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1 Introduction

How much flexibility should society allow a central bank in its conduct of monetary policy?

At the center of the case for flexibility is the argument that central bankers have private

information (Canzoneri, 1985), perhaps about the economy’s state or structure, or perhaps

about the distributional costs of inflation arising through heterogeneous preferences (Sleet,

2004). If central banks have flexibility over policy decisions, then this gives them the ability to

use for the public’s benefit any private information that they have. However, if central banks

face a time-inconsistency problem (Kydland and Prescott, 1977), then it may be beneficial to

limit their flexibility. Institutionally, many countries have balanced these competing concerns

by delegating monetary policy to an independent central bank that is required to keep inflation

outcomes low and stable, often within a stipulated range, but that is otherwise given the freedom

to conduct policy without interference. Inflation targeting is often characterized as “constrained

discretion” (Bernanke and Mishkin, 1997) precisely because it endeavors to combine flexibility

with rule-like behavior.

This paper examines the optimal degree of discretion in a monetary-policy delegation prob-

lem when the central bank has private information on the state of the economy and is unable

to commit. We take the legislative approach of Canzoneri (1985) and Athey, Atkeson, and

Kehoe (2005) (AAK, hereafter). Specifically, society imposes restrictions on the central bank’s

actions, and the benevolent central bank conducts policy subject to these restrictions and to

a Phillips curve. Society cannot achieve the first-best because of the central bank’s private

information, but some restrictions on the central bank can ameliorate its inability to commit

and are therefore beneficial. We solve a dynamic mechanism design problem to examine how

much discretion society should grant to the central bank and to reveal the form of the optimal

constrained discretion policy.

Unlike in AAK, we find that the optimal mechanism is history-dependent. A key aspect

of our analysis is that inflation outcomes are governed by a forward-looking New Keynesian

Phillips curve. This Phillips curve relates inflation outcomes to the output gap and to expected

future inflation and allows policy-makers to deliver better outcomes today by tailoring future

policy according to the current state of the economy, thereby giving a crucial role to policy

promises. We show that the optimal direct mechanism can be expressed as a function of last
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period’s promised inflation and of the central bank’s current private information (its type).

For each value of last period’s promised inflation, the optimal mechanism has the interpre-

tation of an “interval delegation,” where society specifies an interval for permissible inflation

and the central bank chooses from that interval. In general this interval does not serve as

a binding constraint for some types, and we interpret that these types have discretion. Im-

portantly, this interval, and hence the number of types that have discretion, varies with last

period’s promised inflation so that the central bank is incentivized to deliver inflation that is,

on average, consistent with last period’s promised inflation. There are, as a result, only three

types of discretionary outcomes — no discretion when this interval constrains all types, full

discretion when the interval does not constrain any type, and bounded discretion when the

interval constrains only a subset of types.

How does the optimal degree of discretion vary with last period’s promised inflation? There

is one value of promised inflation at which full discretion is granted, and social welfare is

maximized at that value. The further last period’s inflation promise departs from this value,

the less degree of discretion is granted, and in extreme cases no discretion is granted. This

pattern is naturally explained by the severity of the time-inconsistency problem. For the central

bank the gain from reneging on last period’s inflation promise crucially depends on the value of

promised inflation. At the welfare-maximizing value of promised inflation, promised inflation is

delivered even if society lets the central bank conduct policy without restriction, and granting

full-discretion is optimal. The gain from reneging increases as promised inflation departs from

its welfare-maximizing value, making the time-inconsistency problem more severe, and society

must impose tighter restrictions on the central bank’s actions in order to deliver the promised

inflation, reducing the central bank’s degree of discretion.

The optimal mechanism also exhibits an interesting, limited form of history-dependence

— history as encoded in the state variable is disregarded for types that have discretion. We

find that for each type of the central bank there is an interval of inflation promise in which

that type has discretion. In such an interval, inflation, the output gap, and the continuation

mechanism depend on the history only through the current value of private information, and

the history-dependence is disposed of. This property resembles the “amnesia” property that

Kocherlakota (1996) finds in a full-information limited-commitment model of risk-sharing.
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How can we implement the second-best with a non-direct mechanism? We propose a history-

dependent inflation targeting scheme which stipulates a band of permissible inflation that varies

with inflation promise announced by the central bank last period. This scheme allows the central

bank to constrain its future-self through its choice of inflation promise, mitigating the time-

inconsistency problem. We show that when designed appropriately this scheme implements the

outcome of the optimal direct mechanism. Importantly, unlike in AAK, there are situations in

which a lower limit of inflation imposes a binding constraint on the central bank’s choice.

Finally, we examine how the optimal degree of discretion changes over time, using a numer-

ical example. We find that some discretion are always granted in the ergodic set of inflation

promise. This implies that, even if we impose a hypothetical initial inflation promise made in

period −1, no-discretion is at most a short-run, transient phenomenon, and some discretion are

eventually granted. Interestingly, no discretion is given only when the initial inflation promise is

sufficiently far from the value that maximizes social welfare. The ergodic set contains the peak

of the social welfare function, from which the fully optimal mechanism starts off. Therefore,

some discretion is always granted in the fully optimal mechanism.

The remainder of this paper is organized as follows. Section 2 reviews related literatures.

Section 3 describes the set-up and illustrates how private information enters the model. Sec-

tion 4 formulates an optimal (direct) mechanism design problem, along with two benchmark

policies, the full-information policy and the optimal discretionary policy, that serve as coun-

terpoints to the optimal private-information policy. In Section 5 we discuss theoretical results.

Section 6 presents the numerical results that emerge from the benchmark policies and from the

private-information policy. Section 7 offers concluding comments. Appendices contain technical

material, including proofs of theoretical results and complete descriptions of how the various

solutions were computed.

2 Related literature

We build on the literature of monetary policy with private information, which includes Can-

zoneri (1985), Sleet (2001), and AAK. Like ourselves, they study models in which the central

bank receives a private signal about the state of the economy and conducts policy subject to a

Phillips curve. Their settings are distinct from ours in that they use a static Phillips curve, con-
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taining contemporaneous rather than forward-looking inflation expectation, which severs the

connection between time-inconsistency and history dependence.1 By using a forward-looking

Phillips curve we show that the optimal degree of discretion should vary over time in a history-

dependent manner.

Our work is also related to the vast literature on policy making in New Keynesian models

with symmetric information (Woodford, 2003; Gaĺı, 2008). This literature has generally focused

on settings in which the society cannot directly constrain the central bank’s action set and in

which granting some discretion to the central bank is simply suboptimal.2 Our paper differs

from this literature in that it introduces private information on the side of the central bank and

uses the legislative approach to examine the optimal balance between rules and discretion. By

focusing on constrained discretion, our work is related to the literature on inflation targeting,

as summarized in, for example, Bernanke, Laubach, Mishkin, and Posen (2001).

Finally, our paper is related to the literatures on optimal delegation and dynamic contract-

ing. While static problems are typically considered in the optimal-delegation literature, our

problem is dynamic and we show how the optimality of interval delegation generalizes to dy-

namic settings.3 Using an approach akin to Athey, Bagwell, and Sanchirico’s (2004), we show

that our problem can be formulated recursively as a function-valued dynamic programming

problem in which last period’s inflation promise serves as the state variable. This formulation

not only enables us to characterize theoretically the optimal mechanism, but also reduces sig-

nificantly the computational burden, compared to a set-valued dynamic programming approach

(Abreu, Pearce, and Stacchetti, 1990), which is common in the dynamic contracting literature.4

1Canzoneri (1985) analyzes the effects of several specific rules that are incentive-compatible but not nec-
essarily optimal. Sleet (2001) considers an optimal incentive-compatible mechanism in a full-fledged general
equilibrium model with two types, and AAK does the same in a reduced-form model with a continuum of types.

2In Kurozumi (2008), private agents behave strategically, and they may be able to deter the central bank
from taking undesirable actions on the equilibrium path. In some studies it is assumed that society can assign
a loss function to a central bank and that the central bank is required to minimize it (e.g. Jensen (2002)).
Neither approach allows society to remove certain actions from the central bank’s choice set.

3For static delegation problems, Holmström (1984), Alonso and Matouschek (2008), and Amador and Bagwell
(2013) give some sufficient conditions for interval delegation to be optimal. Atkeson (1991), Sleet (2004), and
Amador, Werning, and Angeletos (2006) essentially consider dynamic delegation problems. Athey, Atkeson,
and Kehoe (2005) consider a repeated delegation problem, but, as the optimal mechanism is shown to be static,
their problem in the end reduces to a static delegation problem.

4A similar result is obtained in Atkeson (1991) in a hidden action model of an optimal international lending,
and in Sleet (2004) in a two-type hidden information model of optimal taxation. We consider a monetary policy
model with hidden information and a continuum of types. A common feature of Atkeson (1991), Sleet (2004),
and this paper is the assumption that the objectives of the mechanism designer and the agent coincide, which
is not very common in the literature of dynamic contract.
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3 The set-up

Our set-up is similar to the canonical setting that is used in the New Keynesian policy literature

to analyze the optimal policy without commitment (see e.g. Woodford, 2003). We consider an

infinite horizon economy that has a central bank and the private sector. Time is discrete and

goes from t = 0 to infinity. Each period, the central bank conducts monetary policy subject

to the New Keynesian Phillips curve, but because it is unable to commit to its future actions

it takes the private sector’s inflation expectation as given. However, there are two important

differences. First, in our set-up the central bank privately observes shocks that hit the economy

every period, and, for this reason, we incorporate a communication stage wherein the central

bank sends a message to society. Second, society can, each period, limit the central bank’s

action by specifying the set of acceptable actions from which the central bank must choose.

Policy is conducted each period, and at the beginning of each period, society specifies a

compact set of acceptable pairs of inflation and the output gap from which the central bank

must choose. We call this set a delegation set and denote it by D. A delegation set D must be

a subset of Π × X ⊂ R2, where Π := [π, π] and X = [x, x] are (large) compact intervals in R

that contain all the available inflation and the output gap choices, respectively. Essentially a

delegation set is a menu of alternatives that society offers to the central bank, and it determines

the central bank’s degree of flexibility: the set D may consist of only one option, forcing the

central bank to choose that action, or it may contain a number of options, giving the central

bank some flexibility over its action.

After receiving D, the central bank privately observes the state of the economy, θ, which is

drawn from a compact interval Θ := [θ, θ] ⊂ R, according to an i.i.d. density p. The density is

strictly positive everywhere, i.e. p(θ) > 0 for all θ ∈ Θ, and its cumulative distribution function

is denoted by P . Society and the private sector never observes the state, θ.

