, · · · , nK). The
allocation of labor basically corresponds to the allocation of the aggregate demand
to monopolistically competitive firms.

To maximize entropy S under two macro-constraints (1) and (2), set up the
following Lagrangean form L:

L = −N

K∑
k=1

(nk

N

)
ln

(nk

N

)
− αN − βD , (6)

with two Lagrangean multipliers, α and β. Maximization of this Lagrangean form
with respect to nk leads us to the first-order variational condition:

δL = δS − αδN − βδD = 0 , (7)

with the following variations,

1To be precise, it is to be realized in the sense of expected value. In physics, variance is normally
so small relative to expected value that we practically always observe the expected value.

5



δS =
K∑
k=1

δnk ln
(nk

N

)
, (8)

δN =

K∑
k=1

δnk , (9)

δD =
K∑
k=1

ckδnk . (10)

Equation (7) coupled with (8), (9), and (10) determines nk as

ln
(nk

N

)
= −α− βck (k = 1, 2, · · · , K) . (11)

Because nk/N sums up to one, we obtain

nk

N
= e−α−βck =

e−βck

K∑
k=1

e−βck

. (12)

Thus, the number of workers working at firms with productivity ck is exponentially
distributed. It is known as the Maxwell-Boltzmann distribution in physics.

Here arises a crucial difference between economics and physics. In physics, ck
corresponds to the level of energy. Whenever possible, particles tend to move toward
the lowest energy level. To the contrary, in economics, workers always strive for
better jobs offered by firms with higher productivity ck. As a result of optimization
under unobservable respective constraints, workers move to better jobs. In fact, if
allowed all the workers would move up to the job sites with the highest productivity,
cK . This situation corresponds to the textbook Pareto optimal Walrasian equilibrium
with no frictions and uncertainty. However, this state is actually impossible unless
the level of aggregate demand D is so high as equal to the maximum level Dmax =
cKN . When D is lower than Dmax, the story is quite different. Some workers — a
majority of workers, in fact must work at job sites with productivity lower than cK .

How are workers distributed over job sites with different productivity? Obviously,
it depends on the level of aggregate demand. When D reaches its lowest level,
Dmin, workers are distributed evenly across all the sectors with different levels of
productivity, c1, c2, · · · , cK . Here, Dmin is defined as Dmin = N(c1+c2+ · · ·+ck)/K.
It is easy to see that the lower the level of D is, the greater the combinatorial
number of distribution (n1, n2, · · · , nK) which satisfies aggregate demand constraint
(2) becomes.

As explained above, the combinatorial number Wn of a particular allocation
n = (n1, n2, · · · , nK) is basically equivalent to the Shannon entropy, S defined by
(4). The entropy S increases when D decreases. For example, in the extreme case
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where D is equal to the maximum level Dmax, all the workers work at job sites with
the highest productivity. In this case, the entropy S becomes zero, its lowest level
because nK/N = 1 and nk/N = 0 (k ̸= K). In the other extreme where aggregate
demand is equal to the minimum level Dmin, we have nk = N/K, and the entropy S
defined by (4) reached its maximum level, lnK. The relation between the entropy S
and the level of aggregate demand D, therefore, is schematically drawn in Figure 1.

At this stage, we can recall that the Lagrangean multiplier β in (6) for aggregate
demand constraint is equal to

β =
∂L

∂D
=

∂S

∂D
, (13)

where β is the slope of the tangent of the curve as shown in Figure 1, and, therefore,
is negative.

In physics, β is normally positive. This difference arises because workers strive
for job sites with higher productivity, not the other way round (Iyetomi, 2012). In
physics, β is equal to the inverse of temperature, or more precisely, temperature is
defined as the inverse of ∂S/∂D when S is the entropy and D energy. Thus, negative
β means the negative temperature. It may sound odd, but the notion of negative
temperature is perfectly legitimate in such systems as the one in the present analysis;
see Section 73 of Landau and Lifshitz (Landau and Lifshitz, 1980) and Appendix E
of Kittel and Kroemer (Kittel and Kroemer, 1980). With negative β, the exponential
distribution (11) is upward-sloping. However, unless the aggregate demand is equal
to (or greater than) the maximum level, Dmax, workers’ efforts to reach job sites
with the highest productivity cK must be frustrated because firms with the highest
productivity do not employ a large number of workers and are less aggressive in
recruitment, and accordingly it becomes harder for workers to find such jobs. As
a consequence, workers are distributed over all the job-sites with different levels of
productivity.

