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Abstract 
The Japanese national innovation system (JP NIS) and that of the United States (U.S. NIS) differ. One of 
the differences is that firms in the JP NIS are likely to collaborate with historical partners for the purpose 
of innovation or rely on in-house research and development (R&D), approaches that form a “relationship-
driven innovation system.” In the U.S. NIS, however, firms have a relatively weak reliance on prior 
partnerships or internal R&D and are likely to seek entities that know about the necessary technology. 
Thus, U.S. players acquire technologies through market transactions such as mergers and acquisitions 
(M&A). This paper primarily discusses how this institutional difference affects country-specific industrial 
sector specialization. Then, by using a multiagent model of the NIS and conducting simulation, we 
examine what strategy would help Japanese firms in industries dominated by radical innovation. The 
results show that the JP NIS provides an institutional advantage in industries with fast-changing consumer 
demand that require incremental innovation. However, the U.S. NIS benefits industries that require 
frequent radical innovation. Our analysis reveals that extending the partnership network while keeping 
internal R&D capability would be a beneficial strategy for Japanese firms in industries driven by radical 
innovation. Therefore, the present research suggests that policymakers need to differentiate policy that 
emphasizes business relationship and market mechanism importance according to industrial 
characteristics in order to improve overall national industrial competitiveness. At the same time, Japanese 
firms need to strengthen their R&D capability while trying to extend their pool of technology partners in 
order to improve the flexibility of their responses to radical changes in an industry. 
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1 Introduction 

The innovative division of labor does not occur independently from the business relationship (Arora, 

Fosfuri, & Gambardel, 2001; Kani & Motohashi, 2013). Therefore, the institutional structure of the 

business relationship should be understood according to micro- and macro-level innovation dynamics. 

The Japanese (JP) national innovation system (NIS) has been characterized as a long-term business 

relationship-driven innovation system. Individuals collaborate with prior business partners in an 

environment of mutual trust that is driven by an institutionally sanctioned system (Hagen & Choe, 1998). 

A long historical partnership between Toyota Motors as a primary auto-parts consumer and Denso as a 

major auto-parts supplier is an example (Kani & Motohashi, 2013). Repeated collaboration creates patient 

capital and trust, which leads to further collaboration. From this perspective, a long-term relationship 

provides competitive advantage in innovation for which a high degree of productivity and manufacturing 

flexibility is required in areas such as automobiles and electronics. The significant likelihood of internal 

R&D among Japanese firms can also be understood as another example of the “relationship-driven 

innovation system” in the sense that it essentially requires strong internal communication and 

collaboration. Further, studies have highlighted that trust-based long-term business relationships are the 

reason why JP firms have so far been market leaders in certain industries (Abegglen, 1986; Clark, 1989; 

Fruin, 2006; Hagen & Choe, 1998; Odagiri, 1994). A long-term trust-based business relationship, which 

might be vulnerable to the hold-up problem because of the opportunistic behavior of partners, can be 

maintained because the long-term relationship between JP players drives the repeated game. The 

repetitive game enables the imposition of harsh punishment for opportunistic behavior (Baker, Gibbons, 

& Murphy, 2002; Holmström & Roberts, 1998; Holmström & Roberts, 1998). Thus, opportunistic 

behavior can be effectively self-regulated in the JP system. 

Hall and Soskice (2001) argue that maintaining a long-term relationship is beneficial in an industry 

that requires incremental innovation. Incremental innovation is likely to be created by using accumulated 

knowledge about a particular technology. A long-term relationship with a particular partner secures the 

technology sourcing and stimulates knowledge accumulation. An historical relationship also lubricates the 

collaboration efficiency between two entities. Further, repetitive collaboration encourages a partner to 

develop the next new technology by giving a sense of what technology would be necessary for the 

technology buyer in the future. Therefore, maintaining a long-term partnership is advantageous for 

sourcing incrementally innovative technology. However, radical innovation is achieved by introducing 

brand new ideas that may not be familiar to the partners nor the technology buyer. Thus, heavily relying 

on historical partners or internal R&D personnel who are unlikely to know about radically innovative 
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technology may be disadvantageous for efficient technology sourcing. This type of economic system is 

called the coordinated market economy (CME). Hall and Soskice (2001) categorize Japan and Germany 

as CMEs. 

However, the U.S. NIS is known as the liberal market mechanism-based innovation system. Firms 

try to identify the necessary technology for new product or service implementation. Then, they attempt to 

acquire the technology through market transactions such as licensing and mergers and acquisitions 

(M&A). They actively seek other entities that know about the necessary technology and rely less on prior 

partners or internal R&D compared to Japanese firms. This system emphasizes competition rather than 

trust-based long-term collaboration. Further, entities with a one-time contract are more likely to be 

exposed to the hold-up problem because the provisional nature of the relationship lets the entities believe 

that engaging in opportunistic behavior would be more profitable (Holmström & Roberts, 1998).  

This market-based innovation system can have an institutional advantage in an industry that requires 

radical innovation, such as information technology (IT) or biotechnology (BT), and in which Japanese 

firms are less competitive (Motohashi, 2005). The technological performance improvement of a product 

or service is not radical innovation. Radical innovation requires the introduction of new technology or a 

new concept of technology’s use in a new product or service (Tidd, Bessant, & Pavitt, 2005). Therefore, 

the market mechanism-based system provides significant flexibility for the creation and sourcing of 

radical innovation. Hall and Soskice (2001) describe this system as the “liberal market economy (LME).”  

Japanese policymakers have been discussing whether Japan’s recent weakened industrial 

competitiveness in high-tech industries stems from the institutional configuration that emphasizes a long-

term business relationship between innovative economic players. In particular, it has been debated 

whether the Japanese government needs to encourage a policy whereby Japanese firms adopt the liberal 

market-driven technology sourcing strategy used by U.S. firms.  

Using an agent-based model (ABM), the present study sheds light on how the institutional difference 

in relationship-dependency affects national-level industrial sector specialization. An ABM provides a 

suitable way to virtualize a complex social system (Macal & North, 2011). Key players and their actions 

in the real world system are modeled as the software agents, and a set of the interaction rules drives the 

overall dynamics. The aggregated result of their interaction generates system-level dynamics that are 

virtualized society-level outcomes. Thus, the ABM enables the navigation of the probable dynamics that 

emerge though the interaction of individual factors in a complex social system. In this sense, it is a more 

suitable research methodology than the conventional methodology used in complex social dynamics 

studies. In the present research, we examine how the relationship dependency between economic players 

in the innovation process generates the different innovation patterns and to what extent. Following the 
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simulation result, we suggest that policymakers design a policy to enhance national industrial 

competitiveness and to establish a better corporate technology sourcing strategy for Japanese firms in 

industries driven by radical innovation. 

The present paper is structured as follows. Section 2 reviews prior studies on the institutional 

differences between the JP NIS and the U.S. NIS. We also review prior studies that employ ABM to 

examine innovation dynamics. In Section 3, we describe the ABM according to “overview, design 

concepts, and details,” an approach that is the standard ABM documentation protocol suggested by 

Grimm et al. (2006). We explain the simulation plan and results in Section 4. Section 5 provides an 

analysis of the results. We then discuss the results in Section 6 and draw conclusions in Section 7. The 

details of the model and the implemented algorithm are illustrated in the appendix.   

 

2 Literature Review 

2.1 Varieties of Capitalism and Country-Specific Industrial Sector Specialization 

Hall and Soskice (2001) introduce the varieties of capitalism (VoC) theory to formalize how 

institutional configuration of a national economic system drives country-specific industrial sector 

specialization. The VoC theory divides the world’s affluent economies into two types: liberal market 

economies (LMEs) and coordinated market economies (CMEs). The U.S. and the U.K. are categorized as 

LMEs. Germany and Japan are grouped into CMEs. The theory converts the characteristics of each 

economic system into the primary innovation pattern in which each system is strong. LMEs are strong in 

industries that require radical innovation such as biotechnology or microprocessor technology. In 

addition, LMEs are advantageous in large complex systems where the technology changes rapidly. 

However, CMEs are an advantageous institutional arrangement of the national economic system for low-

medium tech industries. Based on this proposition, Hall and Soskice  (2001)  argue that LMEs primarily 

export high-tech products and services, while CMEs export low-medium tech products. The VoC theory’s 

core proposition is aligned with a basic idea of Porter (1990) who claims that country-specific 

institutional conditions affect the sector-specific innovation competitiveness of companies and countries.  

Akkermans, Castaldi, and Los (2009) test the VoC proposition. They consider whether LMEs 

specialize in radical innovation that drives industry while CMEs use a more traditional system of 

incremental innovation through patent analysis. The authors calculate and compare national-level 

generality and the originality of patents in LMEs and CMEs. The originality indicator estimates how 

patented technology is created based on the original idea. This indicator has been employed before to 

estimate patent quality (e.g., Organization for Economic Cooperation and Development (OECD) patent 
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statistics). The generality indicator quantifies how patent technology broadly covers various technological 

fields (or can be employed to create a further invention). Thus, these indices are employed as the proxies 

of patented technology’s radicality. The results show more complex dynamics than indicated by Hall and 

Soskice’s (2001) proposition. According to the generality analysis, LMEs specialize in radical innovation 

in chemicals and electronics while CMEs are strong in radical innovation in machinery and transport 

equipment industries. The originality analysis supports the VoC proposition but in conclusion, the study 

argues that the proposition oversimplifies the entangled national-level innovation dynamics. 

Schneider and Paunescu (2012) argue that affluent countries’ economic systems cannot be simply 

divided into LMEs and CMEs. Through clustering analysis of the OECD’s national-level macro-economy 

data for 26 countries, they find that the institutional configuration of national economic systems is 

dynamically transformed and that other clusters exist that do not fit into either the CMEs or the LMEs. 

For example, in their analysis, Japan, which has usually been considered a CME, is re-categorized as a 

“hybrid economy” that has features of both an LME and a CME. Schneider and Paunescu (2012) argue 

that this discrepancy with Hall and Soskice’s  (2001) proposition shows that the national economic 

systems of some countries are in a process of transformation. They also criticize Hall and Soskice’s  

(2001) theory by claiming that it does not consider the effect of “knowledge learning” in a national 

economic system. However, they also reconfirm Hall and Soskice’s  (2001) main argument that an LME 

has strong high-tech industries while a CME has advantageous low to mid-tech industries.  

Apart from the VoC theory, a number of scholars have attempted to understand why there is country-

specific industrial sector specialization. Kitschelt (1991) argues that Japanese players are willing to 

maintain a cooperative relationship with other players across business and government frontiers. This 

Japanese system is an especially efficient means of governance in an industry that requires intermediate 

coupling but has moderate complexity among technological components. The intermediate coupling of 

such different technological components promotes cooperative business relations. The cooperative 

business network gives the production system flexibility, which allows continual improvement of the 

technological components. Thus, Japanese national governance provides institutional benefits to Japanese 

firms in an industry that requires medium- or long-term production runs. This approach is also 

institutionally advantageous in an industry that requires technology that can be sustainably improved 

through the incremental innovation of processes and products. However, the structure places too little 

importance on the high-risk technology that may bring radical innovation. Overall, the Japanese 

governance structure drives Japanese firms to have strength in industries where “incremental innovation” 

and “cooperative operations” are necessary. 

Lehrer, Tylecote, and Conesa (1999) argue that country-specific industrial sector specialization 
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originated from variations in the national structure of corporate governance. The national-level financial 

system can be divided into the “insider-dominated system (I-system)” and the “outsider-dominated 

system (O-system).” The U.S. and the U.K. fall into the “O-system,” but most East Asian countries and 

continental European countries have the “I-System.” The authors point out that the I-system is a 

conventional system whereby technological progress involves a great deal of cumulative learning and 

cooperation among employees as part of the innovation process. The O-system is advantageous in an 

industry that requires rapidly changing and high-novelty technology because the investor in the O-system 

invests in the whole industrial system rather than focusing on a particular industry. 