After the central bank observes θ, public communication takes place. Specifically, the central

bank sends a message m ∈ M , where M is a message space, to society, which is observed also

by the private sector. The private sector then forms its one-period-ahead inflation expectation,

πe ∈ Π. It is crucial that this is expected, next period’s inflation. We assume that the private

sector does not act strategically, and that its sole objective is to form rational expectation

regarding next period’s inflation.
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Once πe is formed, the central bank chooses inflation, π, and the output gap, x, from D,

taking πe as given. Both π and x are publicly observable, and the central bank must choose

them so that they satisfy the New Keynesian Phillips curve (NKPC):

π = κx+ βπe, (1)

where κ > 0 and β ∈ (0, 1) are parameters that do not vary over time or with the state, θ.5

Given a delegation set D and an inflation expectation, πe, the state does not affect the central

bank’s set of feasible actions. Equation (1) is a standard log-linear NKPC without a cost-push

shock, and is forward-looking in that it involves expected future inflation.6 We assume that X

contains both (π − βπ)/κ and (π − βπ)/κ.

Social welfare is time-separable with the discount factor β. The momentary social welfare

function, R(π, x, θ), depends on inflation, the output gap, and the state of the economy.7 The

central bank is benevolent and R(π, x, θ) also equals its momentary payoff. The return function,

R, is continuous in (π, x, θ), and is strictly concave in (π, x). We allow R to depend on θ to

reflect the time-varying welfare costs of inflation and the output gap, a dependence that can

arise, for example, if the re-distributional effects of inflation are time varying.8 An example of

R is the following quadratic specification:

R(π, x, θ) = −1

2
(π − θ)2 − 1

2
bx2, b > 0, (2)

where θ represents the inflation rate that minimizes the welfare loss from inflation.

We assume that, although the central bank is unable to commit, society is able to com-

5We follow a standard practice in the New Keynesian policy literature when assuming that the central bank
directly chooses inflation and the output gap subject to NKPC (see e.g. Gali, 2008). This assumption is based
on the idea that the central bank can only implement policies that are consistent with private-sector incentives.
The NKPC constrains the central bank because the central bank has a first-mover advantage relative to the
private sector within the period.

6The NKPC constitutes an equilibrium condition in many New Keynesian models, and it can be derived
from various costly price adjustment models, including time-dependent pricing specifications, such as Calvo-style
pricing (Calvo, 1983) and quadratic price adjustment costs (Rotemberg, 1982), as well as some state-dependent
pricing specifications, such as Gertler and Leahy (2008).

7This is not inconsistent with the unobservability of θ. We can interpret θ as a private signal for an observable
shock, s, and R(π, x, θ) as the expected social welfare conditional on θ, E[r(π, x, s)|θ], where r(π, x, s) is realized
social welfare. As long as the conditional distribution of s given θ has full support, true value of θ is never
revealed even if s or r(π, x, s) is observable.

8AAK make the same assumption and interpret it as follows: “[i]ndividual agents in the economy have either
heterogeneous preferences or heterogeneous information regarding the optimal inflation rate, and the monetary
authority sees an aggregate of that information that the private agents do not see.”
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mit. Due to its inability to commit, the central bank is unable to manage the private sector’s

inflation expectation by committing to a certain inflation choice in the next period. Society

can improve welfare, because the way it sets a future delegation set affects the future central

bank’s inflation choice, thereby influencing the private sector’s inflation expectation. However,

an overly restrictive delegation set can prevent the central bank from utilizing its private in-

formation and may be undesirable. The question we ask can be framed as, how should society

design delegation sets in order to maximize social welfare?

3.1 Discussion

Our set-up shares much in common with AAK. The distinct feature of our set-up is the forward-

looking NKPC. In contrast, AAK’s benchmark example assumes a static Phillips curve,

πt = πet − (ut − un), (3)

where u is the unemployment rate, πe is expected contemporaneous inflation, rather than

expected future inflation, and un is the natural rate of unemployment. Equation (3) implies that

the set of pairs of inflation and the output gap that the central bank can choose is independent

of future policy. We view the forward-looking Phillips curve in equation (1) as more relevant,

because it is a center-piece of many New Keynesian models and is widely used in central banks.

Moreover, it captures an important channel for policy, allowing central banks to use forward-

guidance to manage inflation expectations. In addition, the forward-looking NKPC curve gives

rise to a “stabilization bias” (see e.g. Svensson, 1997), which differs from the “inflation bias”

(Barro and Gordon, 1983), present in AAK and Sleet (2001). Our set-up enables us to examine

what implications this difference has on policy.

As is usual in the delegation literature, the central bank is not allowed to choose inflation

and the output gap that are not contained in the delegation set, D. We have to assume this,

because the principal (society) cannot directly influence social welfare and it lacks a tool to

punish such observable deviations. An alternative approach could be to have the private sector

set inflation strategically (while the central bank sets only the output gap), and to consider

the best sustainable equilibrium in that game, as Kurozumi (2008) does in a full information

setting. Our set-up provides a useful benchmark for analyses of that kind.
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4 Optimal mechanism design problem

In light of the Revelation Principle, we consider a direct revelation game in which the message

space M equals Θ and the central bank reports its private information each period. We focus on

public strategies that depend on history only through the central bank’s report history. Because

society is able to commit, society’s problem is to choose its strategy so that the best equilibrium

given that strategy yields the highest (period-0) social welfare. We formulate this problem as

a dynamic mechanism design problem in which society specifies a direct mechanism, instead

of delegation sets, that maps a history of reports into inflation, the output gap, and inflation

expectation. Although this potentially expands society’s set of tools, we later show that society

can implement the optimal direct mechanism through appropriately specified delegation sets.

A mechanism is a sequence of measurable functions {(πt, xt, πet )}∞t=0 such that, for all t,

(πt, xt, π
e
t ) : Θt+1 → Π×X×Π are functions of report history. Society must choose a mechanism

that satisfies the NKPC and is consistent with rational expectations: for all t and report history

θt := (θ0, θ1, ..., θt) ∈ Θt+1,

πt(θ
t) = κxt(θ

t) + βπet (θ
t), (4)

and

πet (θ
t) =

ˆ
Θ

πt+1(θt, θt+1)p(θt+1)dθt+1. (5)

For simplicity, we refer to equations (4) and (5) as the feasibility constraint.

The central bank chooses how to report its type over time. A reporting strategy is a sequence

of measurable functions σ := {σt}∞t=0 with σt : Θt+1 → Θ for all t. The truth-telling strategy is

a reporting strategy with σt(θ
t) = θt for all t and θt. A mechanism {(πt, xt, πet )}∞t=0 is said to

be incentive-compatible if and only if, for any report history θt−1, for any current type θt and

for any reporting strategy σ,

R
(
πt(θ

t−1, θt), xt(θ
t−1, θt), θt

)
+ β

∞∑
s=t+1

ˆ
Θs−t

βs−t−1R(πs(θ
t−1, θst ), xs(θ

t−1, θst ), θs)µ
s−t(dθst+1)

≥ R
(
πt(θ

t−1, σ0(θt)), xt(θ
t−1, σ0(θt)), θt

)
+β

∞∑
s=t+1

ˆ
Θs−t

βs−t−1R
(
πs(θ

t−1, σs−t(θst )), xs(θ
t−1, σs−t(θst )), θs

)
µs−t(dθst+1), (6)

where, for s ≥ t+ 1, θst+1 := (θt+1, θt+2, ..., θs) ∈ Θs−t is a history of states from t+ 1 to s, µs−t
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is the product measure that is consistent with density p, and σs−t(θst ) is the report history from

period t to period s when the central bank uses the reporting strategy σ from period t onward.9

The set of these inequalities is referred to as the incentive-compatibility constraint. In words,

a mechanism is incentive-compatible if and only if, after any report history, the central bank

finds it optimal to follow the truth-telling strategy.

Society’s objective is to maximize social welfare. The (time-0) social welfare from a mech-

anism {(πt, xt, πet )}∞t=0 is the expected discounted sum of future returns:

∞∑
t=0

ˆ
Θt+1

βtR(πt(θ
t), xt(θ

t), θt)µ
t(dθt), (7)

where, for each t, µt is the product measure that is consistent with the density p.

It is worth noting that, because πt+1(θt, θt+1) is weighted by p(θt+1) in equation (5), rational

expectation is required to hold only when the central bank tells the truth in period t+ 1. The

fact that its deviation from truth-telling in period t+1 may, ex-post, violate the period-t rational

expectation condition captures our assumption that the central bank is unable to commit.

The problem we consider is to choose a mechanism {(πt, xt, πet )}∞t=0 to maximize social

welfare (equation (7)) subject to the feasibility constraint (equations (4) and (5)), and the

incentive-compatibility constraint (equation (6)).10

4.1 Two benchmarks

We compare the solution to the problem where θ is private to two benchmark alternatives.

The first alternative is the full-information solution the second alternative is the “optimal

discretionary policy”. For more detail see Clarida, Gali and Gertler (1999) or Woodford (2003).

4.1.1 Full-information solution

The full-information problem is to choose a mechanism {(πt, xt, πet )}∞t=0 to maximize social

welfare (equation (7)) subject to the feasibility constraint (equations (4) and (5)). The solution

9This history is recursively defined: σ0(θtt) := σ0(θt), and σs−t(θst ) =
(
σs−1−t(θs−1t ), σs−t(σ

s−1−t(θs−1t ), θs)
)

for any s ≥ t+ 1.
10Because the central bank at time 0 before observing θ0 has the same preference as society, we may inter-

pret society as the time-0 central bank. Then the mechanism design problem here can be interpreted as the
central bank’s optimal commitment problem without self-control in Amador, Werning, and Angeletos (2006).
In Amador, Werning, and Angeletos (2006) decision maker’s preference itself is time-inconsistent, while in our
problem time-inconsistency arises from the New Keynesian Phillips curve.
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corresponds to the optimal policy under commitment in the New Keynesian policy literature.

4.1.2 Optimal discretionary policy

The optimal discretionary policy concerns a situation in which society does not impose any

restrictions on the central bank’s choice, i.e. D = Π×X. Following the New Keynesian policy

literature, we focus on a Markov perfect equilibrium. A Markov perfect equilibrium under “no

restriction” consists of (i) the policy function, (πMP , xMP ) : Θ → Π × X, (ii) the inflation

expectation, πe,MP ∈ Π, and (iii) the value, WMP ∈ R, such that

1. For all θ ∈ Θ,

(πMP (θ), xMP (θ)) ∈ arg max
π,x

R(π, x, θ) + βWMP

subject to π = κx+ βπe,MP ,

2. πe,MP =
´
πMP (θ)p(θ)dθ, and

3. WMP = (1− β)−1
´
R(πMP (θ), xMP (θ), θ)p(θ)dθ.

The best Markov perfect equilibrium is referred to as the optimal discretionary policy.11

4.2 Recursive formulation

The optimal mechanism design problem and the full-information problem have at least one

forward-looking constraint. We rewrite these constraints to obtain recursive formulations.