The maximization of entropy under the aggregate demand constraint (6), in fact,
balances two forces. On one hand, whenever possible, workers move to better jobs
identified with job sites with higher productivity. It is the outcome of successful job
matching resulting from the worker’s search and the firm’s recruitment. When the
level of aggregate demand is high, this force dominates. However, when D is lower
than Dmax, there are in general a number of different allocations (n1, n2, · · · , nK)
which are consistent with D.

As we argued above, micro shocks facing both workers and firms are truly un-
specifiable. We simply do not know which firms with what productivity face how
much demand constraint and need to employ how many workers with what quali-
fications. We do not know which workers are seeking what kind of jobs with how
much productivity, either. Here comes the maximization of entropy. It gives us
the distribution (n1, n2, · · · , nK) which corresponds to the maximum combinatorial
number consistent with given D.
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The standard economic theory, search theory in particular, emphasizes non-trivial
job matching in labor market with frictions and uncertainty. Our analysis shows
that the matching of high productivity jobs is ultimately conditioned by the level of
aggregate demand. That is, uncertainty and frictions emphasized by the standard
search theory are not exogenously given, but depend crucially on aggregate demand.
In a booming gold-rush town, one does not waste a minute to find a good job! The
opposite holds in a depressed city.

It is essential to understand that the present approach does not regard economic
agents’ behaviors as random. Certainly, firms and workers maximize their profits
and utilities. The present analysis, in fact, presumes that workers always strive for
better jobs characterized by higher productivity. Randomness underneath the en-
tropy maximization comes from the fact that both the objective functions of and
constraints facing a large number of economic agents are constantly subject to un-
specifiable micro shocks. We must recall that the number of households is of order
107, and the number of firms, 106. Therefore, there is nothing for outside observers,
namely economists analyzing the macroeconomy but to regard a particular allocation
under macro-constraints as equiprobable. Then it is most likely that the allocation
of the aggregate demand and workers which maximizes the probability Pn or (3)
under macroconstraints is realized.

This method has been time and again successful in natural sciences when we
analyze object comprising many micro elements. Economists might be still skeptical
of the validity of the method in economics saying that inorganic atoms and molecules
comprising gas are essentially different from optimizing economic agents. Every
student of economics knows that behavior of dynamically optimizing economic agent
such as the Ramsey consumer is described by the Euler equation for a problem of
calculus of variation. On the surface, such a sophisticated economic behavior must
look remote from “mechanical” movements of an inorganic particle which only satisfy
the law of motion. However, every student of physics knows that the Newtonian law
of motion is actually nothing but the Euler equation for a certain variational problem;
particles minimize the energy or the Hamiltonian! It is called the principle of least
action: see Chapter 19 of Feynman (1964). Therefore, behavior of dynamically
optimizing economic agent and motions of inorganic particle are on a par to the
extent that they both satisfy the Euler equation for respective variational problem.
The method of statistical physics can be usefully applied not because motions of
micro units are “mechanical,” but because object or system under investigation
comprises many micro units individual movements of which we are unable to know.

The above analysis shows that the distribution of workers at firms with different
productivities depends crucially on the level of aggregate demand. Though the simple
model is useful to explain the basic idea, it is too simple to apply to the empirically
observed distribution of labor productivity.

8



III. Empirical Distribution of Productivity

In this study we take advantage of the Orbis database (Bureau van Dijk Electronic
Publishing, Brussels, Belgium), possessing information on over 120 million firms
across the globe. We focus on Japanese firms with non-empty entries in annual op-
erating revenue Y and the number n of employees, and define the labor productivity
c of firms as follows:

c :=
Y

n
. (14)

We end up with 31,512 manufacturing firms and 304,006 non-manufacturing firms
in 2012. The data source is different from that of our previous studies (Souma et
al., 2009; Iyetomi, 2012; Aoyama et al., 2014), which were based on the dataset con-
structed by unifying two domestic databases, the Nikkei Economic Electric Database
(NEEDS) (Nikkei Digital Media, Inc., Tokyo, Japan) for large firms and the Credit
Risk Database (CRD) (CRD Association, Tokyo, Japan) for small to medium-sized
firms. The Orbis database used here may enable us to extend our study to the labor
productivity in other countries and do international comparisons of its dynamics.

