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Abstract 

 

This study empirically investigates the determinants of the productivity of knowledge creation by 

collaboration. By using the Japanese patent database, we extracted establishment-level patent 

co-invention information and found the following results. First, we find an inverse U-shaped pattern 

in the relationship between the similarity of knowledge stocks and the quality of patents. That is, 

moderate diversity in knowledge stocks between establishments rather than extreme similarity or 

extreme diversity is important for knowledge creation. Second, focusing on the differences in 

technology class, we find an inverse U-shaped pattern except in the lowest technologies, and the 

peak of the inverse U-shape is larger in the higher technologies. This implies that the common 

knowledge between establishments is important in the higher technologies. Third, we find that the 

physical distance between collaborating establishments has a negative effect on the quality of 

patents. 
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1. Introduction 

 

The exchange of ideas between researchers is crucial for knowledge creation. Different researchers have a 

different knowledge stock, which causes the exchange of different ideas. However, how large should the 

optimal difference in knowledge stocks between researchers be for innovation? Is a larger difference better? 

There is much debate on the role of the diversity of knowledge stocks on innovation.  

 

Empirical research on innovation mainly focuses on the diversity of workers’ characteristics, such as gender 

and ethnicity, as proxies for the difference in knowledge stocks. In fact, many studies have explored the 

role of diversity in innovation and found that more diversity is better for innovation (Breschi, Lissoni, and 

Malerba, 2003; Garcia-Vega, 2006; Østergaard, Timmermans, and Kristinsson, 2011).  

 

On the other hand, Berliant and Fujita’s (2008) seminal study theoretically pointed out the nonlinear effects 

of diversity on knowledge creation. They pointed out that common knowledge between collaborating 

agents is also important. Common knowledge between agents enables them to communicate with each 

other, and as a result, they exchange different ideas effectively. That is, moderate diversity in knowledge 

stocks between agents rather than extreme similarity or extreme diversity is important for knowledge 

creation. 

 

This study empirically tests the nonlinear effect of diversity on knowledge creation by using 

establishment-level collaborations from Japanese patent data. Long panel establishment-level collaboration 

data in patent creation enables us to capture the similarity/diversity between knowledge stocks of 

collaborating establishments. First, we define knowledge stocks in an establishment through the 

establishment’s history of patent applications. In particular, we define knowledge stocks in an 

establishment as a vector whose elements contain the numbers of the establishment’s applied patents in 

each technology class. Then, we define the knowledge similarity between collaborating establishments by 

the correlation coefficient of these knowledge stock vectors in each establishment. 

 

This study also focuses on the physical distance between collaborating establishments. Inoue, Nakajima, 

and Saito (2013) found that the collaborating relationships between establishments in inventing patents are 

geographically localized. This implies that physical distance impedes the collaborations between 

establishments. Similarly, physical distance may also matter to the quality of the collaborative patent. This 

study estimates how much the geographic distance affects the quality of patents. 

 

As the results, we find an inverse U-shaped pattern between similarity of knowledge stocks and quality of 

patents, which strongly supports Berliant and Fujita’s (2008) theoretical prediction. Furthermore, we find 
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that the geographical distance between collaborating establishments has a weak negative effect on the 

quality of patents. Second, focusing on the differences in technology class, we find inverse U-shaped 

pattern except in lowest technologies, and the peak of the inverse U-shape is larger in the higher 

technologies. This implies that the common knowledge between establishments is important in the higher 

technologies. Third, we find that the physical distance between collaborating establishments has a negative 

effect on the quality of patents. 

 

The next section presents our data and demonstrates how to extract establishment information from the 

patent database. Section 3 discusses the empirical strategy and provides definitions of variables. Section 4 

shows the result, and Section 5 summarizes and discusses the implication of the results. 