4.2.1 Feasibility

First, we argue that the feasibility constraint (equations (4) and (5)) implies that last period’s

inflation expectation serves as a state variable. Observe that, by treating (xt, πt, π
e
t ) as choice

variables in period t, equation (4) amounts to a static constraint in period t. In period t + 1,

the previously chosen πet imposes a constraint, reflected in equation (5), on the current choice

for inflation, πt+1, i.e. πet is a state variable in period t+1. To put it differently, in every period,

the mechanism promises an expected level of inflation in the next period, while delivering (on

average) the inflation promised in the previous period. We therefore refer to πe as inflation

11When R takes the quadratic form in equation (2), a Markov perfect equilibrium is unique.
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promise. The full-information problem also has this constraint, and thus it too has a recursive

formulation in which last period’s inflation promise serves as a state variable.12

4.2.2 Incentive compatibility

Second, the incentive compatibility constraint (6) can be written recursively, by adding the

agent’s continuation, or promised, utility as a choice variable (e.g. ). Let

U =
[´

Θ
{minx,π R(π, x, θ)}p(θ)dθ

1− β
,

´
Θ
{maxx,π R(π, x, θ)}p(θ)dθ

1− β
]
,

then the expected discounted value of future returns always lies in this compact interval. As is

standard in the dynamic contracting literature (e.g. Green, 1987; Thomas and Worrall, 1990),

it can be shown that a mechanism {(xt, πt, πet )}∞t=0 is incentive compatible if and only if

1. There exists a sequence of measurable functions {Wt}∞t=−1 with Wt : Θt → U for all

t ≥ −1, such that for all t ≥ 0 and θt,

Wt−1(θt−1) =

ˆ
Θ

[
R(πt(θ

t), xt(θ
t), θt) + βWt

(
θt
)]
p(θt)dθt. (8)

2. For all t, θt−1, θt, and θ′ 6= θt,

R(πt(θ
t), xt(θ

t), θt) + βWt(θ
t) ≥ R(πt(θ

t−1, θ′), xt(θ
t−1, θ′), θt) + βWt(θ

t−1, θ′). (9)

4.2.3 Interim problem

The mechanism design problem is then equivalent to the problem of choosing W−1 and the

sequence of measurable functions {(xt, πt, πet ,Wt)}∞t=0 to maximize social welfare (equation (7))

subject to constraints (4), (5), (8), and (9). However, because period-0 inflation choice is not

subject to a constraint like (5), there is asymmetry between period 0 and all other periods, and

the problem is not fully recursive.

12In the literature of optimal monetary policy in New Keynesian models with symmetric information, it is a
common practice to set up a linear-quadratic regulator problem and solve a sequence problem by Lagrangian
method. We relate this approach to ours in Appendix B, using the quadratic social welfare function in (2).
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We therefore consider the interim problem with the following auxiliary initial condition:

πe−1 =

ˆ
Θ

π0(θ)p(θ), (10)

where πe−1 is a given number in Π and represents the inflation promise made in period −1. The

interim problem has, as shown in the next section, a recursive formulation and therefore enables

us to obtain a clear characterization of its solution. We refer to a solution to the interim problem

as an optimal interim mechanism, or, when not confusing, simply as an optimal mechanism,

because a solution to the original problem is obtained from an optimal interim mechanism by

choosing the best initial condition πe−1. For any πe−1 ∈ Π, we say that {(xt, πt, πet ,Wt)}∞t=0 is

feasible from πe−1 if and only if it satisfies equations (4), (5), and (10), and that it is incentive-

feasible from πe−1 if and only if it is feasible from πe−1 and satisfies equations (8) and (9).13

5 Theoretical results

In this section, we first establish that, under certain conditions, a solution to the interim

problem can be obtained by solving a function-valued dynamic programming problem with

promised inflation as the state variable. Then we characterize its properties. Depending on

last period’s promised inflation, the optimal degree of discretion is shown to take one of three

forms: full-discretion, no-discretion, or bounded-discretion. It is also shown that the optimal

mechanism features amnesia — history is forgotten for types that have discretion. Finally, we

propose an inflation targeting rule that achieves the same outcome as the optimal mechanism.

5.1 Dynamic Programming

To facilitate characterization, we follow AAK and restrict our attention to allocations that

satisfy the following:

Assumption 1 For all t and θt−1, πt(θ
t−1, .) : Θ→ Π is a piecewise C1 function.

13For any πe
−1 ∈ Π, it is straightforward to prove that the constraint set is non-empty. For a given πe

−1 ∈ Π,
consider a mechanism such that πt(θ

t) = πe
−1 and xt(θ

t) = (1 − β)πe
−1/κ for all t and θt. These functions are

clearly measurable and satisfy the auxiliary initial condition. As we assume that X is an interval that contains
both (π − βπ)/κ and (π − βπ)/κ, this allocation satisfies the NKPC after any history. Since this allocation is
independent of history, it is incentive-compatible.
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Let Ω be the set of (πe−1,W−1)’s such that there exists a sequence of measurable functions

{(xt, πt, πet ,Wt)}∞t=0 that satisfies Assumption 1 and equations (4), (5), (8), (9), and (10). Be-

cause the interim problem has a non-empty constraint set for all πe−1 ∈ Π, the projection of Ω

into Π is simply Π. For all πe− ∈ Π, the maximized social welfare given πe− is given by

W (πe−) = sup
W− s.t. (πe

−,W−)∈Ω

W−, (11)

which implies that if we obtain Ω, we also obtain the maximized social welfare.

This set Ω is, however, difficult to characterize in our setting. In settings with discrete types

or discrete action spaces, Ω can be characterized as the largest fixed point of some set operator

à la Abreu, Pearce, and Stacchetti (1990). In our set-up, there are a continuum of types and

continuous action spaces, and the measurability restriction is difficult to impose in the APS

type set operator. We instead use an approach akin to that in Athey, Bagwell, and Sanchirico

(2004) to characterize directly the function W , rather than the whole set Ω.

To characterize W , we first consider the factored problem: for each πe− ∈ Π,

V (πe−) = sup
π,x,πe,W

ˆ
Θ

{R(π(θ), x(θ), θ) + βW (θ)} p(θ)dθ, (12)

subject to

πe− =

ˆ θ

θ

π(θ)p(θ)dθ, (13)

π(θ) = κx(θ) + βπe(θ),∀θ, (14)

R(π(θ), x(θ), θ) + βW (θ) ≥ R(π(θ′), x(θ′), θ) + βW (θ′),∀θ, θ′ 6= θ, (15)

π is a piecewise C1 function, (16)

(πe(θ),W (θ)) ∈ Ω,∀θ, (17)

and (π, x, πe,W ) are measurable. It follows that V ≥ W . They may not be identical because

the factored problem relaxes the measurability restriction.

To show that V = W , we formulate a relaxed problem by replacing equation (17) with the

weaker constraint

∀θ, πe(θ) ∈ Π and W (θ) ≤ W (πe(θ)).
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In words, society can set the continuation utility to any level that is lower than W . It is

convenient to define a Bellman operator associated with this relaxed problem. Let B(Π) be

the space of bounded functions on Π. Then (B(Π), ||.||) where ||.|| is the sup norm is a Banach

space. Define a Bellman operator T : B(Π) → B(Π) as follows: for all F ∈ B(Π), for all

πe− ∈ Π,

TF (πe−) = sup
π(.),x(.),πe(.),W (.)

ˆ θ

θ

{
R(π(θ), x(θ), θ) + βW (θ)

}
p(θ)dθ, (18)

subject to constraints (13), (14), (15), (16), and

∀θ, πe(θ) ∈ Π and W (θ) ≤ F (πe(θ)). (19)

For any F ∈ B(Π) and πe− ∈ Π, we refer to the maximization problem in equation (18) as

the TF (πe−)-problem. The value of this relaxed problem is given by TW , and, because we are

considering a relaxed problem, it follows that TW ≥ V . This implies TW ≥ W .

Proposition 1 T is a β-contraction mapping.

Proof. Blackwell’s sufficient condition is satisfied. (See e.g. Stokey et al., 1989.)

Let W̃ be the fixed point of T. Because T is monotone, it follows that W̃ ≥ TW ≥ V ≥ W .

Therefore, W̃ = W = V is implied if it can be established that W ≥ W̃ . To show this in-

equality, we show that, under certain assumptions, there is a quadruple of measurable functions

(π∗, x∗, π
e
∗,W∗) of (θ, πe−) such that, at each πe−, (π∗(., π

e
−), x∗(., π

e
−), πe∗(., π

e
−),W∗(., π

e
−)) attains

the maximum of the TW̃ (πe−)-problem, and that W∗(., π
e
−) = W̃ (πe∗(., π

e
−)). By iterating for-

ward, such a quadruple generates for each πe− ∈ Π a mechanism that is incentive-feasible from

πe−.14 This implies W ≥ W̃ .

Several assumptions are now in order. First we make the following assumptions on the

return function, R, and the density function, p.

Assumption 2

R(π, x, θ) = A(π) +B(x) + π × θ

where A and B are strictly concave C2 functions. The first derivative of A, A′(π), goes to ∞

(−∞) as π → −∞ (∞, respectively). Also A′′(π) ≤ A
′′
< 0 and B′′(x) ≤ B

′′
< 0 for some

14See Chapter 9 in Stokey et al. (1989).
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constant A
′′

and B
′′
.15

Assumption 3 (i) (1 − P (θ))/p(θ) is strictly decreasing and P (θ)/p(θ) is strictly increasing

in θ. (ii) The density function p is continuous and strictly positive for all θ ∈ [θ, θ].

Under Assumption 2, social welfare is separable in x and (π, θ), and the private information

governs the marginal social cost of inflation: the higher is θ, the lower is the marginal social

cost of inflation. The quadratic specification in equation (2) satisfies Assumption 2, and is used

later in our numerical experiments. Assumption 3 is the monotone hazard condition.

Now we show that the Bellman operator T preserves certain properties of a function, and

that if F has these properties the equation (19) is always satisfied with equality. Let V(Π) be

the set of strictly concave C1 functions on a compact subinterval Π ⊂ Π whose first derivative

is C1 except on a finite set of points and both the right- and the left-derivatives of the first

derivative exist everywhere, including −∞. We make two additional assumptions:

Assumption 4 There is a compact interval, Π ⊂ Π, such that, for any F ∈ V(Π) and any

πe− ∈ Π, a solution to the TF (πe−)-problem satisfies (π(θ), x(θ), πe(θ)) ∈ int(Π)×int(X)×int(Π)

for all θ.

Assumption 5 For all πe− ∈ Π, a maximum is attained in the TF (πe−)-problem when F ∈

V(Π).

The following proposition shows that T maps V(Π) into itself, and that the equation (19) is

always satisfied with equality in the TF (πe−)-problem for all πe− ∈ Π when F ∈ V(Π).