Figure 2 shows the probability density function (PDF) of firms and workers with
respect to log c, empirically determined from the Orbis database in 2012. Here c
is measured in units of 103 USD per person. The fact that the major peak of the
latter is shifted to right compared to that of the former indicates that the average
number n̄ of workers per firm increases in this region. In fact, Figure 3 shows the
functional dependence of n̄ on the labor productivity c of firms. We observe that as
the productivity rises, it first goes up to about n ≃ 100 and then decreases. Iyetomi
(2012) explained the upward-sloping distribution in the low productivity region by
introducing the negative temperature theory. The downward-sloping part in the high
productivity region is close to linear (denoted by the dotted line) in this double-log
plot. This indicates that it obeys the power law:

n̄ ∝ c−γ . (15)

The new empirical observations ascertain our previous conclusion (Iyetomi, 2012;
Aoyama et al., 2014) that the broad shape of distribution of productivity among firms
is quite robust and universal. The number of workers exponentially increases as c
increases up to a certain level of productivity, and then it decreases with the power
law form (15) in the high productivity region. The latter behavior of n̄ may be
somewhat counter-intuitive, because firms that have achieved higher productivity
through innovations and high-quality management would continue to grow larger
and larger leading to monotonically increasing n̄ with c.

In the previous section we demonstrated that the entropy maximization under
macro constraints leads to an exponential distribution. This distribution with nega-
tive β can explain the broad pattern of the left-hand side of the distribution shown
in Figure 3, namely an upward-sloping exponential distribution (Iyetomi, 2012).
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However, we cannot reproduce the downward-sloping power distribution for high
productivity firms. To explain it, we need to make an additional assumption that
the number of potentially available high-productivity jobs is limited and it decreases
as the level of productivity rises (Aoyama et al., 2014).

Potential jobs fj are created by firms by accumulating capital and/or introducing
new technologies, particularly new products. On the other hand, they are destroyed
by firms’ losing demand for their products permanently. Schumpeterian innovations
by way of creative destruction raise the levels of some potential jobs, but at the
same time lower the levels of others. In this way, the number of potential jobs with
a particular level of productivity keeps changing. Note, however, that they remain
only potential because firms do not necessarily attempt to fill all the job sites with
workers. To fill them, firms either keep the existing workers on the job or post job
vacancy signs and make enough hiring efforts, but they are economic decisions and
depend crucially on the economic conditions facing firms. The number of potential
job sites, therefore, is not exactly equal to, but rather imposes a ceiling on the sum
of the number of filled job sites, or employment and the unfilled jobs.

Under reasonable assumptions, distribution of potential job sites with high pro-
ductivity becomes downward-sloping power law. Adapting the model of Marsili and
Zhang (1998), we can derive a power-law distribution such as the one for the tail of
the empirically observed distribution of labor productivity; see Yoshikawa (2014) for
details. However, the determination of employment by firms with various levels of
productivity is another matter. To fill potential job sites with workers is the firm’s
economic decision. The most important constraining factor is the level of demand
facing the firm in the product market. To fill potential job sites, the firm must either
keep the existing workers on the job, or make enough hiring efforts including posting
vacancy signs toward successful job matching. Such actions of the firms and job
search of workers are purposeful. However, micro shocks affecting firms and work-
ers are just unspecifiable. Then, how are workers actually employed at firms with
various levels of productivity? This is the problem we considered in the previous
section. In what follows, we will consider it in a more general framework.

