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Abstract 
 

We provide a microfoundation for the production function by using the concept of stochastic 
macro-equilibrium in Yoshikawa (“Stochastic Macro-equilibrium and Microfoundations for 
Keynesian Economics,” RIETI Discussion Paper, 2013). We consider an economy with multiple firms, 
with each firm possessing Leontief technology. We assume that the allocation of labor is determined 
by entropy maximization. We show that for selected productivity distribution, aggregate production is 
described by the popular Cobb-Douglas type. 
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1 Introduction

In both theoretical and empirical macroeconomic analysis, it is popular to use the aggre-

gate production function such as the Cobb-Douglas production function. A seminal paper

of Solow (1956) constructs what is called as the neoclassical growth model by using the

strictly concave and constant returns to scale production function. Some authors incor-

porate intertemporal utility function into the Solow model to investigate policy effects.

Judd (1985, 1987) construct a neoclassical growth model with tax policy instruments and

obtain the optimal capital tax rate. However, in a real economy, there is no represen-

tative firm nor the aggregate production function. The aggregate production function is

simply a sum of individual production unit. Microfoundations for production function is

therefore an important topic in modern macroeconomics. Jones (2005) claims that we

need theoretical foundations of the aggregate production function.

Many authors have tried to give a microfoundation to the popular and empirically

plausible production function such as CES production function. A pioneering paper of

Houthakker (1955-1956) investigates a model that consists of production units, and each

unit is maximizing its profit and has Leontief production function. He shows that if

the production function of the individual firm is Leontief type and productivities are

distributed according to Pareto, the aggregate production is Cobb-Douglas. 1 Lagos

(2003) adopts a similar framework and investigates how unemployment affects TFP. 2

Jones (2005) shows that if the distribution of ideas are Pareto, the global production

function is also Cobb-Douglas. Dupuy (2012) constructs a model with heterogenous

workers and jobs and obtains a similar results. A recent paper of Growiec (2013) is very

close to Jones (2005), but he assumes that the productivity distribution follows Weibull

distribution instead of Pareto and obtains the CES production function. Marco (2003)

1Existing literature on the aggregation of the produciton function includes Sato (1975).
2A recent paper of Petrosky-Nadeau (2013) incorporate finantial friction into Lagos (2006).
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uses NBER Patent Citation Datafile, and performs a nonparametric hazard estimation.

He then finds that the patent citations follows Weibull distribution. As Felipe and Fisher

(2003) argue, the conditions under which a popular aggregate production function such as

the Cobb-Douglas can be derived are very much limited. Therefore aggregate production

function still do not have a sound theoretical foundations.

We adopt a novel approach and provide a microfoundation for the production func-

tion by using the concept of stochastic macro-equilibrium in Aoki and Yoshikawa (2007)

and Yoshikawa (2013). The concept is based on the statistical physics theory. As in

Houthakker (1955-1956) and Jones (2005), we consider an economy with multiple firms,

and each firm has Leontief technology. In Houthakker (1955-1956), the allocation is de-

termined by the profit maximization of firms, but here we assume that it is determined

by probability maximization problem. Although the probability function has a complex

form, it is approximated by the entropy if the number of firms is large. We then study

the entropy maximization problem and show that for some productivity distribution, the

aggregate production becomes Cobb-Douglas type. We also show that our model may de-

rive convex-concave production function, that exhibits increasing returns to scale as long

as capital is small, and then has constant returns to scale. It is true that many authors

including Skiba (1978) investigate the optimal growth model with the nonconvex technol-

ogy, they simply assume the shape of the production function and provide no foundation.

We finally show that the production function may be CES production function which is

now becoming popular in macroeconomic analysis.

The shape of the aggregate production function plays a crucial role in the analysis

of growth and inequality. A prominent book of Piketty (2014) argues that the difference

between the rate of return on capital (r) and the economic growth rate (g) plays a crucial

role in determining the inequality. Especially he argues that as the economic growth rate

lowers, the value of r − g rises and then the degree of inequality becomes heavier than

3



before. As Piketty (2014), Jones (2014) and Krusell and Smith (2014) argue, the elasticity

of substitution between capital and labor plays an important role on determining the effect

of the economic growth on r − g. As is clear from these arguments, precise measurement

of the aggregate production function is very much important in the analysis of economic

inequality.