Haake (2002) suggests a similar idea that explains how the institutional configuration of a national 

innovation system relates to industry-specific competitiveness. He uses the term national business system 

instead of NIS and suggests that this national business system can be categorized as two types: an 

individualistic system with loose interfaces between actors and a communitarian system with tighter 

interfaces. Communitarian business systems may be advantageous in industries where players are likely 

to rely on an accumulated knowledge pool of organization-specific knowledge. Such systems require a 

closer and long-term relationship among actors, an approach that enables companies to retain and 

accumulate specific knowledge. However, individualistic business systems are advantageous in industries 

where diffusion or reallocation of organization-unspecific knowledge occurs. In this regard, knowledge is 

not retained within a specific company because more fluid and short-term relations dominate the system. 

The type of knowledge that matches each configuration is explained with the concept of organization-

specificity of knowledge, which is defined as the degree to which the knowledge that individual members 

of the organization use in their work is specific to the company for which they work. Haake (2002) claims 

that the individualistic business system is advantageous in an industrial environment where organization-

specificity of knowledge is low, and that the communitarian system enjoys institutional benefits in an 

industry that requires a high degree of organization-specificity of knowledge.  

2.2 Studies of Dynamics in Innovation Systems Using the ABM and Simulation 

The ABM is increasingly being used in the social science field (Wooldridge & Jennings, 1995) and 

for theory development that is focused on organizational strategy (Davis & Bingham, 2007). The ABM is 

one of the established approaches for examining complex dynamics that emerge through social system 

and human interaction (Gilbert & Troitzsch, 2005; Gilbert, 2007; Wooldridge, 2009). In this sense, the 

ABM approach has been employed to study innovation dynamics. Here, we review ABM studies on 

innovation systems and dynamics. 

A milestone of ABM studies on innovation dynamics is the Simulating Knowledge Dynamics in 

Innovation Networks project (the SKIN project). In this regard, Gilbert, Pyka, and Ahrweiler (2001) 
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introduce an ABM to describe knowledge sharing and the innovation diffusion process whereby R&D 

intensive firms, venture capitalists, and university/research institutes are modeled into software agents. A 

new firm is then created by an agent that successfully develops new knowledge that fits a given 

innovation hypothesis. Existing agents can establish or disband partnerships with other agents over the 

network. In this way, the entire network structure is dynamically organized. The employment of ABM for 

innovation studies has been extended across various topics such as national innovation system dynamics 

(Ahrweiler, Pyka, & Gilbert, 2011; Jianhua, Wenrong, & Xiaolong, 2008), the innovation diffusion and 

adoption process (Cantono & Silverberg, 2009; Faber, Valente, & Janssena, 2010; Schwarz & Ernst , 

2009), innovation policy evaluation (Lopoliro, Morone, & Taylor, 2013), the process of new technological 

knowledge generation and dynamics imposed by the intellectual property regime (Antonelli & Ferraris, 

2011), and the patent system and policy evaluation (Kwon & Motohashi, 2014). Table 1 summarizes the 

ABM studies regarding the innovation process and innovation system dynamics. 

Table 1. Innovation Studies that Use ABM 

Authors Research Topic Type of Agents Key Findings (Contributions) 
Gilbert, Pyka, & 
Ahrweiler, 2001 

Innovation diffusion  
process over 
innovation network 

Firm,  
Policymaker 
Venture capitalist 
University 
Innovation oracle 

Introduction of Simulating Knowledge 
Dynamics in Innovation Networks and model 
description with two case studies for model 
validation. 

Jianhua, Wenrong, & 
Xiaolong, 2008 

Studying innovation 
generation process 

Enterprise 
Government 

Product market competition is a major driver 
of innovation generation. The ABM is 
applicable to the study of innovation systems. 

Schwarz & Ernst, 2009 Innovation diffusion 
and policy implications 

Household  
 

Geographic innovation diffusion of water-
saving innovation in Germany. Water-saving 
diffusion would be continued without specific 
promotion. 

Cantono & Silverberg, 
2009 

New energy innovation 
diffusion process, and 
role of learning 
economies with policy 
evaluation 

Consumers who 
have different levels 
of reservation prices 
for new energy 
technology 

Subsidy policy would be effective if the initial 
new energy technology price is fairly high 
when learning economies exist. The effect of 
the policy depends significantly on the desired 
level of diffusion. 

Faber, Valente, & Janssen, 
2010 

New technology 
diffusion process and 
policy evaluation for 
promoting the 
technology’s adoption 

Consumer of energy 
technology 

Diffusion of micro-CHP technology can be 
inhibited by the decreased demand for natural 
gas. Various subsidy schemes for promoting 
the adoption of new energy technology should 
be considered based upon assumed policy 
criteria. 

Ahrweiler, Pyka, & 
Gilbert, 2011 

Effect of industry–
university links on 
innovation 
performance 

Firm 
Venture capitalist 
University 
Innovation oracle 

Industry–university links promote innovation 
performance.  

Antonelli & Ferraris, 2011 Generation of new 
technological 
knowledge 

Worker 
Shareholder 
Researcher 
Consumer 
Enterprise 

Innovation is likely to emerge faster with 
better quality in organized complex systems 
that are characterized by high levels of 
dissemination and accessibility to knowledge 
externalities. 
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Lopoliro, Morone, & 
Taylor, 2013 

Which policy would be 
appropriate to 
stimulate the 
emergence of an 
innovation niche? 

Producing firm Policy intervention is important in innovation 
niche creation. The study shows the 
dominance of information-spreading activities 
over subsidies. Such a policy is fundamentally 
helpful in order to promote efficient 
knowledge diffusion and the effective use of 
individual and network resources. 

Kwon & Motohashi, 2014 What would be net  
effect of NPE on  
innovation society  
and how can we 
reduce the negative  
effect of it? 

Firm 
University 
NPE 
Bank 
Court 

NPEs’ business model will have a  
negative impact rather than a positive effect. P
olicymakers need to primarily consider  
reducing the injunction rate in NPE 
 lawsuits and placing some regulation  
on the amount of damages that can be  
awarded to NPEs. 

 

We construct an ABM of a generalized NIS. We differentiate the present model from prior studies 

(Gilbert, Pyka, & Ahrweiler, 2001; Jianhua, Wenrong, & Xiaolong, 2008) in the following two ways. 

First, the present model virtualizes product market competition as well as technology competition. By 

combining these mechanisms, we aggregate industrial competitiveness dynamics with competitive 

innovation dynamics, thereby making the model reflect the real-world dynamics in a more realistic 

manner. Second, we introduce more dynamic mechanisms such as the knowledge-learning process, 

information sharing/learning, and the R&D process with the network model. Since network structure 

plays an important role in generating innovation dynamics (Oerlemans, Meeus, & Boekema, 1998), these 

network dynamics make the present model capture a greater variety of innovation network patterns. 

Although the implemented dynamics in the model might be too complex, they are all essential 

compartments for the generation of the major system dynamics for the present research. The model is 

described according to “overview, design concepts, and details (ODD),” an approach that is a general 

documentation protocol for ABM suggested by Grimm et al. (2006). Details about the implemented 

algorithms are provided in Appendix 3 with the PSEUDO code. 

 

3 The ABM of Virtualized NIS 

3.1 Objective 

We virtualize NIS with an ABM in order to study how institutionally arranged “relationship 

dependency” and the degree of “reliance on internal R&D” in technology sourcing affect NIS dynamics 

with respect to the industrial sector specializations process. Agents build a social network through 

interaction with other agents. As the relationship-dependency grows, the agents are more likely to interact 

with those agents with whom they have interacted before rather than new agents, or to rely on internal 

R&D for technology sourcing. We consider the system with low relationship dependency as the U.S. NIS 

and the system with high relationship dependency as the JP NIS. We also consider that the agents with 
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significant reliance on internal R&D rather than outsourcing represent JP players and that the agents with 

significant reliance on outsourcing rather than internal R&D represent U.S. players. 

 

3.2 State Variables and Core Components  

The present model has two types of agent: firm-type (FIRM) and university-type (UNIV). Such 

agents have capital assets (Ca) and technology assets (Ta). An agent spends a certain amount of Ca 

whenever it engages in the R&D process. Further, a technology owner can license out the owning 

technologies. In this context, the model virtualizes a product market. Consumer demand in this product 

market regularly changes. Agents make guesses about changing consumer demand through the 

information-learning process. Because consumer demand is not specified to agents, the virtualized 

product market is close to a B2C type. 

Only a FIRM can enter the product market (as a manufacturer) and earn sales revenue by selling a 

product to consumers. The product is created by combining technological components that are essential 

for product implementation (Utterback & Abernathy, 1975). “Technological component” is not the same 

as “technology” in the present model because multiple “technologies” might correspond to a particular 

technological component. For example, a cell phone has a telecommunication function, which is a 

technological component; however, the technology behind the telecommunication is not necessarily fixed 

to one technology (e.g., 2G, 3G, and 4G LTE). In this sense, the technological component captures the 

conceptual essential functions that should be implemented in the product, and “technology” refers to the 

technological option that realizes the function of the technological component.  

[Insert Figure 1. Product Concept in the Present Model] 

This concept makes it possible to capture technological innovation at the product level. In this 

regard, technological performance improvement in a technological component corresponds to incremental 

innovation (Tidd, Bessant, & Pavitt, 2005). Such improvement is represented in the model by “technology 

generation increase.” For example, technology “A2” has a higher performance than “A1.” However, 

technological performance improvement occurs only one generation at a time, which means that the agent 

cannot develop “A3” technology directly from “A1.” In addition, a product concept is radically changed 

by the introduction of a new technological feature. For example, a smartphone can be understood as an 

entirely new mobile device concept that includes many features similar to a personal computer that were 

not in a conventional cell phone. Based on this conceptualization, the present model defines “radical 

innovation” as the introduction of a new technological component that was unnecessary for the prior 

product. For instance, at t = t0, a product is implemented through a combination of the technological 
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components {A1, B1, C1}. At t = t0+1, the consumer demands a new product that comprises {A2, B1, 

C1, and D1}. The new product design requires radical innovation because it should have a new 

technological feature provided by a new technological component “D1.” At the same time, the new 

product comprises an incrementally improved technological component in the form of component “A” 

(the index denotes the technological performance level). Figure 2 illustrates the product level innovation 

pattern and technological components. 

[Insert Figure 2. Product Level Innovation Pattern and Technological Component Change] 

 A FIRM must satisfy the following two conditions in order to enter the product market. First, it must 

have technologies that correspond to all the essential technological components required for product 

implementation. Second, it must have a production facility (factory). In this regard, a FIRM spends a 

certain amount of Ca in order to have the factory. Following this, two technology acquisition strategies 

(modes) are available to the FIRM: “developer mode” and “aggregator mode.” A FIRM in “developer 

mode” develops its own technology without outsourcing. A FIRM in “aggregator mode” can obtain the 

necessary technology from either an external source or internal R&D. With regard to external technology 

sourcing, agents can obtain licenses for target technologies from other agents or engage in R&D 

collaboration with them. The licensee pays contracted royalties to the licensor as long as the former uses 

the licensed technology. Once an agent establishes R&D collaboration or a license contract with another 

agent, the licensor and licensee build a “business relationship.” The business relationship generates the 

network linkage between them. UNIVs only engage in internal R&D and licensing activity. A UNIV 

receives a regular R&D budget from the system as a “public fund for research.” Both a UNIV and FIRM 

can form a new spin-off FIRM. 