The number of workers working at the firms with productivity ck, namely nk is

nk ∈ {0, 1, · · · , gk} (k = 1, 2, · · ·K) . (16)

Here, gk is the number of potential jobs with productivity ck, and puts a ceiling on
nk. We assume that in the low productivity region, gk is so large that nk is virtually
unconstrained by gk. In contrast, in the high productivity region, gk constrains nk

and it actually diminishes in a power form as we have analyzed above. When the
number of potential jobs with high productivity is limited, behavior of economic
agents necessarily becomes correlated; If good jobs are taken by some workers, it
becomes more difficult for others to find such jobs. The present analysis precisely
does it by introducing ceilings on nj .
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IV. Grand Canonical Formulation

One way to analyze the equilibrium distribution of labor productivity is to maximize
entropy just as we did in Section II. Alternatively, Garibaldi and Scalas (2010)
suggested that we could usefully apply the Ehrenfest-Brillouin model, a Markov chain
to analyze the problem. In our previous paper (Aoyama et al., 2014), following their
suggestion, we developed such a stochastic model to incorporate the assumption that
a sector can accommodate a limited number of workers depending on its productivity.
Here we derive the identical model within a framework of statistical physics taking
advantage of the idea of grand canonical ensemble.

In the Ehrenfest-Brillouin model, we first considered the minimal binary processes
with time reversal symmetry as depicted in Figure 4. We then took the probability
flux N(i, j; k, ℓ) for transition from (i, j) to (k, ℓ) in the following form:

N(i, j; k, ℓ) ∝ ninjL(ck, nk)L(cℓ, nℓ) . (17)

Here the factor L(c, n) limits the number n of workers in a firm of productivity c at
n = g(c), so that it is characterized by

1 ≥ L(c, n) ≥ 0 for n ≤ g(c) , (18)

L(c, n) = 0 for n > g(c) . (19)

To proceed further, we adopted such a simple linear model for L(c, n) as shown in
Figure 5:

L(c, n) =


g(c)− n

g(c)
= 1− n

g(c)
for n ≤ g(c) ,

0 for n ≥ g(c) .
(20)

Finally detailed balancing between the transition from (i, j) to (k, ℓ) and its reverse
enabled us to derive the equilibrium distribution n̄(c) given by

n̄(c) =
g(c)

g(c)/q(c) + 1
=

[
1

q(c)
+

1

g(c)

]−1

, (21)

with
q(c) = eβ(µ−c) . (22)

As noted by Garibaldi and Scalas (2010), the form (21) reduces to the Maxwell-
Boltzmann (MB), the Fermi-Dirac (FD), and the Bose-Einstein (BE) distributions
at g−1 = 0, 1, and − 1, respectively.

Now we begin with the grand canonical modelling for n̄(c) by going back to the
situation that sectors or firms can accommodate as many workers as they wish. In
this case, the partition function ZN , corresponding to the Lagrangian (6), is written
down as

ZN =
N∑

n1=0

N∑
n2=0

· · ·
N∑

nK=0

WN (n) exp

[
−β

K∑
k=1

cknk

]
, (23)

11



where the multiple summation with respect to the number of workers at each produc-
tivity level is carried out subject to the constraint (1). Adoption of a grand canonical
formulation make us free from such a troublesome restriction. We thus think about
the situation in which the system under study is connected to a worker reservoir
with “chemical potential” µ0. The grand partition function Ξ is then defined as

Ξ =
∞∑

N=0

eβµ0N

(
N∞
N

)
ZN , (24)

where N∞ is the total number of workers in the extended system and
(
N∞
N

)
denotes

the binomial coefficient. Note that the combinatorial factor in (24) stems from
the statistical assumption that workers are distinguishable. Since one can assume
N ≪ N∞, the combinatorial factor is well approximated by(

N∞
N

)
≃ NN

∞
N !

. (25)

With this approximation, we can calculate (24) as

Ξ =

K∏
k=1

Ξ(ck) , (26)

where we set

Ξ(c) =

∞∑
n=0

1

n!
eβ(µ−c)n = exp

[
eβ(µ−c)

]
, (27)

and
eβµ = N∞eβµ0 . (28)

The equilibrium distribution n̄(c) is then obtained from Ξ(c) according to

n̄(c) = q(c)
∂ lnΞ(c)

∂q(c)
, (29)

where q(c) is defined by (22). Certainly substitution of (27) in this formula gives the
Maxwell-Boltzmann distribution.