Proposition 2 Suppose F ∈ V(Π). Then under Assumptions 2, 3, 4, and 5, (i) TF ∈ V,

(ii) there is a quadruple of continuous functions (π, x, πe,W ) : Θ × Π → Π × X × Π × U

such that, for each πe− ∈ Π, (π(., πe−), x(., πe−), πe(., πe−),W (., πe−)) attains the maximum for the

TF (πe−)-problem, that (iii) π(., πe−) is piecewise C1 for each πe− ∈ Π, and that (iv) W (θ, πe−) =

F (πe(θ, πe−)) for all (θ, πe−).

15We could include an additively separable term d(θ) that is non-linear in θ, but we set d(θ) = 0 without loss
of generality. The assumption that the term πθ has a positive unit coefficient is not restrictive, as one can scale
up or down θ when the coefficient is not one, and can re-define −θ as the type when the coefficient is negative.
This form also allows us to normalize E[θ] = 0 without loss of generality.
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The proof is in Appendix A. Proposition 2 implies that the fixed point W̃ is a continuous,

weakly concave function, but it is not guaranteed to be in V(Π). To characterize the solution

further, we assume:

Assumption 6 W̃ ∈ V(Π).

Under Assumption 6, we can apply Proposition 2 to F = W̃ , and it follows that V = W = W̃ .16

5.2 Optimal degree of discretion

The previous results allow us to characterize the optimal degree of discretion using the policy

functions (π∗, x∗, π
e
∗,W∗), which solve the TW̃ -problem. To quantify the degree of discretion,

we consider the inflation that the central bank would choose if it were given a certain form of

policy-flexibility, and compare it to the inflation prescribed by the optimal mechanism. This

approach is analogous to AAK: they define the “static best response” of the central bank — the

inflation choice that maximizes the momentary social welfare for a given inflation expectation

— and compare it to the optimal mechanism. In our setting, expected inflation may vary with

the central bank’s message, implying that the optimal mechanism is dynamic, and that the

static best response doesn’t provide a useful benchmark for comparison. Instead we introduce

the notion of the “one-shot discretionary best response.”

Imagine that the central bank is allowed to choose any (π, x, πe) for one period, subject only

to the NKPC and, in particular, not subject to the constraint πe− = Eπ, but faces the optimal

mechanism in all subsequent periods. The one-shot discretionary best response is the optimal

inflation that would be chosen by the central bank in this hypothetical situation.

Definition 1 The one-shot discretionary best response is a function πD : Θ→ Π that, for each

θ, solves

max
π

{
A(π) + θπ + max

(x,πe):π=κx+βπe

{
B(x) + βW̃ (πe)

}}
. (20)

The one-shot discretionary best response is well-behaved:

Lemma 1 πD(.) is a strictly increasing, continuous, piecewise C1 function.

16We can relax Assumptions 4 and 6 and replace them with the following assumption: there exist a compact
sub-interval Π ⊂ Π and F0 ∈ V(Π) such that F0 ≤ TF0, and that for all n ≥ 1 and πe

− ∈ Π, the bound constraints
are not binding for the (T)nF0-problem. (In words, the bound constraints never bind during value function
iteration starting from F0.) Then we can show that a solution to the TW̃ -problem satisfies the properties (ii)
and (iv) in Proposition 2 and the properties shown in the next section, but (iii) is not guaranteed.
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It is natural to interpret that, for a given πe−, a type θ has discretion when π∗(θ; π
e
−) = πD(θ).

The degree of discretion at πe− is naturally defined as the probability of the event {π∗(θ; πe−) =

πD(θ)}. We say that the central bank has full-discretion at πe− if the degree of discretion is

one. The next proposition shows that the central bank has full-discretion at only one value for

πe−, πe∗− , and that πe∗− is the expected value of the one-shot discretionary best response.

Proposition 3 W̃ is uniquely maximized at πe− = πe∗− = E[πD], and the policy function satisfies

π∗(.; π
e∗
− ) = πD(.).

From Proposition 3 we can think of πe∗− as the most desirable initial condition: if πe−1 = πe∗− ,

then social welfare from time zero onward is maximized. Furthermore, if the central bank

were allowed to renege on previously promised inflation expectation, then it would behave as

if expected inflation were πe∗− . This leads us to the following definition of time-inconsistency:

Definition 2 The policy function is time-consistent at πe− if and only if W̃ (πe−) ≥ W̃ (π̃e−) for

any π̃e−. The severity of the time-inconsistency problem at πe− is measured by maxπ̃e
−
W̃ (π̃e−)−

W̃ (πe−).

Note that this definition of time-inconsistency is non-standard, as we define it point-wise.

An immediate implication of Proposition 3 is that the policy function is time-consistent only

at πe− = πe∗− . Since W̃ is strictly concave and has a peak at πe∗− , the severity of the time-

inconsistency problem increases as πe− moves away from πe∗− .

To characterize less than full discretion, it is convenient to define two types of discretion:

no discretion and bounded discretion.

Definition 3 The optimal policy has no-discretion at πe− if π∗(.; π
e
−) is constant. It has bounded

discretion at πe− if π∗(.; π
e
−) is not constant and either π∗(.; π

e
−) = max{π′, πD(.)} or π∗(.; π

e
−) =

min{π′, πD(.)} for some constant π′.

Note that bounded discretion is equivalent to a cut-off property: there is a threshold value for

θ such that the optimal inflation is constant either above or below that threshold. It turns out

that, for any πe−, the optimal mechanism takes a rather simple form — full discretion, bounded

discretion, or no discretion — and that the optimal degree of discretion is linked closely to the

severity of the time-inconsistency problem. This result is summarized by the next proposition.
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πD(θ)
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θ

π
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πD(θ)

πD(θ)

(iii) πe− ∈ (πD(θ), πe∗− ) (Bounded discretion)

πD(θ)

θ

π

θ T2(πe−) θ

πD(θ)

πD(θ)

(iv) πe− ∈ (πe∗− , πD(θ)) (Bounded discretion)

πD(θ)

Figure 1: Policy function π∗(θ, π
e
−) as a function of θ, for different values of πe−

Proposition 4 There exist two strictly increasing, continuous, piecewise C1 threshold func-

tions T1 : (πD(θ), πe∗− ) → Θ and T2 : (πe∗− , πD(θ)) → Θ such that the policy function for

inflation, π∗, features

1. Full discretion, π∗(θ; π
e
−) = πD(θ) for all θ, if πe− = πe∗− ; or,

2. No discretion, π∗(θ; π
e
−) = πe− for all θ, if πe− ≤ πD(θ) or πe− ≥ πD(θ); or,

3. Bounded discretion, if πe− ∈ (πD(θ), πe∗− ),

π∗(θ; π
e
−) =

 πD(θ), ∀θ ∈ [θ, T1(πe−))

πD(T1(πe−)), ∀θ ∈ [T1(πe−), θ]
,
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or if πe− ∈ (πe∗− , πD(θ)), then

π∗(θ; π
e
−) =

 πD(T2(πe−)), ∀θ ∈ [θ, T2(πe−)]

πD(θ), ∀θ ∈ (T2(πe−), θ]
.

Proposition 4 reveals three important properties. First, when πe− is sufficiently far from πe∗−

(either above or below), then there is no discretion. This is depicted in panels (i) and (ii) in

Figure 1. Red dashed lines represent πD and blue solid lines represent π∗(. : πe−) for a given πe−.

Second, when πe− is not too far from πe∗− , the policy function exhibits bounded discretion, or a

cut-off property. When πe− is less than πe∗− , but not too low, inflation rates for low-θ types are

the same as their one-shot discretionary best response (in this sense they are unconstrained)

while high-θ types are constrained to a single level of inflation (panel (iii) in Figure 1). Similarly,

when πe− is higher than πe∗− , but not too high, inflation rates for high-θ types are the same as

their one-shot discretionary best response while low-θ types are constrained to a single level of

inflation (panel (iv) in Figure 1). As πe− moves away from πe∗− , the time-inconsistency problem

becomes more severe, the degree of discretion becomes smaller, and eventually no discretion is

permitted.

πe−

π

πD(θ) EπD πD(θ)

T1(πe−) T2(πe−)

πD(θ)

π∗(θ, π
e
−) for a given θ

A B

45 degree line

Limited history-dependence (amnesia)

Figure 2: Policy function π∗(θ; π
e
−) as a function of πe−, given θ

Third, when we view the policy function for a given θ as a function of πe−, it is strictly
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increasing up to πe− = T−1
1 (θ), is then flat up to πe− = T−1

2 (θ), and is strictly increasing after

that. This property is depicted in Figure 2. Note that between points A (πe− = T−1
1 (θ)) and B

(πe− = T−1
2 (θ)), the policy function is flat and its value equals πD(θ). Importantly, the fact that

the policy function is flat on an interval implies that the history-dependence, as encoded in

the state variable, is disposed of on this interval. If the state variable in period t reside within

such an interval for given θt, then the continuation mechanism from period t + 1 onward does

not depend on θt−1. For types that have discretion, the optimal mechanism therefore features

amnesia in the sense of Kocherlakota (1996).

Finally, Proposition 5 characterizes the policy functions for the output gap and inflation

promise, x∗ and πe∗, respectively.

Proposition 5 Let (xS, π
e
S) : Π → X × Π be a pair of functions such that, for any π ∈ Π,

(xS(π), πeS(π)) maximizes B(s) +βW̃ (πe) subject to π = κx+βπe. Then xS and πeS are strictly

increasing and continuous, and the policy functions for the output gap and promised inflation

satisfy x∗(θ; π
e
−) = xS(π∗(θ; π

e
−)) and πe∗(θ; π

e
−) = πeS(π∗(θ; π

e
−)) for all (θ, πe−).

Recall that some discretion is given when πe− ∈ (πD(θ), πD(θ)). Because Proposition 5 implies

that πeS is strictly increasing, it follows that πe∗(θ; π
e
−) lies between πeS(πD(θ)) and πeS(πD(θ)).

Imagine a situation in which this interval is contained in (πD(θ), πD(θ)). This implies that,

once some discretion is given, the continuation mechanism always prescribes some discretion

afterwards, and the probability of visiting the no-discretion region from the some-discretion

region is zero. Moreover, because the fully optimal mechanism starts from the optimal initial

condition πe∗− , which is contained in (πD(θ), πD(θ)), it never visits the no-discretion region, and

therefore some discretion is always given. This is indeed the case in our numerical experiment.

Another implication of Proposition 5 is that, if society can ensure that the central bank’s

inflation choice is the same as what the optimal mechanism prescribes and that the value of

choosing πe is W̃ (πe), then the central bank finds it optimal (subject to NKPC) to choose

the output gap and inflation promise that are prescribed by the optimal mechanism. In what

follows, we show that society can ensure these two things by a particular inflation targeting rule,

and, therefore, that society does not need to restrict the central bank’s choice of the output

gap and inflation promise.
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5.3 Implementation by inflation targeting

Here we show that the optimal allocation can be implemented by a simple inflation targeting

rule. Consider the game described in Section 3 where the central bank at the communication

stage announces next period’s inflation promise, i.e. M = Π. Society chooses a delegation set

in a Markovian way, based on last period’s inflation promise made by the central bank. In

particular, society chooses delegation sets of the form of Γ(m−) × X where Γ : Π ⇒ Π is a

correspondence and m− denotes last period’s message, or inflation promise, sent by the central

bank. Delegation sets of this form do not impose any constraint on the central bank’s output

gap choice, and thus can be interpreted as inflation targeting.