The present model virtualizes the product market with the concept of “consumer group.” The 

consumer group is the imaginary group of consumers who buy products from manufacturing FIRMs. In 

this regard, we assume that such consumers have an homogeneous preference system. The consumer 

group periodically defines the technological specification of the product that they demand most. This 

specification includes the technological components that should be improved or introduced. Such 

information is transmitted to the agents with stochastic noise and individually perceived information is 

shared with other agents over the established partnership network. Once the agents fully recognize the 

technological specification that the consumer group demands, they start to acquire the necessary 

technologies to produce the newly demanded product. If a manufacturing FIRM fully obtains the 

necessary technologies, it earns the largest share of the market and sales revenue. After a given delay that 

reflects the consumer demand cycle (CDC), the technological specification of the product is redefined by 

the consumer group. The amount of time that it takes to produce the new product that meets the consumer 
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group’s new demands depends on how quickly the agents correctly guess the technological specification 

of the new product and how efficiently FIRMs acquire the corresponding technologies. The delay in 

releasing a new product from the time when the consumer group’s new demand has been generated 

(referred to here as first catch-up delay or FCUD) represents the extent to which manufacturers efficiently 

satisfy the new market demand.  

An agent invests in R&D and has operating costs. This expenditure of an individual agent flows back 

into the entire agent society through a component called “capital reservoir.” Thus, the total amount of the 

capital asset circulating through the whole system is sustained at the same level as the initial total amount 

of the capital asset. The capital reservoir is primarily redistributed to UNIVs as a public R&D fund and 

the leftover capital defines the market size. Figure 3 illustrates the entire model. 

[Insert Figure 3. Overview of the NIS Model] 

 The mechanism for economic growth by innovation is not captured in the present model. Because 

the purpose of the present study is to examine system-level efficiency in terms of technology (or 

innovation) sourcing imposed by a particular institutional configuration, economic expansion by 

innovation is not necessarily implemented. Also, modeling the mechanism of economic growth that is 

driven by innovation outcomes increases the overall model’s complexity with an arbitrarily designed 

computational mechanism. 

 

3.3 Process Overview and Scheduling 

During simulation, the consumer group changes the technological specification of the market-

demanded product 10 times (prod_wave is equivalent to 10 new products). Whenever the consumer group 

creates a new demand for the product, the information about the technological specification of the newly 

demanded product is delivered to the agents’ society with stochastic noise. Once the new information is 

released, the agents start to guess what technological components are required and which of these should 

be technologically improved while retaining the previously perceived information. This process works 

through the internal information-learning and mutual information-sharing process with other networked 

agents. The information-learning process is repeated 12 times for every simulation turn. One simulation 

turn is set to one year; thus, a cycle of 12 iterations assumes that an individual agent updates its 

information monthly. To conduct statistical analysis, we repeat the simulation 10 times in every set of 

conditions (parameters). The following provides more detail of the timing of events and the scheduling of 

the process during simulation.  

At t = 0, agents start to learn about the technological specification of the consumer-demanded 
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product and decide on the technology sourcing strategy in the context of the perceived information. This 

iteration occurs 12 times for a unit simulation turn. After 12 iterations, the next simulation turn (t = 1) 

starts. The process from t = 0 to t = 1 becomes the unit process of simulation. The unit process is repeated 

10 times during a simulation, which means that the consumer group demands changes 10 times during the 

simulation. Every simulation condition experiences 10 changes of consumer demand, which gives 10 

FCUDs. When the final, tenth, “consumer demand” is satisfied by some of the agents, the simulation has 

finished. The whole simulation process is repeated 10 times. In this sense, simulation with each 

simulation parameter set gives 100 FCUDs (10 FCUDs in a simulation and 10 repetitions). All agents 

retain their previously updated information about consumer demand. If consumer demand changes, the 

new information gradually replaces the agents’ prior information. Readers need to be aware that the 

present simulation model does not have a definitive time horizon until the simulation’s end. Instead, the 

simulation model fixes the times of consumer demand change, and the simulation is finished when the 

last consumer's demand is satisfied by some of the agents.  

[Insert Figure 4. Simulation Timing and Outcomes] 

The following sub-processes are operated in each simulation turn: (a) a capital reallocation process 

through the capital reservoir, (b) cost and revenue calculations for agents, (c) information sharing 

alongside learning and technology sourcing, (d) a spin-off process, and (e) the elimination of bankrupted 

agents. The agent-partnership network is updated during the technology transaction process. 

 

3.4 Design Concept 

Emergence. System-level dynamics emerge as a result of the interaction between the agents. This 

interaction generates a partnership network during the information-sharing/technology-sourcing process. 

We observe that the partnership network structure and system-level knowledge sourcing efficiency are the 

primary simulation outcomes.  

Adaptation. Manufacturing FIRMs make decisions about whether they will stay with or exit from the 

product market by calculating expected profits (expected sales revenue – expected costs). In the 

technology sourcing process, the technology owner considers the following two factors: (1) the economic 

benefits and (2) the non-economic benefits of a long-term partnership. 

In economic benefits estimation, the technology owner considers the following trade-off: the royalty 

revenue that the technology owner can obtain from a licensee if the owner licenses the technology 

compared to the expected loss of market share due to competition with the licensee in the product market.  
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In non-economic benefits estimation, the technology seller considers the intangible benefit from a 

long-term partnership. The seller can consider licensing the technology to a potential licensee even 

though the expected economic benefit is negative if two parties are in a historical partnership. This 

mechanism considers the potential benefit from a “mutual trust-based long-term business relationship.” 

Thus, the likelihood of considering the non-economic benefit in license negotiation is proportional to 

relationship dependency (rel_dep) and the agent’s internal stochastic decision process.  

Fitness. An agent tries to maximize the expected benefits and survive. A FIRM tries to obtain the 

latest technology in order to gain a competitive edge when it becomes a manufacturer. A UNIV tries to 

produce new technology as much as possible. In the negotiation for a license contract or R&D 

collaboration, an agent can accept or reject the negotiation according to the expected benefit. If an agent’s 

retained capital asset falls below a given threshold, the agent stops the R&D process and reclaims the 

invested R&D asset in order to survive. 

Prediction. In the negotiation for a license contract, a potential licensor predicts the amount of 

royalty revenue that it can earn from the potential licensee. The royalty rate is fixed for every license 

contract, but the sales revenue that the licensee will obtain depends on various conditions. When an agent 

predicts expected sales revenue, it first estimates expected market power, which is an index that 

aggregates technological fitness with market demand and marketing capability. Then, the expected market 

share is calculated by using the ratio of the agent’s market power to the total sum of the manufacturer’s 

market power.  

Sensing. Agents sense the following information. First, they know manufacturers’ current market 

power and market share. Second, When an agent interacts with another agent, it knows which 

technologies will be used if the other agent is (or becomes) a manufacturer. Third, an agent can identify 

which agents are its historical partners. Fourth, an agent perceives noisy information and aggregates the 

partner’s information about consumer demand. However, it cannot know non-partners’ information.  

Learning. The present model comprises two learning processes as follows.  

(1) Information learning. Agents share information about the consumer group’s demand with the 

networked agents. The agents guess the technological specification of the consumer group’s demanded 

product through self-information collection and learning about other agents’ information. 

(2) Technology learning. Agents learn other agents’ technology through license contracts. The 

licensee learns about the licensed technology even after the license contract has expired. Thus, the speed 

of the overall learning process (the degree of a target technology’s diffusion across the agent community) 

depends on how quickly the agent finds other agents that may license the target technology and how easy 
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it is to obtain a license. If many agents have the target technology, the agent will obtain the technology 

relatively quickly because it is easier to identify the technology-owning agents. However, if few agents 

have the target technology, the agent may spend more time identifying the agents that have the target 

technology and obtaining a license. In this sense, the smaller the number of agents that have the target 

technology, the more the delays in target technology sourcing and the slower the learning speed.  

Interaction. Agents engage in the following three types of interaction. First, an agent communicates 

with other networked agents to guess the consumer group’s new demand correctly. Second, agents interact 

in order to obtain license contracts. An agent that needs a particular technology can seek other agents that 

have the technology already and can ask for the technology owner to license the technology. Third, an 

agent collaborates with other agents in order to acquire technology. An agent that requests R&D 

collaboration pays half of the expected R&D expenses to the partner agent. The partner calculates the 

expected benefit from the R&D investment. If it is positive, the partner agent pays the remaining half of 

the expected R&D expenses and starts the R&D process to develop the target technology. Alternatively, in 

a stochastic process, the other agent decides whether to engage in the collaborative R&D process by 

considering a historical partnership with the agent that requested the R&D collaboration. Once two parties 

agree on the R&D collaboration and the target technology is developed successfully, the technology is 

shared between the two parties.  

Stochasticity. The present model includes a number of stochastic processes. First, the initialization 

process randomly assigns the initial technology asset to each agent. Second, the information-sharing and 

learning process is stochastic. The system stochastically generates noisy information about the consumer-

demanded product’s technological specification. Agents try to guess the correct technological 

specification of the consumer-demanded product through network-based learning. To implement this 

process, we employ the non-Bayesian network learning model (Epstein, Noor, & Sandroni, 2008; Epstein, 

Noor, & Sandroni, 2010; Jadbabaie, Molavi, Sandroni, & Tahbaz-Salehi, 2012). This model has a 

Bayesian learning model as a key mechanism and additionally includes the mutual learning process of 

agents over the given agent network (see AP 7). Third, the internal R&D process has stochastic processes. 

The R&D process follows a “linear model” that comprises three ordered R&D stages: basic research, 

applied research, and development (Godin, 2006; Greenhalgh & Rogers, 2010). For every R&D stage 

transition, an agent must make unit R&D investment. Once an agent has invested in R&D, the internal 

stochastic process determines the R&D stage transition. If the R&D investment is successful, the R&D 

stage moves from basic research to applied research and applied research to the commercial research 

stage and so on. Fourth, the spin-off process includes a stochastic process. The system assigns an 

“entrepreneur” to FIRM or UNIV randomly. An agent that has an entrepreneur randomly creates a new 

FIRM. The newly created FIRM copies the technologies of a particular technological component from the 
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parent agent. The commerciality of the technology that is currently required by the consumer group 

randomly becomes either the “applied stage” or the “commercialization stage.” Fifth, the consumer group 

defines the technological specification of the new product that it demands most through a stochastic 

process. This requires innovation of two technological components in order to define the technological 

specification. The innovation can be either a “technological performance improvement of the selected 

technological components” (incremental innovation) or the “introduction of a new technological 

component that is not required in the prior product” (radical innovation). As the simulation factor p_dis 

(the likelihood of requiring radical innovation) becomes higher, the new product that the consumer group 

will demand in the future is more likely to comprise “new technological components.” 

Observation. First, we analyze the generated partnership network structure with regard to the 

distribution of network degree and the distribution of the age of bankrupted agents in order to check the 

present model’s validity. We check whether the distribution of the degree of the generated network 

follows the power law, which is the general pattern in the real-world R&D collaboration network. The 

distribution of the age of bankrupted agents is observed in order to find consistency with the theoretical 

studies on firm exit and entry dynamics. Second, we analyze the average of the FCUD and the standard 

deviation of the FCUD (std_FCUD) as system-level outcomes. FCUD estimates the delay in releasing 

new products after the consumer group changes its demand. std_FCUD measures how much the FCUD 

fluctuates during the simulation. It estimates the stability of releasing a new product that satisfies 

consumer demand in terms of FCUD. 

 

3.5 Initialization 

Initially, five manufacturers, 25 non-manufacturing FIRMs, and 10 UNIVs are used. The initial 

number of essential technological components for product implementation is set at 10. Each of the 

manufacturers begins with five internally developed items of commercialized technology, and the 

remaining five are licensed from five randomly selected non-manufacturing FIRMs. Therefore, the initial 

network starts with five one-to-five links between a manufacturer and five FIRMs.  

The licenses are given on an exclusive contract basis. The technology is no longer available for 

another license contract until the prior license has expired. UNIVs initially have five technological 

components including an eleventh component that is not yet essential technology for a given product 

implementation. Allowing UNIVs to have a non-essential technological component reflects the point that 

universities are used to engaging in the development of radically innovative technology that is based on 

scientific knowledge and that is new to the world. All the technology initially given to UNIVs is “basic-

idea level” to reflect that universities mainly engage in R&D for technology that is relatively less 
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commercial than technology created by corporate R&D. 