Next we impose the restriction on the distribution of productivity by ceiling the
number of job positions at each productivity level c:

Ξ(c) =

∞∑
n=0

f(n; g(c))
1

n!
q(c)n , (30)

where we introduced the ceiling function f(n; g(c)) which is characterized by

1 ≥ f(n; g(c)) ≥ 0 for n ≤ g(c) , (31)
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f(n; g(c)) = 0 for n > g(c) . (32)

These two conditions, (31) and (32), imposed on f(n; g(c)) correspond to (18) and
(19) on L(c, n), respectively. The equation (30) is compared with (23) in Yoshikawa
(2014), where workers are treated as being indistinguishable.

In order to reproduce (21), in fact, we only have to choose f(k; g(c)) in the
following form:

f(n; g(c)) =

(
g(c)

n

)
n!

g(c)n
=

g(c)!

(g(c)− n)!g(c)n
, (33)

supplemented with (32). Then, the grand partition function (30) is explicitly calcu-
lated as

Ξ(c) =

g(c)∑
k=0

(
g(c)

k

)(
q(c)

g(c)

)k

=

(
1 +

q(c)

g(c)

)g(c)

. (34)

We can derive the desired result (21) from this grand partition function through
(29). The formula (34) has been already obtained heuristically by Aoyama et al.
(2014).

It should be remarked that (33) is well defined even at g = −1:

f(n; g = −1) =

(
−1

n

)
n!

(−1)n
= n! , (35)

with (
−1

n

)
=

(−1)(−2) · · · (−n)

n!
= (−1)n . (36)

This leads to the BE distribution as expected. We thus see that the ceiling function
(33) is capable of representing the three typical distributions, MB, FD, and BE,
in a unified way. This is within a framework of the grand canonical formulation
for distinguishable particles. On the other hand, the grand canonical formulation
for indistinguishable particles as in the case of quantum physics can accommodates
only the FD and the BE distributions; the MB distribution is obtained by taking
the classical limit of n̄ ≪ 1 in either of the two quantum distributions. These
relationships are diagramed in Figure 6.

In passing we note that the Gaussian approximation to f(n; g(c)) in (33),

f(n; g(c)) ≃ exp

[
− n2

2g(c)

]
, (37)

is valid for g(c) ≫ 1. Although we assumed n ≪ g(c) besides to derive (37), the
additional condition is automatically satisfied by the resulting Gaussian form; its
relevant range of n is n ≲

√
2g(c) ≪ g(c) for g(c) ≫ 1. Figure 7 compares the

results calculated in the exact functional form for g = 10 with the corresponding
results in the Gaussian form. We see the approximation works well even for a not
so large value of g.
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V. Fitting of the Model to the Japanese Data: Manufacturing and
Non-manufacturing Sectors

First, we note that when there is no limit to the number of the workers, i.e., g → ∞,
(21) boils down to the Maxwell-Boltzmann distribution,

n̄MB(c) = e−β(c−µ). (38)

When we apply (38) to low-to-intermediate range of c where n̄ is an exponentially
increasing function of c as observed in Figure 3, we must have

β < 0 . (39)

The negative β is tantamount to the negative temperature (Landau and Lifshitz,
1980; Kittel and Kroemer, 1980). The current model thus accommodates the Boltz-
mann statistics model with negative temperature advanced by Iyetomi (2012) as a
special case.

Secondly, we recall the observation that the power law (15) holds for n̄ in the high
productivity side. We can use this empirical fact to determine the functional form
for g(c). Equation (21) implies that when temperature is negative, n̄ approaches
g(c) in the limit c → ∞. These arguments lead us to adopt the following ansatz for
g(c),

g(c) = Ac−γ . (40)

Given the present model, explaining the empirically observed distribution of pro-
ductivity is equivalent to determining four parameters, β, µ, A, and γ in (21) and
(40). We estimate these four parameters by the χ2 fit to the empirical results. Fig-
ure 8 demonstrates the results of the best fit for three datasets of firms, namely,
those for all the sectors, the manufacturing sector, and the non-manufacturing sec-
tor2. The fitted parameters are listed in Table 1, together with the crossover pro-
ductivity cp separating low-to-medium and high productivity regimes, where cp is
defined according to

∂n̄(c)

∂c
= n̄2

(
1

g(c)

∂ ln g(c)

∂c
+

1

q(c)

∂ ln q(c)

∂c

)
= 0 . (41)

The present model is quite successful in unifying the two opposing functional behav-
iors of the average number of workers with low-to-medium and high productivities.