The equilibrium concept we use is a Markov perfect equilibrium, the same as that used for

the optimal discretionary policy. A Markov perfect equilibrium under an inflation targeting rule

Γ consists of (i) the central bank’s policy function, (πIT , xIT ,mIT ) : Θ× Π→ Π×X × Π, (ii)

the private sector’s policy function, πeIT : Π × Π, and (iii) the central bank’s value function

W IT : Π→ R such that

1. For all m− ∈ Π and any m ∈ Π,

πeIT (m;m−) =

ˆ θ

θ

πIT (θ;m)p(θ)dθ,

2. For all (θ,m−) ∈ Θ× Π,

(πIT (θ,m−), xIT (θ,m−),mIT (θ,m−)) ∈ arg max
π,x,m

R(π, x, θ) + βW IT (m)

subject to π = κx+ βπeIT (m,m−) and π ∈ Γ(m−), and

3. W IT : Π→ R satisfies a recursion: for all m− ∈ Π,

W IT (m−) =

ˆ θ

θ

{
R(πIT (θ,m−), xIT (θ,m−), θ) + βW IT (mIT (θ,m−))

}
p(θ)dθ.

The second and third conditions state that, given the private sector’s policy function, the central

bank’s policy and value functions satisfy optimality condition. Similarly, the first condition

states that the private sector’s policy function is consistent with rational expectation, given the

21



central bank’s policy function.

We say that Γ implements the optimal policy if (πIT , xIT ,mIT ) = (π∗, x∗, π
e
∗), π

e = πe∗, and

WIT = W̃ constitute a Markov perfect equilibrium under Γ. Note that the condition mIT = πe∗

requires that the central bank find it optimal to tell the truth in that its announcement of

promised inflation equals next period’s expected inflation.

We propose the following inflation targeting rule, denoted by Γ.

Γ(m−) =



Π ∩ (−∞,m−] if m− ≤ πD(θ)

Π ∩ (−∞, πD(T1(m−))] if m− ∈ (πD(θ), πe∗− )

Π ∩ (−∞,∞) if m− = πe∗−

Π ∩ [πD(T2(m−)),∞) if m− ∈ (πe∗− , πD(θ))

Π ∩ [m−,∞) if m− ≥ πD(θ)

Proposition 6 Γ implements the optimal policy.

Proof is in Appendix.

There are many inflation range targeting rules other than Γ that also implement the optimal

policy. Γ is the largest among them. The smallest correspondence is

Γ(m−) =
{
π ∈ Π|π = π∗(θ;m−) for some θ

}
.

It is straightforward to see that a necessary and sufficient condition for Γ to implement the

optimal policy is Γ(m−) ⊂ Γ(m−) ⊂ Γ(m−) for all m− ∈ Π.

This condition highlights the necessity of imposing an upper limit on inflation for m− < πe∗−

and a lower limit for m− > πe∗− . This is in contrast to AAK’s result that a constant inflation

cap, or an upper-bound, can implement the optimal mechanism. This difference arises because,

in AAK, the source of the time-inconsistency problem is the inflation bias embodied in the

social welfare function, and because the severity of time-inconsistency problem is constant. In

our setting, an inflation cap suffices only when m− < πe∗. An inflation cap does not suffice

generally because the source of the time-inconsistency problem is stabilization bias and the

direction of the bias can go either way. When last period’s inflation promise m− is higher than

πe∗− , the central bank wants to renege on its promise and restart the economy with a lower initial
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condition πe∗− . Therefore the central bank in our setting has a deflation bias when m− > πe∗,

and a lower limit must be imposed to deliver the promised level of inflation.

This necessary and sufficient condition also implies that history-dependence of a delegation

set is necessary to implement the optimal policy. When next period’s delegation set depends

on the current period inflation promise, the central bank can use promised inflation to restrict

the action taken by its future-self, thereby mitigating the time-inconsistency problem. Because

the severity of time-inconsistency problem depends on promised inflation, the optimal upper-

and lower-limits for inflation must also vary with this promise. Inflation targeting with a fixed

range is therefore unable to implement the optimal policy.

Note that, for a given m−, the minimal delegation set Γ(m−) takes the form of an interval.

This result is closely related to the optimality of interval delegation obtained in many static

delegation problems (Holmström, 1977 and 1984, Alonso and Matouschek, 2008, and Amador

and Bagwell, 2013). One distinct feature of our result is that, to implement the optimal

policy, we need a communication stage on top of a delegation set. This is because there is an

information asymmetry between the central bank and the private sector. Society and the central

bank, from the ex-ante point of view, both benefit from the introduction of a communication

stage, and thus agree on the use of communication, because their objectives coincide ex-ante

(Melumand and Shibano, 1991).

6 Numerical results

We have seen that the optimal degree of discretion is endogenous and depends upon πe−. But

it is not yet clear from our theoretical results how the degree of discretion changes over time.

In this section we use a numerical experiment to examine this issue. The numerical procedure

is described in Appendix C.

6.1 Parameter values

Our parameterization of the model is largely standard. We assume that a period corresponds

to a quarter in length and set the discount factor, β, to 0.99. With the Calvo-pricing model as

our guide, we set the slope of the Phillips curve, κ, to 0.12875. This value for κ is supported

by a Calvo-pricing parameter of 0.75, by an elasticity of substitution between goods, ε, of 5.00,
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implying a 25 percent mark-up, and by a momentary utility function for the representative

household of the form ln ct − h1+ν
t /(1 + ν), where ct denotes consumption, where ht denotes

hours worked, and where ν, the (inverse) Frisch labor-supply elasticity, is set to 0.50.

We use the quadratic specification in equation (2) for the social welfare function, R. We

set b = κ/ε, on the basis that the second-order Taylor expansion of the representative agent’s

utility takes that form in the canonical new Keynesian model without private information (see

e.g. Gali (2008)).

Turning to the type, θ, we assume that θ has a uniform probability density function on the

interval [−0.5%, 0.5%]. These numbers are not annualized, and approximately correspond to

[−2%, 2%] per annum. For computational purposes, this continuous density is approximated

using a uniform-grid containing 31 points.

6.2 Benchmark results

First we present the full-information solution and the optimal discretionary policy.

6.2.1 Full-information benchmark

We begin with the full information solution to understand how the state variable, πe−, and the

shock, θ, affect the central bank’s actions in the absence of private information. As we will see,

some characteristics of the solution also hold for the case where information about θ is private.

Usefully, the full-information problem is an example of an optimal linear-quadratic regulator

problem, implying that the full-information solution is linear in πe−.

Figure 3 displays the policy functions for inflation promise, inflation, and the output gap,

against the state variable, πe−. To make these plots visible, we report these policy functions for

just 5 values of θ, including the lowest and the highest values. All numbers are expressed in

terms of percentages, so π = 1 corresponds to an inflation rate of 1 percent per quarter.

Monotonicity in πe−: For each θ, the policy functions are increasing in last period’s inflation

promise. It is unsurprising that inflation is increasing in πe− because πe− = E[π]. It is also

unsurprising that expected inflation, πe is increasing in last period’s inflation promise, because

the policy trade-off between stabilizing inflation and the output gap requires inflation expec-

tations to adjust gradually over time. The fact that the output gap is also increasing in πe−
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Figure 3: Full-information Solution

may at first seem surprising, but it simply reflects the fact that commitment to its past policies

requires the central bank to validate an increase in πe− with an increase in the output gap.

Monotonicity in θ: For each πe−, the policy functions are increasing in θ. To understand

this result, note from the social welfare function that an increase in θ corresponds to a decline

in the welfare cost of inflation, making it optimal for the central bank to raise inflation. In

turn, the increase in current inflation leads to an increase in the output gap and in promised

inflation.

Inflation promises in the long-run: The policy function for πe is flatter than the 45 degree

line, implying that expected inflation settles in a compact interval around zero in the long-run.

6.3 Optimal discretionary policy

Figure 4 depicts the optimal discretionary policy. The policy functions are depicted as a set

of flat lines because they depend only on θ. Expected inflation is independent of θ too, and

therefore only one flat line is shown in the left panel. Because πe = 0 always, the NKPC implies

that inflation and the output gap are proportional: π = κx.
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Figure 4: Optimal discretionary policy

6.4 Private information results

We now turn to our main results for the case where θ is private information. Considering

inflation first, the left panel in Figure 5 displays the policy function for inflation as a function

of the state for five values of θ. The middle and right panels then plot the differences between

the private-information solution and the full-information solution and between the private-

information solution and the optimal discretionary policy, respectively.

Looking at the policy functions shown in the left panel it is clear that the private informa-

tion solution is nonlinear in the state variable, πe−, and that, despite the fact that we use a

discrete-type model for computation, it exhibits properties that are largely consistent with the

theoretical prediction of the continuous type model. When promised inflation is too low, the

optimal mechanism prescribes no-discretion. As we move toward the right, we observe that the

degree of discretion increases until πe− reaches zero, which is πe∗− in this simulation. Moreover,

the policy function for the lowest θ type becomes (almost) flat first, and then those for higher

θ’s become (almost) flat. Once πe− exceeds zero, the degree of discretion decreases. Inflation

for low-θ types starts increasing, while for high θ types’ inflation stays constant.17

17Figure 5 reveals some behaviors that differ from the theoretical predictions of the continuous-type model.

26



−0.5 0 0.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

π
e

−

π
(P

ri
va
te
-I
n
fo
)

 

 
θ=−0.5
θ=−0.26667
θ=0
θ=0.26667
θ=0.5

−0.5 0 0.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

π
e

−

π
(P

ri
va
te
-I
n
fo
)-
π
(F
u
ll
-I
n
fo
)

−0.5 0 0.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

π
e

−

π
(P

ri
va
te
-I
n
fo
)-
π
(O

p
t.

D
is
c.
)

Figure 5: Policy Function Comparison: π

Recall that the full-information solution is strictly increasing in πe−, for each θ. The fact that

the private information solution features a flat interval implies that even when there is some

degree of discretion the solution is distinct from the full-information solution. Despite these dif-

ferences, it is nevertheless true that as the degree of discretion increases the private-information

solution becomes closer to the full-information solution (middle panel). The distance between

the private-information solution and the optimal discretionary policy is also small when the

former is flat, but is non-negligible (right panel).

Figures 6 and 7 show the behavior of the output gap and expected inflation, respectively.18

While these figures reveal patterns that are qualitatively similar to those for inflation, it is

interesting that the private-information solution and the optimal discretionary policy generates

quantitatively very similar outcomes for the output gap when the private-information solu-

tion is flat, suggesting that the important differences between the two policies reside in their

implications for inflation.