 

2. Data 

 

We extracted establishment-level co-invention dataset from 1993 to 2008 in Japan. We utilized the Institute 

of Intellectual Property patent database (Goto and Motohashi, 2007), which includes all patent publications 

(the Patent Gazette) in Japan. This database includes basic patent information such as patent ID; 

application date, publication date, names and addresses of applicants; and names and addresses of 

inventors. The database also includes the number of citations received by each patent. The citation 

information is based on citations included in patents and given by reviewers. We used recorded patents 

rather than published patents. In Japan, applicants cannot acquire patent rights through patent applications 

only. Patents have to pass reviews and must be recorded with payment of fees. That is, recorded patents are 

generally better in quality than patents that are just applied for.  

 

Note that the publication date differs from the application date because of the reviewing time. To 

appropriately capture the timing of collaboration activities, we used the application date because it is closer 

to the timing of collaboration. We then restricted our sample to patents that were applied for from 1986 to 2005. 

 

From this database, we identify patent-creating establishments by taking advantage of a convention of the 

Japanese patent system in which inventors register the address of the establishments to which they belong 

under “inventor’s address” (Inoue, Nakajima, and Saito, 2013, 2014). 

 

Here, we describe the algorithm for how to identify the establishments from our patent database, following 

Inoue, Nakajima, and Saito (2013, 2014). First, firms are identified through the names and addresses of 

applicants. We define a firm as an applicant when its name includes the term “company limited” or 

“kabushikigaisha” in Japanese. This definition simultaneously excludes all relatively small firms, such as 

private limited companies. Second, the patent-creating establishments are identified as follows. We check 
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whether the firm’s name is included in the inventor’s address. We then consider the inventor’s address with 

the firm name as the address of the establishment owned by the firm. 

 

Using this identification method, we gathered the following information. Table 1 gives a summary of the 

dataset. The dataset includes 1,967,361 patents. 1,189,262 patents out of them are applied for by 

establishments. On the collaboration, number of patents applied for by establishments’ collaborations are 

93,939. In the analysis, we use only on the collaborations between two firms because we focus on the 

bilateral relationships. Number of patents applied for by two establishments collaborations are 83,742. The 

number of firms as applicants is 56,592. The number of patent-creating establishments is 74,452. 

 

[Table 1 here] 

 

3. Empirical Strategy  

 

This study aims to estimate the effect of the similarity of knowledge stocks between collaborating 

establishments on the quality of patents created by their collaboration. The estimation equation is as 

follows: 

 

log�quality𝑝𝑝𝑝� = 𝛼 + 𝛽1similarity𝑝𝑝𝑝 + 𝛽2(similarity𝑝𝑝𝑝)2 + 𝑍𝑝𝑝𝑝′ 𝛿 + 𝜀𝑝𝑝𝑝 , 

 

where log�quality𝑝𝑝𝑝� is the log of quality of patent 𝑝 created by the collaboration between establishments 

𝑖 and 𝑗, similarity𝑝𝑝𝑝 is the similarity of knowledge stocks between establishments 𝑖 and 𝑗 at the point of 

application for patent 𝑝, 𝑍𝑝𝑝𝑝 is the other characteristics of establishments 𝑖 and 𝑗, and their relationships, 

and 𝜀𝑝𝑝𝑝 is the error term. We estimate this equation by ordinary least squares. 

 

To measure knowledge quality, we use the number of received citations for each patent. Because the 

number of received citations is larger for older patents and differs depending on their technology class, we 

normalized the number of received citations by dividing it by the average number of received citations in 

all the patents applied for in the same year and in the same technology class (Hall and Jaffe 2000; 

Trajtenberg, 1990). 

 

Next, we define the similarity of the knowledge stocks. First, we define the knowledge stock in each 

establishment through its history of patent applications. The number of applied patents in each technology 

class prior to the establishment’s application for a patent constitutes the knowledge stock of the 

establishment in that period. That is, we define knowledge stock as a vector whose elements contain the 

numbers of applied patents in each technology class (Benner and Waldfogel, 2008). Second, we define the 
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knowledge similarity between collaborating establishments. When two establishments apply for a patent 

through collaboration, each establishment has its own knowledge stock as a vector whose elements contain 

the number of applied patents in each technology class. We define knowledge similarity as the correlation 

coefficient for these two knowledge stock vectors. In the estimation, we add the quadratic term of this 

variable to capture the nonlinear effect of similarity on patent quality. 