In the above, we treated the economy as a whole and also regarded it as consist-
ing of two sectors. Economic systems are generally inhomogeneous, since they can
be decomposed into various components such as industrial sectors, regional sectors
and business groups. Here we derive necessary conditions for such economic subsys-
tems to be in equilibrium to each other. We are required to modify the standard

2The extraction of the empirical distributions, especially for the manufacturing sector, may be
hampered considerably by unavailability of material costs in the data.
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derivation (Landau and Lifshitz, 1980) of those conditions in physics, because we
have to take into account distinguishability of workers.

Let us suppose that an economic system consists of two subsystems A and B with
NA and NB workers and demands of DA and DB, respectively. The total number
WA+B of microscopic states of the whole system is calculated as

WA+B (NA, NB;DA, DB) =
N !

NA!NB!
WA (NA, DA)WB (NB, DB) , (42)

where we assume that the total number of workers, N = NA + NB, and the total
demand, D = DA +DB, are conserved during contact of the two subsystems. The
prefactor in the right-hand side of (42) counts how many ways to distribute distin-
guishable workers between the two subsystems. This counting is unnecessary in the
case of statistical physics because identical particles are indistinguishable in nature.
From (42) we obtain the entropy of the whole system as

SA+B ≃ SA + SB +N lnN −NA lnNA −NB lnNB . (43)

It should be remarked that the last three terms arising from the extra counting
factor destroy the additivity of the entropy; the entropy of the whole system is not
separable into components of the subsystems.

The entropy maximum principle determines the most probable distribution of
workers and demands between the two subsystems. Since both N and D are assumed
to be constant, the variational condition is explicitly written down with (7) as

δSA+B = δSA + δSB − δNA lnNA − δNB lnNB

= (αA − αB − lnNA + lnNB) δNA + (βA − βB) δDA

= 0 .

(44)

where δNA and δDA denote the infinitesimal variations of NA and DA which are
independent of each other. We thus obtain the following equilibrium conditions:

βA = βB , (45)

NAe
−αA = NBe

−αB . (46)

The first condition (45) shares the same form as in physics. It is required for
the system to be in equilibrium against exchange of demands. The second condition
(46) guarantees no macroscopic flow of workers between the two subsystems. The
equation, having the number of workers on each side, is unfamiliar to physicists;
distinguishability of workers brings the extra factor to the normal form. Demand
flows from subsystem A to subsystem B if βA < βB and in the reversed direction if
βA > βB. Also workers flow from A to B if NAe

−αA > NBe
−αB and vice versa in the

opposite case.
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Table 1 shows that the temperature of the non-manufacturing sector is signifi-
cantly lower than that of the manufacturing sector. This fact implies that there is
a much wider demand gap in the non-manufacturing sector. The system as a whole
is thus far away from equilibrium in exchanges of product demand between the two
sectors. In contrast, β times µ takes almost the same value for the two sectors,
indicating that the subsystems seem to be balanced against flow of workers. Note
that comparison of (12) and (38) rewrites the equilibrium condition (46) as

βAµA = βBµB . (47)

These empirical findings on equilibration of the Japanese economic system with
respect to exchanges of demand and workers have been established by Iyetomi (2012)
and Aoyama et al. (2014) on the basis of the alternative dataset for the years spanning
from 2000 through 2009.

VI. Concluding Remarks

The concept of stochastic macro-equilibrium is motivated by the presence of all kinds
of unspecifiable micro shocks. At first, one might think that allowing all kinds of
unspecifiable micro shocks leaves so many degrees of freedom that almost anything
can happen. However, the methods of statistical physics — the maximization of
entropy under macro-constraints — actually provide us with the quantitative pre-
diction about the equilibrium distribution of productivity.