The paper proceeds as follows. Section 2 describes the model. Section 3 characterizes

the shape of the production function. Section 4 studies a case with non-concave production

function. Section 5 concludes. The Appendix contains proofs of the propositions.

2 Model

In this section, we provides our model.

2.1 Set-up

The set-up is very close to Houthakker (1955-1956) and Jones (2005). There are I firms,

where I is a positive integer. We assume that I > 4. Total number of workers is N and

aggregate capital is K. Here we assume that both N and K are given. Firm i employs Ni

workers, and Ki units of capital. Then the aggregate labor demand and capital demand

are respectively equal to
∑I

i=1 Ni and
∑I

i=1 Ki. The production function is of the Leontief-

type, and to produce one unit of the final good, the firm needs 1/Bi units of workers and

1/Ai units of capital, where Ai > 0 is capital efficiency, Bi > 0 is labor efficiency. The

Leontief production function is assumed in Gorton and Ordonez (2014).

If we let bi = Bi

Ai
denote the relative productivity of capital, it satisfies Ki/Ni = bi

where Ki is capital of firm i. We denote the output of the firm i by yi. The firm’s output

is given by yi = AiKi = BiNi. This is re-written as

yi = AibiNi. (1)

4



The total output for this economy is equal to Y =
∑I

i=1 yi. The resource constraints on

capital and labor are respectively given by

I∑
i=1

Ki =
I∑

i=1

biNi ≤ K, (2)

I∑
i=1

Ni ≤ N. (3)

In what follows, we focus on the case where that both constraints are binding. (Later we

obtain a condition to ensure that the inequalities holds with equality.)

2.2 Allocation

In Houtakker (1955-1956), the allocation of labor is determined by the profit maximization

problem of each firm. In this paper, we follow a pioneering paper of Yoshikawa (2013),

and determine the allocation of labor,

N = (N1, N2, ..., NI) ∈ RI+

by the maximum likelihood method. Here we assume that each worker is information-

constrained and does not know which is the most efficient firms. Let PN be the probability

of getting the allocation N. Yoshikawa (2013) finds that it is represented as

PN =
1

IN

N !∑I
i=1 ni!

.

Yoshikawa (2013) then uses Stirling formula

ln x! ≅ x(ln x − 1).

for large x, and he simplifies the probability as

ln PN = −
I∑

i=1

ni ln ni + constant. (4)

where ni = Ni/N . By definition, the relative labor supply satisfies
∑I

i=1 ni = 1.
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If we let k = K/N denote the capital-labor ratio, the resource constraints (2) and (3)

can be simplified as the constraints on the labor supply ni:

I∑
i=1

bini ≤ k, (5)

I∑
i=1

ni ≤ 1. (6)

The term bini represents per capita capital. We then follow Yoshikawa (2010) and suppose

that the allocation of labor maximizes the entropy

S = −
I∑

i=1

ni ln ni

subject to the constraints (5) and (6). The function −x ln x is strictly concave function

of x as long as x is less than one. The Lagrangian of the problem is

L = −
I∑

i=1

ni ln ni + λ(1 −
I∑

i=1

ni) + µ(k −
I∑

i=1

bini), (7)

where λ ≥ 0 and µ ≥ 0 are the Lagrange multipliers. As long as ni < 1, the function is

strictly concave. The FOCs on ni are given by

∂L

∂ni

= 1 + lnni + λ + µbi = 0. (8)

Therefore ni = 1/p exp(−µbi) where p = exp(1 + λ). Substituting ni = p−1 exp(−µbi)

into the Lagrangian yields

λ

[
p −

I∑
i=1

exp(−µbi)

]
= 0, (9)

µ

[
pk −

I∑
i=1

bi exp(−µbi)

]
= 0. (10)

We now obtain a condition that the two constraints are binding and the multiplies are

strictly positive. If they are, the multiplier µ solves

p =
I∑

i=1

exp(−µbi) =
1

k

I∑
i=1

bi exp(−µbi)
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Now we follow Yoshikawa (2013) and suppose that the relative productivity parameter

satisfies

bi = bi,

for some b > 0 and that I > 0 is sufficiently large. The following lemma describes the

condition that the two constraints are binding.