 

As the other covariates 𝑍𝑝𝑝𝑝′ , we first introduce geographic distance between collaborating establishments, 

which is found to cause collaborating friction. Inoue, Nakajima, and Saito (2013) found that 

establishment-level collaborations are significantly localized. This suggests the difficulty of collaborations 

between geographically remote establishments. Geographical distance may also reduce the quality of 

patents. To capture this effect, we include the physical distance between collaborating establishments as 𝑖 

and 𝑗. 

 

We also control for the establishments’ characteristics. The levels of creativity at establishments affect the 

quality of their collaborating patents independently from the collaboration characteristics. To control for 

the establishment’s creativity, we include the total number of patent inventions from each establishment. 

Furthermore, to capture the establishment’s tendency to undertake collaborative works, we include the 

total number of collaborative patents from each establishment. 

 

This regression approach focuses on the bilateral relationship between establishments. Therefore, we 

restrict our sample to patents created by two establishments. As Table 1 shown, most of the patents created 

in collaborations remain in our focus sample.  

 

Table 2 shows the summary statistics of these variables. 

 

[Table 2 here] 

 

4. Results  

4.1. Baseline result  

 

Figure 1 shows the relationship between patent quality and similarity of knowledge stocks by binned 

scatterplot. The horizontal axis represents knowledge similarity, and the vertical axis represents patent 

quality (log of the normalized number of citations received). We group the knowledge similarity into 

equal-sized bins. Then, we compute the means of knowledge similarity and patent quality for each bin and 

scatterplot. We can clearly see the inverse U-shaped pattern. That is, both extreme similarity and extreme 

diversity of knowledge stocks are not suitable for innovation. 
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[Figure 1 here] 

 

Table 3 shows the estimation results. Column 1 shows the baseline result for the overall period from 1990 to 

2005. First, the coefficient for similarity of knowledge is positively significant at the 5% level. Furthermore, 

the coefficient for the quadratic term of similarity of knowledge is negatively significant at the 5% level. 

This clearly shows the inverse U-shaped pattern of similarity of knowledge stocks in relation to patent 

quality. The peak of this inverse U-shape locates 0.567 in similarity. This is very similar to the peak in 

Figure 1.  

 

Next, we introduce geographic distance into the estimation equation. Column 2 shows the result. Even if 

we control for the distance, the inverse U-shaped pattern can be observed as significant. Interestingly, the 

coefficient for the log of physical distance between collaborating partners is negatively significant. This 

implies that physical distance may impede the quality of collaborative work.  

 

In this study, we measure patent quality through number of citations. As mentioned above, our normalized 

numbers of citations are divided by the average of the number of citations in the same year and in the same 

technology class. We especially classified technologies based on three letters in the International 

Technological Classification (IPC). However, to control for the remaining technology class heterogeneity, 

we introduce three-digit fixed technology class effects. The result is shown in column 3. Even if we control 

for that, the results are unchanged.  

 

Patent quality is also affected by the establishments’ locations. In fact, it is indicated that creative 

establishments are heavily concentrated in large urban metropolitan areas (Inoue, Nakajima, and Saito, 

2014). To control for location effects, we introduce fixed Tokyo effects in the equation, but the results are 

unchanged (Column 4). Finally, to capture the periodical characteristics of patent quality, we introduce 

fixed year effects, but results are unchanged (Column 5). 