When the spin-off process is initiated, the process checks whether the focal agent has an 

entrepreneur. This entrepreneur decides whether to create a new firm or stay with the parent agent. The 

probability (or rate) at which entrepreneurs decide to create spin-offs is fixed. Therefore, the spin-off rate 

is the same across the simulation for the U.S. NIS and the JP NIS. If the entrepreneur decides to form a 

new firm, the entrepreneur is removed from the parent agent. The newly created FIRM is set to non-

manufacturing FIRM. One technological component is selected, and all the technologies associated with 

the technological component are copied from the parent agent to the new FIRM within a stochastic 

process. The implemented spin-off mechanism is the same regardless of the simulation factor, such as the 

relationship dependency between agents. However, the variation in the simulation parameters might 

produce a different systemic environment that affects the spin-off agent’s survival. For example, in a low 

relationship-dependency system, more agents have the opportunity to sell their technology and generate 

revenue by doing so. In this system, the spin-off agents have a better chance of survival than in a system 

that has high relationship-dependency. The agents that survive again form new spin-offs through the same 

process, which eventually expands the number of agents in the system. If we consider that the high 

relationship-dependency system is the JP NIS and that low relationship-dependency corresponds to the 

U.S. NIS, the U.S. system may have a greater number of spin-off FIRMs that survive, and the JP system 

has fewer. 

 

3.6 Input  

Table 2 summarizes the necessary parameters for the simulation. Whenever the consumer group 

requires radical innovation, one additional technological component that was unnecessary in the prior 

product becomes a new required technological component in the new product. 
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Table 2. Parameters and Variables 

Category Variable Value Description 

Property of 
agent 

Agent’s index Random integer number Identity of agent (a unique value) 
Agent type A value among [1,2,3] 1: big firm (initial manufacturer); 2: small firm; 3: university 

Asset(Ca) Integer number 

Initial capital asset of 
Big firms: 100 
Small firms: 10 
University: 10 

State A value of [1,2] 1: non-manufacturing state; 2: manufacturing state 
Factory 0 or 1 0: does not have a factory; 1: has a factory 

mkt Incremental integer number 
Agent has marketing experience 
Firm-agent: period that the agent has been a manufacturer 
University-agent: fixed to 0 

tech 2-D matrix Technologies that the agent owns (refer to tech-portfolio matrix in appendix) 
birth Integer number The time at which the agent was created 
entre Value of [0,1] 0: agent does not have entrepreneur; 1: agent has entrepreneur 

belief Continuous value of [0,1] 
0: customers do not need an improved technological performance or new introduction of tech in the new 
product 
1: Customer needs an improved technological performance or introduction of new tech in the product 

budget Nx3 matrix Retaining budget plan for R&D project (refer to protocol in the appendix) 

Simulation 
factors 

CDC 1, 3, 5, 7, 9 Consumer demand cycle (CDC). 1: very short; 9: very long 
rel_dep 0.1, 0.3, 0.5, 0.7, 0.9 Likelihood of relying on internal R&D or historical partners for technology acquisition 

p_dis 0, 0.1, 0.3, 0.5, 0.7, 0.9 Probability that a new technological component is required for new product (probability of requiring 
radical innovation) 

Inhouse (inh) 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9 Likelihood of relying on internal R&D for technology acquisition (in-house R&D likelihood) 

Non-
simulation 
parameters 

prod_wave 10 Total number of new product designs during simulation  

rnd_th 0.8 Threshold of R&D investment decision about particular technological component based on consumer 
demand information 

wt (wm) 0.25 (0.75) Contribution of technological fitness of product for market demand (market experience) to market power 
fac_invst 20 Required investment for factory building 
fac_mc 10 Factory maintenance cost 
fac_sv 10 Factory salvage value 
op_cost 1 Fundamental operating cost 
rnd_cost 1 Required minimum R&D expenditure for every R&D process engagement 
sim_trial 50 Repetition of simulation in same condition 
init_mkt 10000 Initial product market size 
entre_spirit 0.1 Probability of spin-off from the agent that has an entrepreneur 
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The new product should also have the previously required technological components. Thus, the 

number of the product’s technological components and the product’s technological complexity increase 

(accumulation). If the consumer group requires incremental innovation at the product level, the selected 

technological component of the prior product must provide “technological performance improvement.” 

Whenever the consumer group requires a new product, the new demand is transformed into 

innovation in terms of two technological components for the new product’s technological specification. 

The probability of requiring radical innovation (p_dis) stochastically determines whether a new product 

should include “new technological components” that were not essential technological components in the 

prior product. The probability of requiring incremental innovation is 1-p_dis. Therefore, the higher p_dis 

becomes, the greater the differentiation of the new product from the prior product. 

 

3.7 Sub-Model 

When an agent decides on the technology sourcing strategy, it selects one of the following options: 

sourcing by an internal R&D process, sourcing from historical partners, or sourcing from non-historical 

partners. The decision-making follows a probabilistic process, illustrated in Figure 5. 

[Insert Figure 5. Strategy Selection for Technology Sourcing] 

At a given probability (1-rel_dep), the agent seeks non-historical partners that have the target technology 

and tries to obtain a license. Alternatively, the agent decides whether it should source the technology from 

internal R&D or an historical partner. At a given probability (INH), the agent decides to source the 

technology from the internal R&D process, or the agent tries to source the target technology from 

historical partners. 

 

4 Validity Test and Simulation Plan 

4.1 Internal Validation 

We check whether the model produces reliable outcomes in relation to the internal stochastic noise 

(internal validation). We observe the following outcomes: (1) the number of agents, and (2) the survival 

rate of FIRMs. These outcomes represent the system-level outcomes because the system-level dynamics 

emerge from the interaction among individual agents; in addition, only FIRM has exit-entry dynamics. 

Figure 6 demonstrates that the system responds to the given stochastic noise in a reliable way.  
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[Insert Figure 6. Internal Validation] 

 

4.2 External Validation 

External validation checks whether the model reflects real-world dynamics. In most cases, however, 

suitably comparable real-world data are not available, nor does the obtained real-world data have the 

same scale as simulated data. In the present study, we adopt two validation points. First, we compare the 

distribution of the degree of the R&D partnership network. The second point is the distribution of firm 

exit rate by firm age.  

(1) Distribution of the Degree of the R&D Partnership Network 

According to a study by Powell, Koput, and Smith-Doerr (1996), the degree of the R&D 

collaboration network follows power law in the life-science industry. In addition, Okamura and Vonortas 

(2006) find that alliance and knowledge network degree distributions adopt power law across the industry 

that they investigate. If the present model is consistent with the real-world dynamics of collaboration, 

collaboration network degree distribution must follow the power law.  

Figure 7 shows a left to right declining straight line that matches the power law. The vertical axis is 

the log value of the population of agents that have the corresponding degree, and the horizontal axis is the 

log value of a degree in the network. We observe the power law in the distribution of network degree 

across every simulation condition. Therefore, we argue that the distribution pattern comes from the 

implemented dynamics in the present model and not from a particular set of simulation parameters.  

[Insert Figure 7. Distribution of Partnership Network Degree (Empirical vs. Simulation)] 

(2) Distribution of Agents’ Exit Rate by Age 

Because the agent community drives the major dynamics in the simulation, it is important to look 

into the pattern or characteristics of agent exit/entry. According to an empirical study by Dunne, Roberts, 

and Samuelson. (1989), the distribution of firm exit rate by firm age follows the exponential distribution 

in the semiconductor industry. A theoretical study of Clementi and Palazzo (2014) confirms that the 

distribution of firm exit rate by age follows the exponential distribution across industries.  

Figure 8 shows a left to right declining straight line that largely matches an exponential distribution. 

The vertical axis is the log value of the population of exit FIRMs that have the corresponding age, and the 

horizontal axis is the age of exit firm agents. We observe the exponential distribution of FIRM exit rate by 
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age in every simulation condition. Therefore, we consider that the distribution pattern comes from the 

implemented dynamics and not from a particular set of simulation parameters.  

[Insert Figure 8. Distribution of Agents’ Exit Rate by Age (Theory vs. Simulation)] 

 

4.3 Experimental Setup For Simulation 

The stylized simulation factors are: (1) the degree of relationship dependency in technology sourcing 

(rel_dep), (2) the reliance on in-house R&D for technology sourcing (INH), (3) the consumer demand 

cycle (CDC), and (4) the likelihood of requiring a radically innovative feature (p_dis) in the new product. 

The other parameters are fixed. The following two outcomes are analyzed. Figure 9 summarizes the 

overall simulation plan and Table 3 describes the experimental setup. 

 First catch-up delay (FCUD) 

- Accumulated FCUD. In the simulation, the consumer group generates new demand for the 

product 10 times. Once the 10 new products are completely implemented, the simulation has 

ended. We estimate the length of time to complete the simulation. Overall, when it is shorter, 

the agent implements the newly demanded product more efficiently.  

- Average of FCUD. During the simulation, we have 10 time delays with regard to the release of 

the newly demanded product. We estimate the average of 10 generated FCUDs. 

 Standard deviation of the FCUD (std_FCUD) 

- The standard deviation of the 10 individual FCUDs measured during the simulation estimates 

the stability of implementing a new product that meets the consumer group’s new demand. 

[Insert Figure 9. Simulation Plan and Experimental Setup] 

Table 3. Experimental Setup 

Simulation 
factors 

CDC 1,3,5,7,9 Consumer demand cycle. 1: very short; 9: long 

rel_dep 0.1, 0.3, 0.5, 0.7, 0.9 Likelihood of relying on internal R&D or historical 
partners for technology sourcing 

p_dis 0,0.1, 0.3, 0.5, 0.7, 0.9 Probability of requiring a new technological component 
in new product (probability of radical innovation) 

Inhouse(INH) 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9 Likelihood of relying on internal R&D for technology 
acquisition (in-house R&D likelihood) 

Initial 
parameters 

prod_wave 10 Total number of new product designs during simulation  

rnd_th 0.8 
Threshold of R&D investment decision as to whether 
certain technological components should be improved 
(or introduced) to meet specification of new product 
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wt (wm) 0.25 (0.75) Weight on the value of technology (market experience) 
when calculating the market power of a manufacturer 

fac_invst 20 Required investment for building a factory 
fac_mc 10 Factory maintenance cost 
fac_sv 10 Factory salvage value  
op_cost 1 Operating cost 

rnd_cost 1 Required minimum R&D expenditure in order to engage 
in R&D process 

sim_trial 10 Repetition of simulation in same condition 
init_mkt 10000 Initially given product market size 

entre_spirit 0.1 Probability of creating new firms by the agent that has 
an entrepreneur 

 n_big 5 Initially introduced number of manufacturers 
 n_sme 25 Initially introduced non-manufacturing firm agents  
 n_univ 10 Initially introduced number of UNIVs 

 

5 Simulation Results 

We employ graphical presentation in order to analyze the system-level outcomes of the stylized 

simulation factors and use statistical analysis for more detailed interpretation. We analyze 13,500 records 

(CDC variation ｘ rel_dep variation ｘ p_dis variation ｘ INH variation ｘ simulation repetition time = 5

ｘ5ｘ6ｘ9ｘ10=13,500). 

 

5.1 Effect of Relationship Dependency on the FCUD  

(1) Graphical Representation 

Figures 10 and 11 illustrate the change among FCUDs according to the simulation condition. At 

CDC = 1, a low rel_dep forms the minimum FCUD when radical innovation probability is high (p_dis = 

0.7, 0.9). However, high relationship dependency (rel_dep = 0.9) gives a minimum FCUD when radical 

innovation probability is low (p_dis = 0, 0.1). This pattern implies that relying more on historical partners 

or internal R&D capability for technology sourcing is beneficial when consumer demand is fast-changing 

and a greater need exists for incrementally innovative technological features in a new product. However, 

searching for a new partner that knows about the required technology and then sourcing the technology is 

advantageous when consumer demand is fast-changing and a greater need exists for radically innovative 

technology in a new product. 