First, we observe full-discretion not only at one point (πe
− = πe∗

− = 0), but on an interval around (though it is
small). Second, on this interval, the policy function is not flat and slightly increasing. Third, the policy function
for each θ decreases slightly before becoming virtually flat. These features are all likely to be the result of our
use of a discrete-type model for the computations, and to the discreteness of our computational method. The
interval of full-discretion indeed becomes small as we increase the number of types.

18Expected inflation is always zero under the optimal discretionary policy and is omitted from the figure.
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Figure 6: Policy Function Comparison: x
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Figure 7: Policy Function Comparison: πe
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Figure 8 plots the value function for the private-information policy, W̃ , along with those

for the two benchmark policies, W FI and WMP . Again, the optimal discretionary policy is

independent of promised inflation and therefore its value is constant and depicted as a flat

line. The optimal initial condition, πe∗, equals zero in this example, and therefore society

finds it optimal for initial inflation to take this value. We evaluate the performance of the

private-information solution using the measure,

maxπe
−
W̃ (πe−)−WMP

maxπe
−
W FI(πe−)−WMP

,

which, in this example, is 39.1%. Note that

max
πe
−
W FI(πe−)−WMP =

(
max
πe
−
W FI(πe−)−max

πe
−
W̃ (πe−)

)
+

(
max
πe
−
W̃ (πe−)−WMP

)
.

The first term on the right-hand side represents the (absolute) loss from private information,

and the second term represents the (absolute) loss associated with the sub-optimality of no-

restriction. The latter is about 2/3 of the former in this example, which suggests that the

optimal mechanism greatly improves upon no-restriction.19 Another way to measure the costs

of private information is to calculate the inflation promise that, in the full-information setting,

yields the same value as the maximized value in the private-information setting.20 This is

around 0.7% (or −0.7%), which implies that, taking the full-information setting as the status-

quo, society is indifferent between the full-information solution with an inflation promise of 2.7%

per year (while the optimal promise is 0%) and the private information solution. Similarly, we

measure the cost of no-restriction by calculating the inflation promise that for the optimal

interim mechanism yields the same value as the optimal discretionary policy. This inflation

promise is around 0.5% (or −0.5%), implying that no restriction is as costly as using the

optimal interim mechanism with a suboptimal initial inflation promise of 2% per year.

Another important property of the optimal interim mechanism is that no-discretion is at

most a short-run phenomenon, and that promised inflation resides, in the long-run, within the

19We also compute the “expected” Ramsey policy defined in AAK, which solves the same mechanism design
problem with an additional constraint that discretion is never given. We found that this policy performs worse
than the optimal discretionary policy, regardless of the state πe

−. This suggests that, at least in this example,
gains from utilizing information are large.

20This approach to quantifying the cost of discretion is analogous to the inflation equivalent measure of Jensen
(2002) and Dennis and Soderstrom (2006).
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Figure 8: Value Function Comparison

interval that prescribes some discretion. The left panel of Figure 9 depicts the policy function

for πe together with the 45 degree line (dashed). As for the full-information solution, promised

inflation settles in an interval indicated by dashed lines, around zero, and once promised in-

flation enters this interval, it stays there forever. I.e.it is an ergodic set of promised inflation.

Moreover, because the policy function is flatter for all θ than the 45 degree line outside this

interval, promised inflation enters this interval in finite time, for any initial condition πe−1.

Note that this interval does not overlap at all the no-discretion regions, but instead contains

only regions with some discretion. This implies that no-discretion is at most a short-run,

transitional phenomenon in the optimal interim mechanism, and that at least some discretion

is granted in the long-run. If society does not take πe−1 as given and chooses the initial condition

πe−1, then it chooses πe−1 = 0, which is contained within the ergodic set. If πe− can be chosen

in the initial period, then we have the stronger result that the no-discretion region of the state

space is never visited.

The right panel of Figure 9 displays the full-information solution for πe alongside the pri-

vate information solution for πe and the 45 degree line. We see that the interval within

which promised inflation settles is smaller for the private-information solution than for the

full-information solution. Moreover, we generally observe that, for each πe−, the difference be-

30



−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

π
e

−

π
e

 

 
θ=−0.5
θ=−0.26667
θ=0
θ=0.26667
θ=0.5

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

π
e

−

π
e

 

 
θ=−0.5
θ=−0.26667
θ=0
θ=0.26667
θ=0.5
45 deg line
Full−info solution

Figure 9: Long-run implication on πe−

tween the highest possible πe and the lowest possible πe is smaller for the private-information

solution. Thus, one feature of the private-information solution is that it exhibits less volatility

in expected inflation than the full-information solution, both along the transition path and in

the ergodic set. This is natural. In the private-information setting, changing promised inflation

from πe∗− is more costly than in the full-information setting, because the mechanism imposes

some restrictions on the central bank’s ability to deliver such promises, which lowers social

welfare. Accordingly, the private information solution makes less use of inflation promises.

7 Conclusion

In the context of the canonical New Keynesian model, we study the optimal degree of discretion

that should be granted to a central bank when it has superior information about the welfare

costs of inflation but is unable to commit. We show that the optimal mechanism depends on

history through last period’s inflation promise and that the optimal degree of discretion varies

with this state variable. Although the central bank’s ability to utilize its private information
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should be curtailed, it is generally not optimal to grant the central bank either no-discretion

or full-discretion. Full-discretion should be granted only when last period’s inflation promise

happens to maximize social welfare; no-discretion should be granted when last period’s inflation

promise is sufficiently far from the peak of social welfare; and some discretion should be granted

for all intermediate values of last period’s inflation promise. We demonstrate numerically that

promised inflation must settle in a region within which some discretion is granted.

A practical implication of our analysis is that it is optimal to legislate an inflation-range

targeting rule that specifies both upper and lower bounds on permissible inflation. It is essential

to impose a lower bound, as the direction of the central bank’s stabilization bias can be negative.

Importantly, these bounds must be history-dependent to achieve the second-best, and a fixed-

range targeting scheme is suboptimal. One way to encode history-dependence is to make

the upper and lower bounds contingent upon promised inflation, a form of inflation target,

announced by the central bank last period. Such history-dependence provides the central bank,

which is unable to commit by itself, with a tool to restrict its future actions, and mitigates the

stabilization bias.

Incorporating a persistent private shock would be an interesting extension of our analysis.

In the full-information model, the gains from commitment do not change much when the shock

persistence increases modestly, but decline sharply when the persistence becomes sufficiently

high.21 We therefore conjecture that in the private information model it would still be optimal

to limit the central bank’s discretion to a similar extent as in the IID case when θ is moderately

persistent, and that our results serve as a useful benchmark. When θ is highly persistent, the

optimal degree of discretion can be much higher. A detailed analysis is warranted to examine

the precise form of optimal delegation when θ is highly persistent.22 Also warranting a more

detailed analysis is an environment in which the effects of private information can persist

endogenously through inflation indexation or rule-of-thumb pricing. We leave this for future

work.

Specifying a time-varying permissible inflation range has been seen in practice. Israel, for

example, when adopting inflation targeting, did so by setting a sequence of decreasing tar-

21We confirmed this by computing the welfare difference between the full-information solution and the optimal
discretionary policy for the quadratic specification with an AR(1) shock θt = ρθt−1 + et.

22A recent paper by Halac and Yared (2014) considers the optimal, self-imposing fiscal rules when the gov-
ernment has a present-bias and persistent private information regarding the marginal value of public spending.
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get ranges for the year-ahead inflation in an attempt to bring about disinflation (Bernanke,

Laubach, Mishkin, and Posen, 2001). Our analysis suggests that fixed inflation targets, while

practical, lack the sophistication needed to optimally trade off the gains and losses from dis-

cretion.
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Appendix A: Proof of Propositions 2 — 5

Throughout, we assume that F ∈ V(Π).

7.1 Proofs of Propositions 2(iii), 2(iv), and 5.

Suppose that Assumptions 2, 3-(i), 4, and 5 hold.

We rewrite the TF -problem: define a slack variable k(θ) := W (θ) − F (πe(θ)) and replace

the constraint W (θ) ≤ F (πe(θ)) with k(θ) ≤ 0. Then

TF (πe−) = max
π(.),x(.),πe(.),k(.)

ˆ θ

θ

{
R(π(θ), x(θ), θ) + βF (πe(θ)) + βk(θ)

}
p(θ)dθ,

subject to the constraints (13), (14), and

R(π(θ), x(θ), θ) + βF (πe(θ)) + βk(θ) ≥ R(π(θ′), x(θ′), θ) + βF (πe(θ′)) + βk(θ′),∀θ, θ′ 6= θ,

k(θ) ≤ 0,∀θ.

We call this problem (P1).

To relax (P1) further, define, for any π ∈ Π,

S(π;F ) = max
(x,πe)∈X×Π

B(x) + βF (πe),

subject to π = κx + βπe. When obvious, we suppress the dependence of S(π;F ) on F . Then,

for any triple (π, x, πe) that satisfies the NKPC, B(x) + βF (πe) ≤ S(π;F ).

We now relax (P1), by introducing a slack variable q(θ) ≤ 0, replacing B(x(θ)) +βF (πe(θ))

with S(π(θ)) + q(θ), and dropping the NKPC. To simplify the notation, let

R̃(π, θ) := A(π) + πθ + S(π;F ).

Then the following problem (P2) relaxes (P1):

max
π(.),k(.),q(.)

ˆ θ

θ

[
R̃(π(θ); θ) + βk(θ) + q(θ)

]
p(θ)dθ,
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subject to the constraints (13),

R̃(π(θ); θ) + βk(θ) + q(θ) ≥ R̃(π(θ′); θ) + βk(θ′) + q(θ′),∀θ, θ′ 6= θ

k(θ), q(θ) ≤ 0,∀θ.

The problem (P2) is equivalent to the following problem (P3):

max
π(.),δ(.)

ˆ θ

θ

[
R̃(πe−, π(θ); θ) + δ(θ)

]
p(θ)dθ,

subject to the constraints (13),

R̃(π(θ); θ) + δ(θ) ≥ R̃(π(θ′); θ) + δ(θ′),∀θ, θ′ 6= θ,

δ(θ) ≤ 0,∀θ.

Below we show that the solution to (P3) satisfies δ(θ) = 0, for all θ. This implies that the

maximized value of (P3) is equal to that of (P2), and that (P2) has a solution with k(θ) =

q(θ) = 0, for all θ. We then show that, from a solution to (P2) with k(θ) = q(θ) = 0, for all θ,

one can recover a solution to (P1) with k(θ) = 0, for all θ.