 

In summary, we can robustly find the inverse U-shaped pattern between similarity of knowledge stocks 

and patent quality. This inverse U-shaped pattern is robust if we control for the establishment’s creativity 

and any other characteristic of collaboration. Furthermore, the coefficient for the log of physical distance 

between collaborators is negatively significant. This implies that difficulty of collaboration between 

geographically remote establishments may reduce the quality of collaborative patents. Because 

collaborations in knowledge creation require face-to-face communications that promote intensive 

discussions, sharing tacit information, and so on, geographic remoteness can be considered to impede 

communications and reduce the quality of patents. 
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4.2. Time periods 

 

The inverse U-shaped pattern and the role of geographical distance would change with different time 

periods. We next conduct the same estimation by a five years window. We use the specification that 

introduces fixed technology class, Tokyo, and year effects. 

 

Table 3 shows the results. Column 1 shows the result from 1990 to 1995, column 2 shows that from 1996 to 

2000, and column 3 shows that from 2001 to 2006. First, the inverse U-shaped pattern between knowledge 

similarity and patent quality can be observed for every period. Furthermore, peaks of the inverse U-shapes 

increase per period (0.467, period from 1991 to 1995; 0.521, period from 1996 to 2000; and 0.594, period from 

2001 to 2005). This increase of peaks might represent technological progress over the years. Relative to the 

earlier periods, recent patents are more technologically advanced, and the required background knowledge 

also increases and becomes more specialized. The increase of specialization in each establishment makes it 

difficult to communicate with each other, and this may increase the required similarity of background 

knowledge stocks between collaborators.  

 

On the other hand, the coefficients for the log of physical distances are not robustly significant in all the 

periods. They are only negatively significant in the period from 1996 to 2000. This result contrasts the 

results by Inoue, Nakajima, and Saito (2013). They found that geographical distance caused strong frictions 

in forming collaboration relationships through the periods in two decades. The difference between our 

result and that of Inoue, Nakajima, and Saito (2013) suggests that geographical distance works as an 

impediment for forming collaborative relationships, but distance does not work as an impediment on the 

quality of the collaborative work in all the periods. 

 

[Table 3 here] 

 

 

4.3. Technology difference 

 

The role of knowledge similarity may be different throughout technology classes. Patents in 

high-technology classes require more advanced knowledge, and this makes it difficult to communicate 

with each other. Under these circumstances, sharing common knowledge would become more important. 

In this section, we categorize patents by their technology classes, and investigate the inverse U-shaped 

pattern in knowledge similarity. 
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4.3.1. Definition of technology class groups 

 

For the analysis, we need to define the height of technology. In general, a higher technology class requires 

more investments for invention. Therefore, we define the height of technology by the share of R&D 

investment. That is, the technology class that requires more investment for invention can be defined as a 

high-class technology.  

 

However, our patent database does not include such R&D information. Therefore, we merge several 

databases and obtain information on the share of R&D investments over the total sales in each patent 

technology class. The detailed methodology is as follows. 

 

R&D investment information can be obtained from the Basic Survey of Japanese Business Structure and 

Activities. It covers firms in the all industries with more than 50 employees and capital stock of over 30 

million yen. This database includes each firm’s sales, R&D investment, and industry code (JSIC). We create 

R&D intensity by dividing aggregated R&D investment and sales for each three-digit level industry code. 

 

Next, we identified the correspondence between three-digit level industry codes and patent technology 

classes. Each patent provides information of the applicant’s name and address; that is, the names and 

addresses of firms, which we merge with the Tokyo Shoko Research (TSR) firm database. The TSR covers 

826,169 Japanese firms, which is more than half of the total number of firms in Japan. This database 

includes the industry code for each firm. Merging TSR data with the patent database by the firm’s name 

and address information, we obtain the applicant firms’ industry information for each patent.  

 

Using the merged patent database, we create the composite of the industry code for each technology class. 

Precisely, focusing on the patents of one technology class, we calculate the number of patents per industry 

to which each applicant firm belongs. 