Lemma 1 Suppose that bi = bi. If the following inequalities hold, then (5) and (6) are

binding, and the multiplies are strictly positive.

I + 1

2
b > k, (11)√

ek

b

(
1 −

√
b

ek

)
−

(
1 −

√
b

ek

)I+1
 > 1. (12)

The two inequalities hold if k > 4b
e

and I is sufficiently large.

Proof. See the Appendix.

As ni = p−1 exp(−µbi) and p =
∑I

i=1 exp(−µbi), we have

ni =
Ni

N
=

exp(−µbi)∑I
i=1 exp(−µbi)

. (13)

This equation implies that the relative allocation of labor is inversely related to the labor

efficiency parameter bi.

3 Production function

In this section, we characterize the production function.

3.1 Per-capital production function

When we maximize the entropy subject to the resource constraint, the labor allocation

also depends on the aggregate capital and labor. Thus the total output Y =
∑

yi also
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depends on K and N . Now let us define the aggregate production function as F (K, N).

We have the following proposition on the shape of the aggregate production function.

Proposition 1 The aggregate production function has a constant returns to scale.

Proof. The function satisfies

F (K,N) = N

I∑
i=1

Aini(k),

where ni(k) solve the maximization problem above. Since k = K/N , if we let f(k) =∑I
i=1 Aini(k), F (K, N) = Nf(K/N).

If we let x = exp(−µb) ∈ (0, 1), we can express the capital-labor ratio k as an increasing

function of x:

k =
b
∑I

i=1 i exp(−µbi)∑I
i=1 exp(−µbi)

=
b
∑I

i=1 ixi∑I
i=1 xi

≅ b
1

1 − x
, (14)

or equivalently x = 1 − b/k. This equality shows that capital labor ratio must be less

than b. The aggregate production function is approximately equal to

I∑
i=1

yi = N
I∑

i=1

Aibini ≅ N
b
∑I

i=1 Aiix
i−1∑I

i=1 xi−1
. (15)

Thus the per-capita production function is

f(k) =
F (K, N)

N
=

1 − x

1 − xI

I∑
i=1

Aiix
i−1. (16)

Now suppose that I = +∞. In this case,

f(k) = (1 − x)
∞∑
i=1

aix
i−1. (17)

with ai = iAi.
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3.2 Cobb-Douglas

In this section we show that for some parameter values, the aggregate production becomes

Cobb-Douglas. Thus

f(k) =
1

k

I∑
i=1

Aii

(
1 − b

k

)i−1

(18)

It is well-known that we can expand the function (1 − x)−s as

1

(1 − x)s
=

∞∑
i=1

(
s + i − 2

i − 1

)
xi−1, (19)

where s > 0 and
(

r
k

)
= r (r−1)···(r−k+1)

k!
. Therefore if we let

Ai =
1

i

(
i − α − 1

i − 1

)
> 0,

the per-capita production function becomes the Cobb-Douglas production function.

f(k) = g(1 − x)−α = gkα, (20)

where g = b−α is a positive constant. We finally have the following proposition.

Proposition 2 If the productivity parameters are Ai = 1
i

(
i−α−1

i−1

)
and Bi = b

(
i−α−1

i−1

)
, the

aggregate production is the Cobb-Douglas type.

Proof. If bi = bi and Ai = 1
i

(
i−α−1

i−1

)
, then Bi = biAi =

(
i−α−1

i−1

)
.

Figure 1 shows the technological coefficients Ai and Bi as a function of i

3.3 CES

We next show that the aggregate production may be CES. The CES production function

is now becoming popular in dynamic macroeconomic analysis. 3 First note that for any

3Several papers including Krump et al. (2011) empirically show the advantage of CES production

function over the Cobb-Douglas type. Klump and La Grandville (2000) show how to calibrate the

coefficient of the production function.
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Figure 1: production coefficients

x ∈ (0, 1),

1 + x

1 − x
= 1 + 2x + 2x2 + .....

Therefore if we set ai = 1/i, then

f(k) = b(1 − x)
1 + x

1 − x
= b(1 + x) = b

(
1 − b

2k

)
.