To show these results, we exploit the fact that, interpreting R̃ as the return function in

SWF and δ as the continuation value, (P3) has the same structure as the best payoff problem

in AAK, except that average inflation, πe−, does not enter the return function and is exogenously

fixed in this problem, whereas it enters the return function and is a choice variable in AAK.23

Despite these differences, we argue that we can use AAK’s results to prove that δ(θ) = 0, for

all θ, is a property of the solution to (P3).

To apply AAK’s results, their assumptions regarding R̃ and p must be satisfied in our

setting. We begin with “well-behavedness” of the return function – R̃ is a strictly concave C1

function with a piecewise C1 derivative. We establish this by showing that the same properties

hold for S. Consider the problem that defines the function S for a given F ∈ V(Π). Because

F is strictly concave, it has a unique solution for each π ∈ Π. Let (xS(.), πeS(.)) : Π → X × Π

23The upper-bound for the continuation valu in AAK is a constant that is not necessarily zero, but this
difference is irrelevant.
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be such that, for all π ∈ Π, (xS(π), πeS(π)) is the solution to this maximization problem at π.24

The following lemma establishes some properties of S and (xS(.), πeS(.)).

Lemma 2 S is a strictly concave C1 function with a piecewise C1 derivative on int(Π). Both

xS(.) and πeS(.) are strictly increasing, continuous, piecewise C1 functions.

Proof. Because the graph of the constraint correspondence is convex and the objective function

B(x) + βF (πe) is strictly concave by Assumption 2, S is strictly concave. The Benveniste-

Scheinkman theorem implies that S is differentiable at any π ∈ int(Π) with the derivative

B′(xS(π))/κ.

From the FONC of the maximization problem, B′(xS(π)) = κF ′
(
(π−κxS(π))/β

)
. Because

both B′ and F ′ are continuous and strictly decreasing, xS(.) is a strictly increasing, continuous

function. The same FONC B′(xS(π)) = κF ′(πeS(π)) then implies that πeS(.) is also a strictly

increasing, continuous, function.

We now show that xS(.) and πeS(.) are piecewise C1. Combining the FONC and the NKPC,

we obtain π =
(
B′
)−1

(κF ′(πeS(π))) + βπeS(π). Let G(πe) :=
(
B′
)−1

(κF ′(πe)) + βπe. Then G is

a strictly increasing continuous function, and it is C1 except on a finite set of points and its

right- and the left-derivatives exist, allowing for +∞. Both the right- and the left-derivatives of

G, D+G and D−G must be strictly positive.25 Because π = G(πeS(π)), the composite function

G ◦ πeS must be C1. Taking the right-derivative of π = G(πeS(π)) at an arbitrary π, we obtain

1 = D+(G ◦ πeS)(π) = lim
∆↓0

G(πeS(π + ∆))−G(πeS(π))

πeS(π + ∆)− πeS(π)
× πeS(π + ∆)− πeS(π)

∆
.

If D+G = +∞ at πe = πeS(π), then we must have

lim
∆↓0

πeS(π + ∆)− πeS(π)

∆
= 0,

and D+π
e
S(π) = 0. Otherwise, D+G > 0 is finite at πe = πeS(π) and thus D+π

e
S(π) =

1/D+G(πeS(π)) < +∞. Therefore, the right-derivative of πeS always exists. Analogously, the

left-derivative always exists, and it is equal to 1/D−G(πe(π)) ∈ R++ when D−G > 0 is finite

at πe = πeS(π), and to 0 when D−G =∞. Because G is C1 except on a finite set of points and

24They depend on the function F , but we suppress this dependence to simplify the notation.
25D+ and D− denote the right- and left-derivative operators, respectively.
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πe(.) is strictly increasing, D+G(πe(π)) = D−G(πe(π)) except on a finite set, and thus πeS(.) is

piecewise C1. Because xS(π) = (π − βπeS(π))/κ, xS(.) is also piecewise C1.

Because S ′ = B′(x(π))/κ and xS(π) is a continuous function that is piecewise C1, S is a C1

function with a piecewise C1 derivative.

It follows that R̃ has the same properties as S.

Corollary 1 R̃ is a strictly concave C1 function with a piecewise C1 derivative.

The single-crossing condition and the monotone-hazard condition in AAK follow from As-

sumption 2 and the definition of R̃, which together imply R̃πθ(π, θ) = R̃θπ(π, θ) = 1.

Lemma 3 Under Assumption 2, R̃ satisfies the single-crossing condition: R̃πθ(π, θ) > 0.

Lemma 4 Under Assumptions 2 and 3, the pair (R̃, p) satisfies the monotone hazard condition

in AAK: For any π(.) that is non-decreasing,

1− P (θ)

p(θ)
R̃θπ(π(θ), θ) is strictly decreasing in θ,

and

P (θ)

p(θ)
R̃θπ(π(θ), θ) is strictly increasing in θ.

Now we are ready to show that a solution to (P3) satisfies δ(θ) = 0 for all θ.

Proposition 7 For a given πe−, a solution to (P3), (π(.), δ(.)), satisfies (i) δ(θ) = 0 for all θ,

and (ii) π(.) is continuous.

Proof. In the proofs of Lemmas 1, 2, and 3 in AAK, they consider variations that keep the

value of
´ θ
θ
π(θ)p(θ)dθ (in their notation, ‘x’) unchanged. Therefore, these variations satisfy

the constraint set in (P3). The single-crossing condition and the monotone hazard condition

imply their Lemmas 1, 2, and 3. This means that their Proposition 1 holds for (P3), and that

δ(θ) is at its upper-bound for all θ. Thus (i) holds. Their Lemma 3 implies (ii).

The next corollary follows from Proposition 7.

Corollary 2 For a given πe−, there is a solution to (P2) such that k(θ) = q(θ) = 0 for all θ,

and that π(.) is continuous.
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Let π∗(.) denote a solution to (P2) together with (k(.), q(.)) = 0. Defining the composite

functions x∗ = xS ◦ π∗, πe∗ = πeS ◦ π∗, and W∗ = F ◦ πeS ◦ π∗, then (π∗, x∗, π
e
∗,W∗) satisfies all

the constraint in (P1), and the value of the objective function it achieves is the same as the

maximized value of the relaxed problem (P2). This implies the following proposition.

Proposition 8 (π∗(.), x∗(.), π
e
∗(.),W∗(.)) defined above is a solution to (P1).

This proves the third and fourth parts of Proposition 2 and Proposition 5.

7.2 Remaining proofs for Propositions 2(i), 3, and 4

7.2.1 π∗ takes a simple form

First we show that π∗ must be either constant or of the form

π∗(θ) =


πD(θ1), ∀θ ∈ [θ, θ1],

πD(θ), ∀θ ∈ (θ1, θ2),

πD(θ2), ∀θ ∈ [θ2, θ].

(21)

for a well-behaved function πD.

To this end we replace the incentive compatibility constraint in (P3) with the local incentive

compatibility constraint: (i) π(.) is non-decreasing in θ, (ii)

R̃π(π(θ), θ)
∂π(θ)

∂θ
+
∂δ(θ)

∂θ
= 0,

whenever ∂π(θ)/∂θ and ∂δ(θ)/∂θ exist, and (iii)

lim
θ↑θ′

R̃(π(θ), θ′) + δ(θ) = lim
θ↓θ′

R̃(π(θ), θ′) + δ(θ),

for all θ′ at which these derivatives don’t exist. (This definition is taken from AAK).

Because Proposition 7 implies ∂δ(θ)/∂θ = 0 for all θ, the incentive-compatibility constraint

implies

R̃π(π∗(θ), θ)
∂π∗(θ)

∂θ
= 0,

whenever ∂π∗(θ)/∂θ exists. Therefore, when the partial derivative exists, it is either ∂π∗(θ)/∂θ =

0 or R̃π(π∗(θ), θ) = 0.
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Let πD(.;F ) : Π → Π be the one-shot discretionary best response given F : for each θ,

πD(θ;F ) solves

max
π

{
A(π) + θπ + max

(x,πe):π=κx+βπe

{
B(x) + βF (πe)

}}
= max

π
R̃(π, θ).

This is an unconstrained optimization of a strictly concave function with the first-order condi-

tion R̃π(πD(θ;F ), θ) = 0. Therefore π∗(θ) = πD(θ;F ) if and only if R̃π(π∗(θ), θ) = 0. It follows

that π∗(θ) = πD(θ) whenever ∂π∗(θ)/∂θ exists and is non-zero.

As π∗ has to satisfy Assumption 1, we need to show that πD is a piecewise C1 function. The

next lemma establishes this. For simplicity, we drop the dependence of πD on F hereafter.

Lemma 5 πD(.) is a strictly increasing, continuous, piecewise C1 function.

Proof. Note that R̃π(π, θ) = A′(π) + θ + S ′(π). Then, for each θ, πD(θ) is a solution to

θ = −
(
A′(π) + S ′(π)

)
.

The RHS is a strictly increasing, continuous, piecewise C1 function, and goes to ∞ (−∞) as

π ↑ ∞ (π ↓ −∞). Therefore we can invert this relationship to obtain a strictly increasing,

continuous function, πD(.), that is piecewise C1. The right- and left-derivatives of πD are

(D+πD(θ), D−πD(θ)) =

(
−1

A′′(πD(θ)) +D+S ′(πD(θ))
,

−1

A′′(πD(θ)) +D−S ′(πD(θ))

)
.

Note that, since D+S
′ ≤ 0, D−S

′ ≤ 0, A′′(π) < A
′′
< 0 for some constant A

′′
, the RHS is finite.

Thus πD is differentiable at θ if and only if S ′ is differentiable at πD(θ). As S ′ is C1 except on

a finite set of points and πD is strictly increasing, πD is piecewise C1.

Because π∗ is continuous (Proposition 7 (ii)), it follows that it must be either constant or

of the form in equation (21). Later we show that either θ1 = θ or θ2 = θ must hold.

7.2.2 TF is single-peaked

Now we show that TF is single-peaked, that it is strictly increasing on the left of its peak, and

that it is strictly decreasing on the right of its peak.
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Recall that the maximized value of (P3) is the same as that of (P1):

TF (πe−) = max
π(.)

ˆ θ

θ

R̃(π(θ); θ)p(θ)dθ (22)

subject to equation (13) and

R̃(π(θ); θ) ≥ R̃(π(θ′); θ), ∀θ, θ′ 6= θ.

We call the problem on the RHS of equation (22) the problem (P4).

Proposition 9 The function TF : Π→ R is uniquely maximized at πe− = πe∗− :=
´ θ
θ
πD(θ)p(θ)dθ.

Proof. The objective function in (P4) is maximized if and only if π = πD a.e., because R̃ is

strictly concave in π for each θ. π = πD satisfies the constraint (13) if and only if πe− = πe∗− .

Thus the function TF is maximized at πe− = πe∗− and the maximum is unique.

Proposition 9 together with Assumption 6 implies Proposition 3.

Corollary 3 TF is strictly increasing for πe− < πe∗− and is strictly decreasing for πe− > πe∗− .