[Insert Figure 10. Accumulated FCUD] 

The simulation result for a long CDC (CDC = 9) and a low likelihood of requiring radical innovation 
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in a new product (p_dis = 0, 0.1) shows that the FCUD is indifferent across the rel_dep, the reason for 

which could be the corner solution. High radical innovation probability (p_dis = 0.7, 0.9) still gives a 

minimum FCUD at a low level of rel_dep. This pattern implies that a long CDC dilutes the effect of 

rel_dep on FCUD. 

[Insert Figure 11. FCUD Minimum and its Trajectory according to p_dis and rel_dep] 

(2) Statistical Analysis and Dynamics  

We employ regression analysis in order to examine the dynamics that drive the overall pattern 

according to the simulation factors. We apply the Tobit model with a lower bound 0 because the 

dependent variables (FCUD and std_FCUD) have continuous positive values. 

The regression coefficient of CDC on FCUD is negatively significant (Model 1-1). This result 

indicates that the longer the CDC, the shorter the FCUD. The coefficient also demonstrates the “learning 

effect” imposed by a long CDC. Agents learn about other agents’ technology through license contracts. If 

most agents have enough time to interact with other agents with regard to licensing before consumer 

demand changes, most agents are likely to know about the required technology for product 

implementation. In other words, a longer CDC would drive most agents to share the necessary technology 

for currently demanded product implementation, a situation that reduces the delay to acquire the focal 

technology. 

The regression coefficient of p_dis on FCUD (Model 1-1) is positively significant. This coefficient 

implies that when a consumer group requires a radically innovative technological feature more than 

incremental innovation for a new product, manufacturing FIRMs experience greater delay before 

providing the newly demanded product. Very few agents in the agent society have radically innovative 

technology; therefore, searching for agents that have the technology and acquiring it takes more time, 

which causes longer delays for the implementation of new products. As a result, the higher the likelihood 

of requiring radically innovative technological features in new products, the higher the FCUD. 

The regression coefficient of rel_dep on FCUD is positively significant (Model 1-1). The coefficient 

shows that relying more on historical partners or internal R&D for technology sourcing causes greater 

delay for new product implementation. A high degree of relationship dependency limits the pool of agents 

with whom the technology-seeking agent can negotiate to obtain a license. As a result, the technology-

seeker loses opportunities to source technology more quickly. Therefore, on average, the agents that are 

more likely to rely on historical partners or internal R&D rather than new partners experience greater 

delay in technology sourcing.  
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The regression coefficient of INH on FCUD is positively significant (Model 1-1). As in-house R&D 

dependency increases, so FCUD rises overall. The interpretation of this situation is that more reliance on 

internal R&D might further limit the pool of agents that have the necessary technology and the 

consequent licensing of it to the technology seeker. An agent that does not have enough internal R&D 

capability to develop the target technology, and does not yet have the corresponding technology, should 

find other agents that own the technology in order to source it. Therefore, relying more on internal R&D 

removes opportunities to source the necessary technology from other agents, a situation that increases 

FCUD. 

The regression coefficient of the interaction term of CDC and rel_dep (CDCｘREL) is positively 

significant on FCUD (Model 1-2). The marginal effect of CDC decreases as rel_dep increases. This effect 

indicates that relying more on an historical partner or internal R&D capability for technology sourcing 

drives down the learning effect. Interaction with more diverse agents that have different technologies that 

are not owned by historical partners or the agents themselves allows the agent to learn about a greater 

variety of technology. Another dynamic is the information-learning process. If an agent has a broad 

partnership network because of a low rel_dep, the agent can guess the newly demanded product’s 

technological specification more quickly because the broader partnership network provides more 

information regarding consumer demand at a given time. Indeed, such an agent is more likely to guess the 

consumers’ new demand both correctly and quickly.  

The coefficient of PDISｘREL is positive. The coefficient tells us that it is beneficial to rely less on 

historical partners or internal R&D for technology sourcing when the consumer group frequently 

demands radically innovative technological features for a new product. Very few agents own radical 

innovation. Further, relying on historical partners or internal R&D may extend any delay in sourcing 

technology because the historical partners or agent mostly know about the technologies that were 

necessary for the prior product. In this regard, the agent and the historical partners are likely to know 

about incrementally innovative technology based on the prior technology stock that they possess. Such 

pre-owned technology stock does not help to develop radical innovation because radically innovative 

features are new to the entire agent society. Therefore, the “limited technology sourcing pool effect” 

associated with high relationship dependency is aggravated when the consumer group is likely to require 

radical innovation in a new product. 

The negative coefficient of the PDISｘINH shows that it is beneficial to have greater internal R&D 

dependency in technology sourcing in order to reduce the delay generated by the requirement for radically 
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innovative technological features in new products. Thus, the analysis of the marginal effect of p_dis 

suggests that a partnership with various players, while retaining internal R&D capability, is an effective 

strategy to cope with the increased delay in meeting consumer demand imposed by the radically 

innovative technology requirement. 

The negative coefficient of RELｘINH implies that if an agent decided not to source technology from 

new partners, relying more on internal R&D capability rather than historical partners for technology 

sourcing helps to reduce any delay in product implementation. This approach benefits the agent because it 

can reduce the time to obtain a license contract with historical partners. The agent is likely to know about 

the technology fields in which the historical partners are also knowledgeable because the agent has 

learned about the historical partners’ technologies through repetitive partnership. Therefore, it is plausible 

that the agent and the historical partners would have comparable technology and development capability. 

In this case, relying on internal R&D rather than historical partners for technology sourcing helps to 

reduce any delay in technology sourcing. 

 

5.2 The Effect of Relationship Dependency on the Stability of Technology Sourcing 

We estimate the standard deviation of FCUD (std_FCUD) in order to check system-level 

technology-sourcing stability. The simulation generates FCUD whenever consumer demand is first 

satisfied. We gather the FCUDs and calculate standard deviation. A low standard deviation indicates that 

the system provides a stable environment for technology sourcing and product implementation. 

(1) Graphical Representation 

Figure 12 shows the pattern of std_FCUD according to the CDC and p_dis. At the lowest CDC 

(CDC = 1), a low rel_dep forms the minimum std_FCUD as p_dis increases. This pattern implies that 

having a strong relationship with prior partners would help stable technology sourcing when a consumer 

group requires incrementally innovative technological features in a new product and CDC is very short. 

On the other hand, relying more on historical partners or internal R&D capability for technology sourcing 

may cause greater time delay fluctuations when sourcing suitable technology (increased std_FCUD). 

[Insert Figure 12. std_FCUD according to Simulation Parameters] 

std_FCUD is indifferent across all rel_dep when the likelihood of radical innovation is small and the 

CDC is long. As Figure 11 shows, almost all rel_dep with a radical innovation ratio that is less than 0.3 

gives zero std_FCUD. This pattern again confirms that through the learning process, a long CDC and low 
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radical innovation likelihood make most agents knowledgeable about the technology that may be 

necessary for the next new generation product. Zero std_FCUD means that manufacturers are ready to 

implement the newly required technology into the product before the consumer group demands it. We 

acknowledge that the indifference of the std_FCUD regardless of the level of rel_dep may come from the 

corner solution in the simulation. We detail the findings through statistical analysis. 

(2) Statistical Analysis and Dynamics  

The statistical analysis of std_FCUD largely aligns with the FCUD analysis. In particular, the 

coefficient signs and significances in the basic model without the interaction terms of CDC×REL and 

PDIS×REL are the same as in the FCUD analysis. When the interaction terms are introduced, the 

coefficient of CDC×INH becomes negatively weakly significant. This coefficient indicates that when the 

CDC is long enough, relying more on internal R&D rather than other agents for technology sourcing 

helps stable technology sourcing. When the CDC is long, most agents have enough chances to learn about 

other agents’ technologies through mutual transactions. Therefore, the technologies that agents know 

about are largely similar to each other. In this case, seeking technology from other agents essentially takes 

more time, and such time spent sourcing fluctuates to a greater extent because of the delay caused by 

technology transaction negotiation for technology acquisition. However, if the agent has the technology, 

relying on internal R&D for technology sourcing does not cause a delay. Therefore, a high reliance on 

internal R&D in a long CDC may provide an environment that stabilizes the technology sourcing delay. 

Table 4 illustrates the relevant regression analysis. 

Table 4. Regression Analysis 

 FCUD std_FCUD 
VARIABLES Model 1-1 Model 1-2 Model 2-1 Model 2-2 
Consumer Demand Cycle (CDC) -0.074*** -0.139*** -0.547*** -1.164*** 
 (0.020) (0.023) (0.042) (0.054) 
Radical Innovation Likelihood (p_dis) 5.237*** -2.543*** 13.868*** 4.237*** 
 (0.177) (0.202) (0.393) (0.488) 
Relationship Dependency (rel_dep) 6.594*** -0.549** 15.047*** 0.643 
 (0.200) (0.251) (0.427) (0.553) 
Likelihood of In-house R&D (INH) 1.689*** 1.689*** 2.984*** 2.974*** 
 (0.300) (0.266) (0.641) (0.587) 
Interaction of CDC and rel_dep (CDC×REL)  0.132***  1.263*** 
  (0.029)  (0.067) 
Interaction of p_dis and rel_dep (PDIS×REL)  15.561***  17.578*** 
  (0.254)  (0.596) 
Interaction of CDC and Inh (CDC×INH) -0.039 -0.039 -0.109 -0.121* 
 (0.035) (0.031) (0.075) (0.071) 
Interaction of p_dis and Inh (PDIS×INH) -1.498*** -1.498*** -2.184*** -2.120*** 
 (0.315) (0.279) (0.696) (0.647) 
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Interaction of rel_dep and inh (REL×INH) -3.063*** -3.063*** -5.592*** -5.578*** 
 (0.355) (0.314) (0.760) (0.709) 
Sigma 3.011*** 2.662*** 5.640*** 5.265*** 
 (0.018) (0.016) (0.042) (0.040) 
Constant -2.265*** 1.306*** -10.028*** -2.346*** 
 (0.169) (0.174) (0.361) (0.386) 
Observations 13,500 13,500 13,500 13,500 

*** p<0.01, ** p<0.05, * p<0.1, Standard errors in parentheses  
5.3 Sensitivity Test 

We use a sensitivity test to assess how the simulation outcomes respond to the variation in the non-

simulation parameters. Including the simulation parameters, we use a 10% variation for each parameter 

and obtain 2,500 records. We measure how much of the total variation in the simulation outcomes is 

explained by the variation in non-simulation parameters and simulation factors. Also, we estimate to what 

extent each of the factors uniquely explains the total variation in the outcomes. First, we run an ordinary 

least squares (OLS) regression on FCUD and std_FCUD on the simulation parameters only. Then, we 

calculate the ratio of the total sum of the squares of the outcomes and the parameters. The analysis shows 

the extent to which the simulation factors explain the total variation in the simulation outcomes. Second, 

we regress the FCUD and std_FCUD on the non-simulation parameters only. Then, we estimate the ratio 

of the total variation in the dependent variables and the explained variation according to the non-

simulation parameters. The result shows the extent to which the non-simulation parameters explain the 

variation in the dependent variables. Table 5 reports the sensitivity analysis. The “Explained Variation” in 

“Simulation Parameter Only” shows that 62.31% of the total variation in FCUD and 41.54% of the 

variation in std_FCUD is explained by the variation in the simulation parameters. The “Explained 

Variation” in “Non-Simulation Parameter Only” shows that only 3.13% and 4.23% of the variations in 

FCUD and std_FCUD respectively are explained by the variation in the non-simulation parameters. Thus, 

the sensitivity analysis implies that most of the variation in FCUD and std_FCUD is explained by the 

variation in simulation factors and not by the variation in non-simulation factors. We conclude that the 

simulation result is marginally affected by the non-simulation parameter. 