 

Finally, by using information on industry-level R&D investment shares, and by calculating the weighted 

average of R&D investment shares by the above mentioned industry composite, we obtain information on 

patent-technology class level R&D investment shares.1 

 

By using this data, we define four types of technology by the quantile of R&D investment shares: low, 

mid-low, mid-high, and high technology. Patent technology classes with R&D investment shares that locate 

the first quantile are defined as a low-technology class. Similarly, patent technology classes with R&D 

                                                   
1 Results are available upon request. 
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investment shares that locate the fourth quantile are defined as high-technology classes. 

 

4.3.2. Estimation results 

 

We estimate the equation by categorizing samples according to the four technology classes. Results are 

shown in Table 5. Column 1 shows the results for the low-tech patent classes. We cannot find any 

significant inverse U-shaped patterns in knowledge similarity and quality of patent. In the low-tech patent 

creation, diversity of knowledge does not work. Columns 2, 3, and 4 show the results for mid-low tech, 

mid-high tech, and high-tech patent classes, respectively. First, in columns 2, 3, and 4, we can observe 

significant inverse U-shaped patterns in knowledge similarity and quality of patents. Inverse U-shaped 

patterns can be observed in the relatively high-technology patents. Furthermore, interestingly, peaks of 

inverse U-shapes increase with the height of the technology (0.417, mid-low tech; 0.486, mid-high tech; and 

0.592, high-tech). This implies the importance of common knowledge for the higher technologies. This may 

result from the fact that when there is collaboration in the high technology classes, each collaborating 

establishment specializes in a specific field of advanced knowledge, and this makes it difficult to 

communicate with each other.  

 [Table 5 here] 

 

 

5. Discussion 

 

This study has investigated the determinant for the quality of knowledge creation in collaborative work by 

using Japanese patent data. We obtained the following results from our estimations. First, throughout the 

periods and specifications, we robustly find inverse U-shaped patterns in the similarity of knowledge 

stocks and quality of patents. This strongly supports Berliant and Fujita’s (2008) theoretical prediction. To 

achieve high-quality knowledge creation, both extreme similarity and extreme diversity are not efficient. 

Moderate diversity, which means sharing a certain amount of common knowledge, is important for 

high-quality knowledge creations. However, previous empirical studies on the diversification of innovation 

do not consider the importance of common knowledge and focus only on the diversification of workers. 

 

Second, we find that physical distance between collaborators has a negative effect on the quality of patents, 

but this effect is not necessarily observed in all periods. Inoue, Nakajima, and Saito (2013) found that 

geographical distance caused strong frictions in forming collaboration relationships throughout the period. 

This implies that geographical distance works as an impediment for forming collaborative relationships, 

but distance does not work as an impediment on the quality of the collaborative work in all the periods.  
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Third, we find heterogeneous patterns in inverse U-shape patterns in relation to technology. In the low-tech 

class, there is no inverse U-shaped pattern. On the other hand, we find significant inverse U-shaped 

patterns above mid-low technology. Furthermore, peaks of inverse U-shapes increase with the height of the 

technology. These imply the importance of common knowledge for the higher technologies, where the 

establishments are highly specialized in their own fields. 

 

Following the theory by Berliant and Fujita (2008), under the circumstances, an iteration of collaborations 

increases the common knowledge between collaborators, and reduces the productivity of knowledge 

creation. Thus, they predict that knowledge-creating agents frequently switch collaborating partners that 

have a different knowledge stock. Investigating these switching patterns may be a future project. 
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Figure 1 Similarity of knowledge stocks and quality of patents 
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Table 1 Patent database and establishment-level collaborations 

Number of patents 1,967,361 

Number of patents applied for by establishments 1,189,262 

Number of patents applied for by establishments’ collaborations 93,939 

        Number of patents applied for by two establishments collaborations 83,742 

Number of establishments 74,452 

Number of firms  56,592 

 

Table 2 Summary statistics  

  Obs. Mean SD Median Min Max 

No. of citations received (normalized) 72723 1.068  1.818  0.538 0.000  73.447  

Knowledge similarity 72848 0.425  0.200  0.412 −0.041  1.000  

Geographical distance (km) 72848 193.448  263.180  49.425 0.000  1825.408  
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Table 3 Baseline results 