It is extremely important to recognize that the present approach does not regard
behaviors of workers and firms as random. They certainly maximize their objec-
tive functions perhaps dynamically in their respective stochastic environments. The
maximization of entropy under the aggregate demand constraint (6), in fact, bal-
ances two forces. On one hand, whenever possible, workers are assumed to move
to better jobs which are identified with job sites with higher productivity. Firms
make efforts for hiring good workers under demand constraint in the goods mar-
ket. It is the outcome of successful job matching resulting from the worker’s search
and the firm’s recruitment. When the level of aggregate demand is high, this force
dominates because demand for labor of high productivity firms is high. However, as
the aggregate demand gets lower the number of possible allocations consistent with
the level of aggregate demand increases. More workers are forced to be satisfied
with or look for low productivity jobs. Randomness which plays a crucial role in
our analysis basically comes from the fact that demand constraints in the product
market facing firms with different productivity, and optimizing behaviors of workers
and firms under such constraints are so complex and unspecifiable that those of us
who analyze the macroeconomy must take micro behaviors as random. The method
is straight-forward, and does not require any arbitrary assumptions on the behavior
of economic agents.

Though the concept of entropy is little known in economics, it is useful for un-
derstanding the macroeconomy which comprises many heterogeneous agents. Based
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on the methods of statistical physics, we quantitatively show how labor is mobilized
when the aggregate demand rises. The level of aggregate demand is the ultimate
factor conditioning the outcome of random matching of workers and firms. By so
doing, it changes not only unemployment but also the distribution of productivity,
and as a consequence, the level of aggregate output. This is the market mechanism
beneath Keynes’ principle of effective demand (Keynes, 1936); See Yoshikawa (2014)
for details.
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β µ A γ cp βµ

All −4.32 −0.48 2.57 0.90 1.32 2.09
Manucacturing −8.68 −0.26 4.75 0.97 0.73 2.27

Non-manufacturing −2.13 −1.07 0.68 0.76 2.15 2.28

Table 1. Estimated parameters in (21) and the position of the peak cp determined by (41) for the
results given in Figure 8. The units are 10−3 for β, 103 for µ, 105 for A, and 103 for cp.
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Figure 1. Relationship between entropy S and aggregate demand D, where β is a Lagrangean
multiplier in (6) in the text.
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Figure 2. Probability Density Function (PDF) of firms’ log c (solid line) and workers’ log c (dotted
line) in 2012. The labor productivity c is measured in units of 103 USD/person.

Figure 3. Dependence of the average number n̄ of workers of individual firms on the labor produc-
tivity c (dots with their error bars connected by thick lines) in 2012. The dotted straight line has
the gradient −1, that is, n̄ ∝ 1/c.
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Figure 4. Elementary binary processes where (a) two workers at firms i and j simultaneously move
to firms k and ℓ and (b) two workers move in the time-reversal way with the same probability as
the forward process.

1
MB

Figure 5. A model of worker limitation L(n, c) in (20); L(n, c) = 1 corresponds to the Maxwell-
Boltzmann (MB) distribution.

Figure 6. Relationship of the grand partition function (30) supplemented by (33) for distinguishable
particles to the Maxwell-Boltzmann, the Fermi-Dirac, and the Bose-Einstein distributions, which is
compared with the case of the grand canonical formulation for indistinguishable particles.
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Figure 7. Ceiling function f(n; g), (33), calculated in the exact functional form (dots) and the
approximated Gaussian form (solid curve) at g = 10. Setting f(n; g) = 1 results in the Maxwell-
Boltzmann (MB) distribution.

Figure 8. The best fits to the empirical data in 2012 as demonstrated in Figure 3; the solid
curve is for all sectors, the dotted curve for the manufacturing sector, and the dashed curve for the
non-manufacturing sector.

23


	I. Introduction
	II. Stochastic Macro-equilibrium | The Basic Idea
	III. Empirical Distribution of Productivity
	IV. Grand Canonical Formulation
	V. Fitting of the Model to the Japanese Data: Manufacturing andNon-manufacturing Sectors
	VI. Concluding Remarks
	Acknowledgements
	References
	Tables and figures