Table 5. Sensitivity Test 

Simulation Outputs FCUD std_FCUD 
Category Parameter % Variance Parameter % Variance 

Simulation Parameter Only 

CDC 56.10% CDC 37.80% 
p_dis 43.80% p_dis 39.90% 

rel_dep 31.60% rel_dep 34.50% 
INH 3.38% INH 3.20% 

Explained 
Variation 62.31% Explained 

Variation 41.54% 

Non-Simulation Parameter Only mkt_size 1.61% mkt_size 0.59% 
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ent_spirit 16.20% ent_spirit 19.30% 
ent_th 0.47% ent_th 0.57% 
rnd_th 0.81% rnd_th 1.88% 

fac_invst 1.73% fac_invst 3.38% 
fac_mc 0.91% fac_mc 1.94% 
fac_sv 0.75% fac_sv 1.93% 

op_cost 0.71% op_cost 0.50% 
rnd_expense 2.26% rnd_expense 3.30% 

Explained 
Variation 3.13% Explained 

Variation 4.23% 

6 Discussion 

6.1 Findings from the Simulation 

First, the optimal institutional relationship-dependency in technology sourcing varies according to 

condition. When the consumer primarily requires incremental innovation in a new product and consumer 

demand frequently changes, relying more on internal R&D capability or historical partners (high rel_dep) 

helps to shorten the delay in creating the consumer-demanded product. When consumer demand changes 

slowly (a long CDC), and product innovation is mainly incremental innovation (a low p_dis), the effect of 

relationship dependency on tech-sourcing efficiency is marginalized by the increased learning and 

technology diffusion effect. When product innovation is mainly radical innovation, less reliance on 

internal R&D or historical partners in technology sourcing helps to reduce the delay in new product 

implementation. As in-house R&D dependency increases, the overall delay in acquiring the necessary 

technologies for new product implementation increases.  

Second, the degree of the impact of each simulation factor differs by the degree of other simulation 

factors. Because the primary simulation factor comprises the institutional variables of “relationship-

dependency” and “in-house R&D dependency,” we interpret the marginal effect of rel_dep and INH on 

FCUD. 

(1) Marginal Effect of rel_dep on FCUD 

When p_dis is large, the marginal effect of rel_dep becomes positive regardless of other simulation 

parameters. This pattern shows that it helps to have low relationship-dependency in order to achieve a 

shorter delay in technology sourcing if product innovation mainly requires radically innovative 

technology.  

(2) Marginal Effect of INH on FCUD 

The marginal effect of INH on FCUD turns negative when p_dis and rel_dep are large enough. Thus, 

if economic agents are in an institutional environment that obliges them to rely heavily on historical 

partnerships or internal R&D for technology sourcing, it is better to rely more on internal R&D capability 
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if radical innovation mainly drives product innovation. However, when rel_dep is small enough, the 

marginal effect of INH turns positive. Thus, when economic agents are in an institutional environment 

that encourages liberal technology transactions (e.g., the U.S.), less reliance on internal R&D capability 

for technology sourcing and acquiring technology from other agents comprise an approach that is more 

efficient.  

 

6.2 Juxtaposing with the Real World 

First, the marginal effect of rel_dep on FCUD analysis predicts that the U.S. system would 

outperform the JP system in an industry where radical innovation is the primary innovation pattern. In an 

industry that requires incremental innovation and where consumer demand changes quickly, the JP system 

is likely to outperform that of the U.S. in terms of technology sourcing efficiency. We consider that 

information technology (IT) and biotechnology (BT) are examples of industries that require radical 

innovation in new products and services. In these industries, innovation is usually realized by 

implementing radically innovative features in a product or service. For example, 10 years ago, a 

conventional cell phone was nothing but a device for calling and messaging. Today, its replacement, the 

smartphone, is a radical innovation because it comprises new features such as Internet access, mailing, 

and social networking that were not available with the conventional cell phone. The simulation results 

show that an institutional arrangement that highlights liberal market transactions for technology, rather 

than maintaining strong relationships with historical partners or using internal R&D, helps industrial 

competitiveness. In the real world, we observe that world-leading companies in the IT industry have 

originated in the U.S., which has a liberal market economy. However, Japanese and German firms are not 

in the top tier of this industry. Thus, in the context of real-world juxtaposition with the simulation results, 

the JP NIS may institutionally impose unnecessary delays for firms that source radically innovative 

technology by stressing the historical relationships with prior partners.  

Further, we can regard consumer electronics as an example of an industry that mainly requires 

incremental innovation and has fast-changing consumer demand. Consumer electronics such as home 

appliances and audio-video systems mainly need functional improvements in the technological 

components of the products. In addition, the market demand cycle is extremely short. For example, the 

functional performance of the display aspect of televisions has improved with developments such as 

enhanced resolution and graphics processing speeds that have very short product life cycles. Japanese 

firms such as Panasonic, SONY, and Hitachi have traditionally led this industry, and recently Korean 

firms such as Samsung and LG that also consider historical relationships as significant business assets are 
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competing with the Japanese players. Another example is the automobile industry. Here, most new 

models of car include incrementally innovative technology such as more reliable and powerful engines 

and noise reduction systems. We observe that Japanese (e.g., Toyota, Honda, and Mazda) and German 

(e.g., BMW, AUDI, and Volkswagen) automakers have led the global automobile industry. The simulation 

results show that the Japanese and German systems, which institutionally encourage firms to have a 

strong business relationship with historical partners, have provided an institutional advantage for the 

firms that lead the industry.  

Second, the marginal effect of INH and rel_dep on FCUD provides an interesting strategic 

implication for Japanese firms to enable them to survive in an industry that is heavily dependent on 

radical innovation. When we consider that the JP system is a system driven by historical relationships, the 

way for Japanese players to cope with the shock of radical innovation is to engage in more dynamic 

partnerships with a greater variety of players rather than remain with historical partnerships, while at the 

same time strengthening internal R&D capability (see AP 13). In an industry driven by incremental 

innovation, relying on internal R&D still benefits technology sourcing efficiency when the institutional 

environment is based on “long-term historical relationships.” This explains why JP players have a strong 

tendency to rely on internal R&D, as a survey on Japanese firms’ technology acquisition strategy shows 

(Kani & Motohashi, 2013). Therefore, we suggest that it is necessary for Japanese firms to have a more 

dynamic relationship with a variety of economic agents while keeping and strengthening internal R&D 

capability and for the Japanese NIS to promote this approach.  

 

7 Conclusion 

We propose the following implications for policymakers and Japanese business strategists. First, 

policymakers need to implement industry-specific policy. They should not necessarily adhere to a 

particular policy that either solely supports long-term historical relationships among economic players or 

promotes a liberal market mechanism across industries. As the simulation results and the real-world 

industrial landscape show, the optimal level of relationship dependency among players depends on 

industrial conditions. For example, Japanese firms and the government need to be careful about 

intentionally loosening the historical partnership network in the automobile industry. However, in an 

industry that requires radical innovation such as the IT industry, policymakers need to consider above all 

how to encourage the players to employ a liberal market mechanism in technology sourcing rather than 

relying on historical relationships. Second, Japanese firms need to retain and strengthen their internal 

R&D capabilities while having a more dynamic partnership network with a variety of players. This 
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strategy is particularly effective for an industry that requires a greater amount of radical innovation. By 

building more dynamic business relationships and technology transactions with a variety of partners, JP 

firms can gain a better perspective of industrial change and a wider pool of partners that may have 

suitable technology that corresponds to radical innovation.  

Some large firms have multiple business divisions for different industries. For example, Sony and 

Hitachi make home appliances and are also involved with the IT industry. Such companies need to adopt 

a different strategy for technology sourcing. The business divisions that deal with the IT industry need to 

strengthen their approach to purchasing radically innovative technologies from firms or universities that 

have the ideas they need, while at the same time strengthening their internal R&D capabilities by 

investing more in R&D and obtaining further well-qualified talent (e.g., through aggressive M&A). 

However, business divisions that target the home appliance market should maintain their strong business 

relationships with historical partners. Further, such divisions should maintain repetitive R&D 

collaboration, long-term contracts for technology sharing, and so on with prior business partners while 

keeping a strong internal R&D capability.  

Our study makes two distinct contributions. First, we suggest the implications for Japanese 

policymakers and strategists who are struggling with the issue of how to rehabilitate Japanese national-

level and individual firm-level industrial competitiveness. We show that the JP NIS does not need to 

change its institutional configuration radically so as to mimic the U.S. NIS; instead, it needs to stress the 

“importance of dynamic partnerships” for technology sourcing and support firms’ efforts to strengthen 

“internal R&D capability.” Also, JP firms need to manage their partner pools so as to have broader 

partnership relationships with a greater variety of players; however, they need to put greater effort into 

improving their internal R&D capabilities at the same time. Second, we extend the traditional framework 

that describes national-level industrial sector specialization. VoC theory explains how relationship 

dependency is related to industrial competitiveness with regard to the major innovation pattern of each 

industry. However, we reveal that the industry-level learning process and industry-specific characteristics 

in terms of consumer demand are also important factors in driving the national-level industrial sector 

specialization process. 
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Figure 1. Product Concept in the Present Model 
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Figure 2. Product Level Innovation Pattern and Technological Component Change 

 

 

 

Figure 3. Overview of the NIS Model 
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Figure 4. Simulation Timing and Outcomes 

 

inhouse: probability of selecting in-house R&D if agent decided to source from historical partner or internal R&D, 

rel_dep: relationship dependency (0 to 1) 

Figure 5. Strategy Selection for Technology Sourcing 
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Figure 6. Internal Validation 
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Figure 7. Distribution of Partnership Network Degree (Empirical vs. Simulation) 

 

Figure 8. Distribution of Agents’ Exit Rate by Age (Theory vs. Simulation) 
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Figure 9. Simulation Plan and Experimental Setup 
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[5] CDC = 9 

  

  

Figure 10. Accumulated FCUD  
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Note: The black dots represent the minimum points 

  

  

  

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

relationship dependency

M
ea

n
 v

al
ue

 o
f F

C
U

D
 (n

or
m

al
iz

ed
)

Simulation Result-FCUD,CDC=1

 

 
pdis=0
pdis=0.1
pdis=0.3
pdis=0.5
pdis=0.7
pdis=0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Minimum point in FCUD, CDC=1

Radical Innovation Ratio

re
l-

d
ep

 f
or

 m
in

im
al

 v
al

u
e 

in
 F

C
U

D

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

relationship dependency

M
ea

n
 v

al
ue

 o
f F

C
U

D
 (n

or
m

al
iz

ed
)

Simulation Result-FCUD,CDC=5

 

 

pdis=0
pdis=0.1
pdis=0.3
pdis=0.5
pdis=0.7
pdis=0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6
Minimum point in FCUD, CDC=5

Radical Innovation Ratio

re
l-

d
ep

 f
or

 m
in

im
al

 v
al

u
e 

in
 F

C
U

D

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

relationship dependency

M
ea

n
 v

al
ue

 o
f F

C
U

D
 (n

or
m

al
iz

ed
)

Simulation Result-FCUD,CDC=9

 

 
pdis=0
pdis=0.1
pdis=0.3
pdis=0.5
pdis=0.7
pdis=0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Minimum point in FCUD, CDC=9

Radical Innovation Ratio

re
l-

d
ep

 f
or

 m
in

im
al

 v
al

u
e 

in
 F

C
U

D



43 

 

Figure 11. FCUD Minimum and its Trajectory according to p_dis and rel_dep  

Note: The maximum FCUD is set to 1 at every simulation condition 
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Figure 12. std_FCUD according to Simulation Parameters 
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Appendix. Sub-Models 

AP 1. Technology portfolio matrix 

TC TL Com Owner Licensee Royalty Source 
A 1 1 Firm 1 Firm 1 0 ID 
B 1 1 Firm 3 Firm 1 8% LICENSE 
D 1 0.5 Firm 1 Firm 1 0 ID 
A 2 1 Firm 1 Firm 1 0 ID 
A 3 0.1 Univ 5 Firm 1 5% LICENSE 
B 2 0.5 Firm 3 Firm 1 5% COLLA 
C 1 0.1 Univ 3 Firm 1 1% COLLA 
… … … … … … … 

TC: technological component; TL: technological performance level; Com: commerciality (0.1: basic idea; 0.5: 

applied research; 1: fully commercialized); ID: internal development; LICENSE: sourced by license contract; 

COLLA: sourced by R&D collaboration. 