Then the aggregate production function is

F (K, N) =

(
a

K
+

b

N

)−1

.

Thus the production function is of the CES type A(K−σ + L−σ)1/σ where the parameter

σ is equal to one. We finally have the following proposition.

Proposition 3 If the technological coefficients are ai = 1/i and bi = bi, the aggregate

production is the CES type.

3.4 Non-concave production function

So far we have focused on the Cobb-Douglas type production function. In this section,

we show that for some parameter values, the aggregate production function can exhibit
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Figure 2: Convex-concave production function

increasing returns to scale.

First of all, if we suppose that the efficiency coefficient is defined as

Ai = (i − 1)(i − 2) · · · (i − M),

where M > 3, then

∞∑
i=1

Aix
i−1 =

∞∑
i=1

i(i − 1)(i − 2)xi−1 =
dM

(dx)M

[ ∞∑
i=1

xi

]
= κ

1

(1 − x)M

where κ is a positive constant. Thus the per-capital production function is determined by

f(k) = (1 − x)
∞∑
i=1

Aix
i−1 = AkM .

This implies that the production function exhibits increasing returns to scale.

Next we show that the model may imply the concave-convex production function.

Such a production function is studied by Skiba (1978), Majumdar and Mitra (1982) and

Dockner and Nishimura (2005). However, they do not provide a microfoundation for the

non-concave production function.

Proposition 4 For some parameter values, the production function is convex-concave.
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Proof. See the Appendix.

The figure shows the case of concave-convex production function in the case where

a1 = 1, a2 = 1.1, a3 = 0 and a4 = 100

4 Conclusion

In this paper, we provide a microfoundation for the production function by using the

concept of stochastic macro-equilibrium. We consider an economy with multiple firms,

and each firm has Leontief technology. Instead of utility maximization, the allocations

of labor and capital are determined by entropy maximization. We show that for some

productivity distribution, the aggregate production becomes Cobb-Douglas type.
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Appendix

The Appendix provides a proof of Lemmas and Propositions.

A Proof of Lemma 1

We show that when we ignore either one of two inequalities and maximizes the entropy,

the solution does not satisfy the remaining constraint.

First, if we ignore (6), then the solution satisfies ni = exp(−1 − µbi). If we let

x = exp(−µb), we have

ni =
xi

e
.

As the resource constraint is binding,
∑I

i=1 bini = k and we have

∞∑
i=1

bini =
b

e

∞∑
i=1

ixi =
b

e

x

(1 − x)2
= k

As x < 1, this implies

1

(1 − x)2
>

x

(1 − x)2
=

ek

b

Or equivalently x > 1 −
√

b
ek

. We have

I∑
i=1

ni =
1

e

I∑
i=1

xi =
x − xI+1

1 − x
>

√
ek

b
{(1 −

√
b

ek
) − (1 −

√
b

ek
)I+1}.

Thus if (12) holds, the first inequality does not hold.

Second, if we ignore the second inequality, then the solution is ni = 1/I. Thus if (11)

holds,

1

I

I∑
i=1

bi > k,

and then (5) does not hold. If this holds, we cannot ignore (5) when we maximize S.

First, if I is sufficiently large, (11) holds. Next, if k > 4b
e
,√

ek

b
(1 −

√
b

ek
) =

√
ek

b
− 1 > 1.

Thus for sufficiently large I, both two inequalities holds.
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B Proof of proposition 2

Assume that a1 = 1, a2 = 2, a3 = 5 and ai = 0 for i > 4. In this case,

f(k) = (1 − x)(1 + 2x + 5x2) ≡ g(x)

with x = 1 − 1/k. We have

f ′(k) =
dx

dk
g′(x) = (1 − x)2(3 + 10x − 5x2) ≡ ĝ(x)

We now show that f ′′(k) > 0 if k is around 1. It is sufficient to show that ĝ(x) is increasing

function of x when x = 1. One can easily show that ĝ(x) is a strictly increasing function

of x and is also k when k = 1. This implies f ′′(1) > 0. and for some x̄ > 1, ĝ(x̄) = 0.

This implies f ′(k̄) = 0. Thus as long as k ∈ (1, k̄), then the production function is

convex-concave.
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