 

  (1) (2) (3) (4) (5) 

Knowledge similarity 0.328** 0.330** 0.288** 0.276** 0.317** 

 

(0.0563) (0.0563) (0.0568) (0.0574) (0.0568) 

Knowledge similarity2 −0.311** −0.315** −0.280** −0.278** −0.295** 

 

(0.0605) (0.0606) (0.0611) (0.0618) (0.0611) 

ln(distance) 

 

−0.00250* −0.00288** −0.00538** −0.00560** 

  

(0.00129) (0.00133) (0.00152) (0.00151) 

ln(# patenti × # patentj) 0.00793** 0.00801** 0.00929** 0.0106** 0.0100** 

 

(0.00142) (0.00142) (0.00154) (0.00158) (0.00156) 

ln(# collaboi × # collaboj) −0.00119 −0.00135 −0.000516 −0.00183 −0.00363** 

 

(0.00155) (0.00155) (0.00165) (0.00169) (0.00168) 

Constant 0.382** 0.393** 0.382** 0.392** −0.152** 

 

(0.0131) (0.0143) (0.0147) (0.0152) (0.0228) 

      Tech. class FEs No No Yes Yes Yes 

Tokyo FEs No No No Yes Yes 

Year FEs No No No No Yes 

      Observations 57170 57170 57170 57170 57170 

R-squared 0.003 0.003 0.009 0.019 0.038 
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Table 4 Time periods analysis 

 

  (1) (2) (3) 

Knowledge similarity 0.442** 0.369** 0.315** 

 

(0.105) (0.112) (0.117) 

Knowledge similarity2 −0.473** −0.354** −0.265** 

 

(0.111) (0.122) (0.127) 

ln(distance) −0.00121 −0.00614** −0.00493 

 

(0.00278) (0.00277) (0.00327) 

ln(# patenti × # patentj) 0.00127 0.0104** 0.0176** 

 

(0.00318) (0.00292) (0.00306) 

ln(# collaboi × # collaboj) 0.000182 −0.00558* −0.00677** 

 

(0.00344) (0.00307) (0.00335) 

Constant 0.483** 0.435** 0.108** 

 

(0.0303) (0.0293) (0.0333) 

    Tech. class FEs Yes Yes Yes 

Tokyo FEs Yes Yes Yes 

Year FEs Yes Yes Yes 

    Periods 1991–1995 1996–2000 2001–2006 

Observations 13941 15563 17242 

R-squared 0.049 0.045 0.052 
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Table 5 Technology class analysis 

  (1) (2) (3) (4) 

Knowledge similarity 0.169 0.316** 0.775** 0.205** 

 

(0.129) (0.119) (0.135) (0.0889) 

Knowledge similarity2 −0.0563 −0.379** −0.798** −0.173* 

 

(0.139) (0.127) (0.148) (0.0954) 

ln(distance) 0.00288 −0.00537* −0.00625* −0.00933** 

 

(0.00338) (0.00326) (0.00370) (0.00234) 

ln(# patenti × # patentj) 0.0181** 0.00864** 0.0147** 0.00774** 

 

(0.00464) (0.00395) (0.00367) (0.00211) 

ln(# collaboi × # collaboj) −0.0169** −0.00453 −0.0108** 0.00269 

 

(0.00494) (0.00420) (0.00396) (0.00227) 

Constant 0.142 0.0305 −0.0800 −0.143** 

 

(0.142) (0.120) (0.153) (0.0298) 

     Tech. class FEs Yes Yes Yes Yes 

Tokyo FEs Yes Yes Yes Yes 

Year FEs Yes Yes Yes Yes 

     Sample Low-tech Mid-low tech Mid-high tech High-tech 

Observations 10912 10946 10120 25192 

R-squared 0.036 0.035 0.041 0.045 
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