Figure AP1. Technology portfolio 

 

A technology portfolio is assigned to every agent. The portfolio is a two-dimensional matrix that 

includes the following information: 1) an index of the technological component of the technology (TC) 

and its technological performance level (TL); 2) the commerciality of the technology (com: basic idea, 

applied research, fully commercialized); 3) the technology owner’s name (OWNER); 4) the royalty rate 

according to the license contract; and 5) the source type of the technology (ID: internal development; 

LICENSE: licensed; COLLA: technology obtained by collaboration). An agent cannot have more than 

one technology that has the same identity (the same TC and TL). Also, an agent can only have technology 

that is newer than the technology that is currently fully commercialized (if the agent is a UNIV, the prior 

technology should at least be at the applied research stage). For example, if an agent has a technology (B, 

1) that is not fully commercialized yet, it cannot develop (B, 2) technology unless (B, 1) is fully 

commercialized. 

A manufacturing agent implements its own technologies that are closest to the required technology 

for a new product. The following describes how the manufacturing (potential) agent selects the 

technologies that are to be implemented in the product from its technology portfolio. 

 

 

 



46 

 

 

Technology selection for product implementation 
Technological components for product implementation: {A, B, C} 
Technological performance level that is mainly demanded for the product: {3, 5, 1} 

Component A Component B Component C 
3 5 2 

Technological specification of the product that is most in demand 

Technology portfolio of Agent “i”  

TC TL Com Owner Licensee Royalty Source 
A 1 1 I I 0 ID 
A 2 1 Firm Q Firm I 5% LICENSE 
C 1 1 K I 1% LICENSE 
B 1 1 I I 0 ID 
B 5 1 Firm I Firm I 0 ID 
B 6 0.1 P I 1% COLLAB 
C 2 1 UNIV K Firm I 1% COLLAB 
A 3 0.1 I I 0 ID 

Agent “” selects (A, 2), (B, 5), and (C, 2) for product implementation. (A, 2) is the closest 

technology to (A, 3) among the fully commercialized technology. The agent can use (B, 5) technolo

gy that meets market demand. It is also able to use (C, 2), which is sourced from R&D collaboratio

n with university K. The reason “i” does not select (A, 3) for component “A” is that (A, 3) is not ful

ly commercialized yet.  

 

AP 2. Internal R&D process 

The present model comprises an internal R&D process so that each R&D capable agent engages in 

new technology development. The R&D process model follows a “linear model” that roughly comprises 

three ordered R&D stages: basic research, applied Research, and development (Godin, 2006). In this 

model, only technology that has been through all these three stages successfully can be used for product 

implementation as a fully commercialized technology. The agents engaging in R&D should make R&D 

investments in order to reach the next stage in the R&D process. Success probability corresponds to the 

move to each new stage. Figure AP2 shows the conceptual model of the R&D process. 
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Figure AP2. Internal R&D process and model 

p1 is the probability of moving from the basic research stage to the applied research stage. If the 

process moves to the applied research stage, the agent becomes the owner of the basic idea of the target 

technology. Likewise, p2 corresponds to the probability of moving from the applied research stage to the 

development stage, which allows the agent to have applied technology. Finally, the agent owns fully 

commercialized technology with probability p3. 

The probability of transition to the next R&D stage consists of the following three factors: type of 

agent, the agent’s relevant knowledge about the target technology, and the technological performance 

level of the target technology. Thus:  

𝛑 = 𝐟(𝐄,𝐊,𝐍) 

K: prior knowledge of target technology; N: technological performance level of the target technology 

Each factor is assumed to be mutually independent. The following is the analytical model for the 

probability function. UNIV is designed to have a higher success rate in p1 but a lower rate in p2 with no 

engagement in the development stage for technology commercialization. Firm agent, however, has lower 

p1 but a higher p2 than UNIV with involvement in transition to the development stage. The following 

illustrates the probability function. 

𝐟(𝐄) =
∑ 𝑪𝒊𝒊

𝑻𝑳𝒋
 

i: technology of technological component (j); 𝐶𝑖: degree of commerciality of the technology “i”  (𝐶𝑖 ≤ 1) 

f(E) estimates an agent’s experience in the commercialization of prior technologies that are in the 

same technological component as the target technology. It calculates the relative value of the total 

commerciality of owning technology that is related to the target technology. Therefore, it takes a value 



48 

 

within 0 and 1. 

𝒇(𝑲) = 𝟐 −
𝟐

𝟏 + 𝒆−𝟏.𝟏∗�𝑵−𝑻𝑳𝒎𝒎𝒎,𝒂𝒂𝒂𝒂𝒂�
 

f(K) measures the proximity between the agent’s ownership of technology to the target technology. If 

the agent has technology that is close to the target technology (e.g., (B, 3) technology is closer to (B, 4) 

than (B, 1) or (C, 4)), it is relatively easy to develop a new idea for the target technology.  

𝒇(𝑵) = �
𝟏, 𝒊𝒊 𝒕𝒕𝒕 𝑵 ≤ 𝑻𝑳𝒎𝒎𝒎,𝒊 

(𝟐 −
𝟐

𝟏 + 𝒆−𝟏.𝟏∗�𝑵−𝑻𝑳𝒎𝒎𝒎,𝒊�
)𝟐,𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 

 

f(N) measures the technological difficulty in developing the target technology that has technological 

performance “N.” If N is less than or equal to the performance of technology (𝑇𝐿𝑚𝑚𝑚,𝑖 ) that is necessary 

to make the product that is most in demand, it produces “1,” which means that there are no particular 

difficulties in developing the technology through technological performance advancement. However, if N 

is higher than 𝑇𝐿𝑚𝑚𝑚,𝑖 , technological difficulty exponentially increases. Therefore, the probability that the 

agent can develop N-technological performance technology declines. The individual probability function 

jointly calculates p1, p2, and p3.  

Case 1) UNIV agent 

p1 = f(K), p2 = 𝐟(𝐄) ∗ 𝐟(𝐍)𝟐, p3 = 0 

Case 2) Firm agent 

p1 = f(K)*f(N), p2 = f(E), p3 = f(E)*f(N) 

With this partial probability function, each agent predicts the total necessary investment for 

completing the R&D before they engage in the R&D process. The following formula describes the 

calculation of expected R&D expenditure. 

𝐄(𝐑&𝐃) =
𝒕𝒕𝒕(𝟏) ∗ 𝒓𝒓𝒓
𝒑𝒑 ∗ 𝒑𝒑 ∗ 𝒑𝒑

 

rnd: expense of unit trial in R&D 

tri(1) is a random variable selected in triangular distribution with 0 as lower bound, 2 as upper 

bound, and 1 as medium. This factor considers the difference in individual entity’s expectations about 
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expenditure. The following diagram illustrates how an agent engages in the R&D process with the flow of 

R&D spending. 

 

Figure AP3. Internal R&D process 

 

AP 3. Technology source selection algorithm 

Firm agent has the following three technology sourcing strategies: 1) in-house R&D, 2) acquisition 

from other agents (licenses), and 3) R&D collaboration (Kang & Kang, 2009). The strategy selection 

process is controlled by given stylized simulation factors, and technology outsourcing is completed by 

negotiation with others. The following is a PSEUDO code of the technology source selection algorithm. 

Technology sourcing strategy selection algorithm 
If agent knows about target technology (TC’,TL’) 

If agent = technology aggregator 
  Generate random number R1 in [0,1]; 
  If R1 <= rel_dep 
    Generate random number R2 in [0,1]; 
    If R2 <= in-house 
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    Do internal R&D (TC’,TL’); 
 Else 

       Seek the technology in group of historical partners; 
    End-If 
  Else 

Seek the technology in group of non-historical partners; 
  End-If 
Else 

   Do internal R&D (TC’,TL’); 
 End-If 

Else 
 If agent = technology aggregator 

Generate random number R1 in [0,1]; 
If R1 <= rel_dep) 
  Seek the technology in group of historical partners; 
Else 

Seek the technology in group of non-historical partners; 
End-If 

 Else 
   Pass the R&D; 
 End-If 
End-IF 

 

Dependency on an inner circle (composed of the agent itself and historical partners) for technology 

sourcing (coded as rel_dep), and a tendency to rely on in-house R&D (coded as inhouse) controls the 

overall technology source selection mechanism.  

 

AP 4. Technology sourcing from partners 

An agent that selects an historical partner for technology sourcing communicates with the partner by 

asking whether the partner has the target technology at the applied research or fully commercialized stage. 

If so, the two parties start negotiations for a license contract. The technology owner considers the trade-

off effect and estimates the expected net revenue if the license contract is agreed: royalty revenue (+) and 

expected market share loss according to the licensee’s market penetration (-) (Motohashi, 2008; Arora & 

Fosfuri, 2003; Arora, Fosfuri, & Gambardella, 2001). If the technology owner is not a manufacturer or 

unlikely to be a manufacturer, the expected market share loss is marginal compared to the royalty revenue 

that the owner can earn. However, if the technology owner is a manufacturer or likely to be a 

manufacturer in the immediate future, the expected market share loss is relatively large, which prompts 

the technology holder to reject the license contract. The royalty rate is set to 1/(number of essential 

technological components + 1). For example, if a product is implemented by combining ten essential 

technological components, a licensor that licensed the technology that corresponds to one of the 
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technological components earns 1/11 of the sales revenue of its licensee. 

If any of the historical partners does not have the target technology, the agent checks each 

partner’s R&D experience with the technological component. The agent selects the most experienced 

partners and starts negotiations for R&D collaboration. In this collaboration, the agent pays half of the 

expected total R&D expenditure to the partner. In the negotiation process, the partner first calculates the 

expected market share it can additionally obtain if it develops the technology exclusively. Then, it 

estimates the expected market share if it shares the technology with its collaborator. If the aggregated 

value is positive, the partner engages in the R&D collaboration. However, anticipated negative net 

revenue does not always prompt the partner to reject the proposal. To introduce the concept of patient 

capital through a strong business relationship between the parties, the partner agrees to R&D 

collaboration within a stochastic decision-making process even though the expected payoff is not 

profitable. The following describes the algorithm. 

Technology sourcing from prior partner 
Check all the partners’ technology portfolios to seek (TC’,TL’) with commerciality over 0.5 
If there are such partners 
 Select a partner with the least impact on its market share; 
 Calculate payoff (POFF) of the partner from license contract; 
 If POFF >0 
   Make license contract; 
 Else 
   Generate random number R in [0,1]; 
   If R <= rel_dep 
     Make license contract; 
   Else 
     Reject the contract; 
   End-If 
 End-If 
Else 
 Check R&D experience of each partner on (TC’); 
 Select most experienced partner; 
 Calculate payoff (POFF) of the partner from the R&D collaboration; 
 If POFF >0 

 Start R&D collaboration; 
 Else 
   Generates random number in [0,1], R2; 
   If R2 <= rel_dep 
     Start R&D collaboration; 
   Else 
     Reject; 
   End-If 
 End-If 
End-If 
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AP 5. Technology sourcing from non-historical partners 

An agent can source the necessary technology from non-historical partners. The tendency to acquire 

the technology from them is set to 1-rel_dep. An agent that is willing to source technology from new 

partners follows the same algorithm as the algorithm of technology sourcing from partners. In the 

algorithm, an agent selects the entire number of agents with whom it will interact except historical 

partners. The number of agents for whom the agent will search is set to the same number as the agent’s 

historical partners. Then, the agent randomly selects one of the agents in the group of non-historical 

partners. Following this, the agent scans the selected agent’s technology portfolio. The agent does not 

interact with those agents that only have the technology at the basic research stage.  

 

AP 6. Update rule of the partnership network 

 The present model includes a simple partnership network update rule. An agent that establishes a 

relationship with another agent for the first time sets the linkage value to 1. Agents who have historical 

partners increase the linkage value (intensity) by 1 whenever they engage in interaction for technology 

sourcing (license or R&D collaboration) with the prior partners. Since this rule makes the linkage value 

increase as the two agents interact, the value represents the intensity or frequency of interaction of the two 

agents.  

 

AP 7. Information learning over the partnership network 

 Agents share and learn each other’s information about the consumer group’s technological 

specification of the demanded product over the partnership network. To implement the process, the 

present model implants a non-Bayesian network learning model (Epstein, Noor, & Sandroni, 2008; 

Epstein, Noor, & Sandroni, 2010). The model aggregates the Bayesian learning model and the learning 

obtained over the network. According to the model, individual agents obtain noisy signals about 

consumer demand. Then, each agent updates its own information and shares it with the networked agents. 

The agents acquire their own views about consumer demand according to the following mathematical 

model (Epstein, Noor, & Sandroni, 2010). 

𝜇𝑖,𝑡+1(𝜃) = 𝑎𝑖𝑖𝜇𝑖,𝑡(𝜃)
𝑙𝑖�𝜔𝑖,𝑡+1�𝜃�
𝑚𝑖,𝑡�𝜔𝑖,𝑡+1�

+ � 𝑎𝑖𝑖𝜇𝑗,𝑡(𝜃)
𝑗∈𝑁𝑖

 

where 𝜇𝑖,𝑡(𝜃) is the opinion about the state of 𝜃 agent “i” at time t; 𝑎𝑖𝑖 is the weight of the opinion of 
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agent j; ω𝑖,𝑡 is the noisy signal that the agent “i” captures at t; 𝑙𝑖�𝜔𝑖,𝑡�𝜃� is the likelihood function at state 

𝜃; and 𝑚𝑖,𝑡�𝜔𝑖,𝑡+1� is the probability that the signal 𝜔𝑖,𝑡+1 will be realized at time t. 

 

 

AP 8. Market power and market share 

A manufacturer earns sales revenue from the product market according to its market share. In order 

to calculate market share, it is necessary to consider market power, which aggregates the degree of 

technological fitness to the consumer-demanded product’s technological specification, and marketing 

experience, which is the time that an agent has spent as a manufacturer. Market power is calculated by 

using the average technological distance (DIS) of an agent’s technology with regard to the market-

demanded technology (TECH) for all the technological components, and the relative value of the agent’s 

marketing experience with regard to the maximum marketing experience among the exiting 

manufacturers (MKT). The formula is as follows. 

DIS =
1
𝑁0

� |𝑇𝐿𝑖 − 𝑇𝐿𝚤�����|
𝑁0

𝑖=1

 

TECHV𝑖 = 𝑒−4.6∗𝐷𝐷𝑆𝑖 

TECH =
1
𝑁0′

�𝛿𝑖 ∗ 𝑇𝑇𝑇𝑇𝑉𝑖

𝑁0

𝑖=1

 

MKT =
𝑎𝑎𝑎𝑎𝑡𝑖.𝑚𝑚𝑚

𝑀𝑀𝑀(𝑎𝑎𝑎𝑎𝑎.𝑚𝑚𝑚)
 

The calculated TECH and MKT are combined with the probability function that the agent becomes a 

manufacturer. The probability is determined by how much the agent is likely to use the technology for all 

the necessary technological components (Ft) and whether the agent can invest money in building a 

factory (Ff). In the model, the two factors are mutually independent. The (expected) market power is 

calculated by the following formula. 

MP𝑎 = {𝜔 × 𝑇𝑇𝑇𝑇 + (1 −𝜔) × 𝑀𝑀𝑀} × 𝐹𝑓 × 𝐹𝑡 

𝜔: weight of technological fitness with regard to the new consumer demand on market power; a: index of the agent 

The market share (MS) becomes the ratio of the agent’s MP to the sum of the MP of other 

manufacturers. The formula is as follows. 
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MS𝑖 =
𝑀𝑃𝑖

∑ 𝑀𝑃𝑗𝑗∈∀{𝑘∪𝑖}
 

The (expected) sales revenue is calculated by multiplying MS and the market size at the turn.  

SV𝑖 = MS𝑖 × 𝑀0(𝑡0) 

AP 9. Model of license contract and royalty payment 

The license contract in the present model is based on an exclusive license contract. Once a 

technology is licensed to another agent, it cannot be licensed to other agents until the prior license 

contract is invalidated (expires). The license contract is invalidated or expires if the licensed technology is 

no longer used by the licensee (in manufacturing). As long as the licensee uses the technology, it must pay 

a royalty to the licensor. The royalty rate is established by the system and is set according to the number 

of essential technological components for product implementation. In order to avoid the problematic 

royalty stacking problem (Lemley & Shapiro, 2007), the royalty rate is set to 1/(Ne+1), where Ne is the 

number of essential technological components for product implementation. The present model assumes 

that the licensee learns the licensed technology during the license contract period. Therefore, the licensed 

technology remains in the licensee’s technology portfolio even though the license contract is invalidated. 

 

AP 10. R&D collaboration model 

The present model includes the R&D collaboration process. R&D collaboration is based on 

“demander request.” That is, an agent that needs a certain technology selects a suitable partner for R&D 

collaboration and requests the collaboration of the selected agent. Once the latter is asked to collaborate 

on R&D, it considers the expected R&D cost it must spend and the benefits from royalties, or the 

possibility that the newly developed technology can be used to enhance its own market power. For R&D 

collaboration, an agent adopts the following process: 1) calculate expected R&D expenditure, E(rnd); 2) 

assign half of E(rnd) to the R&D budget; 3) suggest the R&D collaboration project to the potential 

partner; 4) provide half of E(rnd) to the partner if it agrees with the R&D collaboration; 5) the partner 

then creates the R&D budget by investing the remaining half of E(rnd) into the R&D project. In the 

present model, the agent that requests collaboration sees a new market opportunity and tries to obtain it 

through R&D collaboration with another agent that may know about the target technology. Therefore, this 

process can be viewed as one that splits R&D expenditure and shares knowledge. The process is based on 

the resource-based view of a strategic alliance, which states that firms essentially use alliances to gain 

access to other firms’ valuable resources (Das & Teng, 2000). Figure AP4 illustrates the R&D 
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collaboration process and its negotiation mechanism. 

 

Figure AP 4. Model of R&D collaboration 

 

AP 11. Spin-off process 

In the present model, an agent can form a new firm agent through the spin-off process. The design of 

the process is based on a theoretical framework that explains how entrepreneurship emerges and how it 

links to new firm formation (Ardichvilia, Cardozo, & Ray, 2003). The spin-off process comprises the 

following two sub-processes: 1) making a decision about the spin-off, and 2) selecting the technological 

component that the new firm copies from the parent agent’s technology portfolio. 

1) Making a decision about the spin-off 

Only the agent that is eligible to form a new firm can start the decision-making process for a spin-off. 

In order to be the eligible agent, an agent must satisfy the following two conditions: It should have 1) 

technologies related to at least one technological component and 2) entrepreneurs. The agent then uses a 

stochastic process to decide whether or not to form a new firm. The existence of an entrepreneur is 

represented by “spirit of entrepreneurship (SOE),” which is an internal variable of an agent. The SOE is 

periodically charged and dissipated when a new firm is formed. This mechanism models the situation 
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whereby a parent organization trains human resources to know about the business/technology field in 

which the parent company operates and also helps the employees consider the startup. Thus, this process 

can be represented as a “periodical entrepreneurship charging and dissipation mechanism.” Since the 

present model is based on the closed economy structure, the total amount of the capital asset should be 

maintained at the same level. If the spin-off process works without system-level control, it can make the 

total amount of the capital asset continue to increase because the new firm is created with its capital asset. 

In order not to violate the capital source preservation rule, the spin-off process is controlled by a “capital 

reservoir.” This is a component that controls the total amount of the capital asset in the system.  

2) Selecting the technological component that the new firm will use  

First, the technology portfolio of the parent agent is scanned. Then, the technological components 

that the agent knows about are identified. Second, the total number of technologies for each of the 

technological components in the system is counted. Third, the technological component that has the 

minimum number of technologies in the system and that the parent agent is knowledgeable about is 

selected. Fourth, the parent’s entire technologies about the selected technological component are copied to 

the new firm. The following algorithm summarizes the overall spin-off process. 

Algorithm for spin-off process 
Making profile of technology in simulation, PRO_T 
Identifying the technology field that the parent agent (A) is knowledgeable about, TF_A 
Selected technological group TC = TF_A, where TF_A = Min(PRO_T)  
If size (CR) >0 
 Generate random number, Rn in [0,1] 
 If Rn <= ENT & agent (A).entrepreneurship >=1 
   Create SME-type new firm, B 

Copy all the technology of A in TG to B 
B.capitalasset = default SME asset, (SME_asset)  
CR = CR-SME_asset 

End If 
End-if 

 

AP 12. Codifying the product innovation pattern 

The present model comprises two different patterns of product-level innovation: incremental and 

radical. Incremental innovation means that a new product has enhanced technological performance but 

does not have new technological features. Introducing a new central processing unit (CPU) that has 

greater processing power into a new model of a personal computer is an example of an incremental 

innovation at product level. In the present model, incremental innovation becomes a technological 

performance improvement in a particular technological component of the product. Radical innovation at 
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product level is the “introduction of a new technological component that was not required in the prior 

product.” For example, a conventional cell phone’s function only concerns telecommunication (e.g., 

texting and calling). However, a smartphone includes new functions such as accessing the Internet, 

sending and receiving e-mails, and even watching a movie or gaming. Therefore, a smartphone is a new 

product that comprises radical innovation according to the concept of the present model. 

To implement these product-level innovation patterns, the present model employs a binary string. 0 

means that the corresponding technological component does not need to be improved or introduced for 

new product implementation. 1 means that the corresponding technological component should be 

improved or newly introduced for new product implementation.  

 

Figure AP 5. Product level innovation pattern and coding scheme 

 

AP 13. Marginal effect of p_dis  

  rel_dep 

INH 

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
0 -2.54  -0.99  0.57  2.13  3.68  5.24  6.79  8.35  9.91  11.46  

0.1 -2.85  -1.29  0.26  1.82  3.38  4.93  6.49  8.04  9.60  11.16  
0.2 -3.16  -1.60  -0.04  1.51  3.07  4.62  6.18  7.74  9.29  10.85  
0.3 -3.46  -1.91  -0.35  1.21  2.76  4.32  5.87  7.43  8.99  10.54  
0.4 -3.77  -2.21  -0.66  0.90  2.46  4.01  5.57  7.12  8.68  10.24  
0.5 -4.07  -2.52  -0.96  0.59  2.15  3.71  5.26  6.82  8.37  9.93  
0.6 -4.38  -2.82  -1.27  0.29  1.84  3.40  4.96  6.51  8.07  9.62  
0.7 -4.69  -3.13  -1.57  -0.02  1.54  3.09  4.65  6.21  7.76  9.32  
0.8 -4.99  -3.44  -1.88  -0.33  1.23  2.79  4.34  5.90  7.46  9.01  
0.9 -5.30  -3.74  -2.19  -0.63  0.92  2.48  4.04  5.59  7.15  8.71  

    
 

    
 

  

  

 
The U.S. system: higher rel_dep -> same as 
JP 

 
JP system: always better for incremental 
innovation 

   Smaller rel_dep -> better for radical innovation     
   In-between: depends on INH      
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