Proof. Let πe1 < πe2 < πe∗− . We show that TF (πe1) < TF (πe2). Let π∗(.; π
e
1) be a solution to

(P4) at πe− = πe1, then it is of the form of equation (21) for some θ1 and θ2. Notice that θ2 < θ,

because otherwise π∗(.; π
e
1) ≥ πD(.) with strict equality for θ > θ1, and the expected value of

π∗(.; π
e
1) satisfies

πe1 =

ˆ θ

θ

π∗(θ; π
e
1)p(θ)dθ ≥

ˆ θ

θ

πD(θ)p(θ)dθ = πe∗− ,

which is a contradiction.

Because πe2 ∈ (πe1, π
e∗
− ) and πD is strictly increasing, there exists θ3 ∈ (θ2, θ) such that

πe2 =

ˆ θ1

θ

πD(θ1)p(θ)dθ +

ˆ θ3

θ1

πD(θ)p(θ)dθ +

ˆ θ

θ3

πD(θ3)p(θ)dθ.

For such θ3, define π′(.) as follows: π′(θ) = π∗(θ; π
e
1) for all θ < θ2, π(θ) = πD(θ) for all

θ ∈ [θ2, θ3), and π′(θ) = πD(θ3), for all θ ∈ [θ3, θ]. Then π′ satisfies the constraints in (P4) at
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πe− = πe2. Hence TF (πe2) ≥
´ θ
θ
R̃(π′(θ); θ)p(θ)dθ. Because π′ and π∗(.; π

e
−) are identical up to θ2,

ˆ θ

θ

R̃(π′(θ); θ)p(θ)dθ − TF (πe1)

=

ˆ θ3

θ2

{
R̃(πD(θ); θ)− R̃(πD(θ2); θ)

}
p(θ)dθ +

ˆ θ

θ3

{
R̃(πD(θ3); θ)− R̃(πD(θ2); θ)

}
p(θ)dθ.

The first integral on the RHS is strictly positive. The second integral on the RHS is also strictly

positive, because for all θ > θ3, πD(θ) > πD(θ3) > πD(θ2), and the concavity of R̃ implies

R̃(πD(θ); θ) > R̃(πD(θ3); θ) > R̃(πD(θ2); θ)

for all θ > θ3. Therefore
´ θ
θ
R̃(π′(θ); θ)p(θ)dθ > TF (πe1), establishing TF (πe2) > TF (πe1).

An analogous argument shows that TF is strictly decreasing for πe− > πe∗− .

7.2.3 Proof of Proposition 4

Lemma 6 (i) For πe− < πe∗− , then π∗(.) is either constant or has the form in equation (21) with

θ1 = θ. (ii) For πe− > πe∗− , π∗(.) is either constant or has the form in equation (21) with θ2 = θ.

Proof. Suppose to the contrary that, for some πe− < πe∗− , π∗(.) has the form in equation (21)

with θ1 > θ. Fix such πe− < πe∗− . Because TF is strictly increasing by Corollary 3, replacing

the first constraint in P4 with

πe− ≥
ˆ θ

θ

π(θ)p(θ)dθ,

must not increase the maximized value. Let π∗∗(.) be such that π∗∗(θ) = π∗(θ) for all θ > θ1 and

π∗∗(θ) = πD(θ) for all θ ≤ θ1. Then π∗∗ is locally incentive compatible and πe− >
´ θ
θ
π∗∗(θ)p(θ)dθ.

Moreover, the objective function increases by

ˆ θ1

θ

{R̃(π∗∗(θ); θ)− R̃(π∗(θ); θ)}p(θ)dθ =

ˆ θ1

θ

{R̃(πD(θ); θ)− R̃(πD(θ1); θ)}p(θ)dθ > 0,

because the integrand is strictly positive for all θ < θ1. This is a contradiction, and thus θ1 = θ

must hold. Part (ii) can be shown in the same way, and we omit the proof.

We introduce two kinds of threshold functions, T1 : (πD(θ), πe∗− )→ [θ, θ] and T2 : (πe∗− , πD(θ))→
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[θ, θ], which are implicitly defined by

πe− =

ˆ T1(πe
−)

θ

πD(θ)p(θ)dθ + [1− P (T1(πe−))]πD(T1(πe−)) for πe− < πe∗− ,

πe− = P (T2(πe−))πD(T2(πe−)) +

ˆ θ

T2(πe
−)

πD(θ)p(θ)dθ for πe− > πe∗− .

Lemma 7 Both T1 and T2 are strictly increasing, continuous, piecewise C1 functions. Com-

posite functions πD ◦ T1 and πD ◦ T2 are C1 and their derivatives are [1 − P (T1(πe−))]−1 and

P (T2(πe−))−1, respectively. When T1 and T2 are differentiable, so is πD, and their derivatives

are given by
∂T1(πe

−)

∂πe
−

= [1− P (T1(πe−))]−1/
∂πD(T1(πe

−))

∂θ
and

∂T2(πe
−)

∂πe
−

= P (T2(πe−))−1/
∂πD(T2(πe

−))

∂θ
.

Proof. We show this for T1 only. Let

H(b) :=

ˆ b

θ

πD(θ)p(θ)dθ + [1− P (b)]πD(b).

Since πD is a strictly increasing, continuous, piecewise C1 function, so is H. Thus H has an

inverse that is strictly increasing and continuous. It follows that T1(πe−) = H−1(πe−).

T1 is piecewise C1: Since πe− = H(T1(πe−)) and H is piecewise C1, we have

1 = D+(H ◦ T1)(πe−) = D+H(T1(πe−))×D+T1(πe−),

1 = D−(H ◦ T1)(πe−) = D−H(T1(πe−))×D−T1(πe−).

Therefore D+T1 = D−T1 except on a finite set, and T1 is piecewise C1.

h := πD ◦ T1 is C1: Note that

1 = D+(H ◦ T1)(πe−) = [1− P (T1(πe−))]×D+h(πe−),

1 = D−(H ◦ T1)(πe−) = [1− P (T1(πe−))]×D−h(πe−).

It follows that D−h(πe−) = D+h(πe−) = [1−P (T1(πe−))]−1. Since T1 is continuous, the rightmost

term is continuous in πe−. This proves h = πD ◦ T1 is C1.

Since h := πD ◦ T1 is C1, it follows that T1 is differentiable whenever πD is, and that the

product of ∂πD(T1(πe−))/∂θ and ∂T1(πe−)/∂πe− equals [1− P (T1(πe−))]−1.

Proposition 10 For each πe−, there is a unique solution to (P4) and it has the form described
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in Proposition 4.

Proof. We have already seen that a solution is unique for πe− = πe∗− . Consider πe− < πe∗− . Then

π∗ at πe− is either constant or satisfies:

π∗(θ) =

 πD(θ), ∀θ ∈ [θ, θ#),

πD(θ#), ∀θ ∈ [θ#, θ],
(23)

for some θ#, and πe− =
´ θ
θ
π∗(θ)p(θ)dθ. Note that when π∗ is not constant,

πe− =

ˆ θ#1

θ

πD(θ)p(θ)dθ + [1− P (θ#
1 )]πD(θ#). (24)

The RHS of equation (24) is strictly increasing in θ#
1 , and takes values from πD(θ) to πe∗− . This

implies that for any πe− ≤ πD(θ), π∗ has to be constant and satisfies π∗(θ) = πe− for all θ.

For πe− ∈ (πD(θ), πe∗− ), either π∗ is constant or it has the form in equation (23) with θ#
1 =

T1(πe−). We show that a constant π∗ is not a solution. Let π be the rule in equation (23) with

θ#
1 = T1(πe−). Then for πe− =

´ θ
θ
π(θ)p(θ)dθ,

ˆ θ

θ

R̃(π(θ); θ)p(θ)dθ −
ˆ θ

θ

R̃(πe−; θ)p(θ)dθ

=

ˆ θ#1

θ

[
R̃(πD(θ); θ)− R̃(πe−; θ)

]
p(θ)dθ +

ˆ θ

θ#1

[
R̃(πD(θ#

1 ); θ)− R̃(πe−; θ)
]
p(θ)dθ.

The first term is strictly positive. The second term is strictly positive, because πD(θ) >

πD(θ#
1 ) > πe− for all θ ≥ θ#

1 and R̃ is strictly concave. This proves that there is unique solution

to (P4) for each πe− < πe∗− . The proof for πe− > πe∗− is analogous.

This proposition together with Assumption 6 implies Proposition 4.

7.2.4 Proof of Proposition 2(i)

Proof. Note that, denoting U(θ) = R̃(π∗(θ), θ),

TF (πe−) = U(θ) +

ˆ θ

θ

1− P (θ)

p(θ)
R̃θ(π∗(θ), θ)p(θ)dθ.

We begin by showing that the first derivative of TF is continuous.
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For πe− < πD(θ), we have π∗(θ) = πe− for all θ and hence

∂TF (πe−)

∂πe−
=

∂R̃(πe−, θ)

∂πe−
+

ˆ θ

θ

1− P (θ)

p(θ)
R̃θπ(πe−, θ)p(θ)dθ

=
∂R̃(πe−, θ)

∂πe−
+ (E[θ]− θ).

The last expression on the RHS is continuous for πe− < πD(θ), because R̃ is C1, and is also

strictly decreasing in πe−. The same result obtains for the left-derivative of TF at πe− = πD(θ)

with the first term on the RHS replaced by the left-derivative of R̃ at πD(θ), which is zero.

Therefore, the left-derivative of TF is continuous for πe− ≤ πD(θ), and equals E[θ] − θ at

πe− = πD(θ).

For πe− ∈ [πD(θ), πe∗− ], U(θ) = R̃(πD(θ), θ) is independent of πe−, and

TF (πe−) = U(θ) +

ˆ T1(πe
−)

θ

1− P (θ)

p(θ)
πD(θ)p(θ)dθ + πD(T1(πe−))

ˆ θ

T1(πe
−)

1− P (θ)

p(θ)
p(θ)dθ.

Recall that h := πD ◦ T1 is C1. Therefore, for πe− ∈ (πD(θ), πe∗− ), the derivative of the RHS

exists and equal to

∂h(πe−)

∂πe−

ˆ θ

T1(πe
−)

{1− P (θ)}dθ =
1

1− P (T1(πe−))

ˆ θ

T1(πe
−)

[1− P (θ)]dθ

=

ˆ θ

T1(πe
−)

1− P (θ)

p(θ)

p(θ)

1− P (T1(πe−))
dθ.

The last expression on the RHS is continuous for πe− ∈ (πD(θ), πe∗− ), because T1 is a continuous

function, and is also strictly decreasing in πe− because (1 − P (θ))/p(θ) is strictly decreasing.

Again the analogous equations obtain for D+TF at πe− = πD(θ) and for D−TF at πe− = πe∗− ,

and their values are respectively E[θ]− θ and 0.

Taken together, the first derivative of TF is continuous for πe− < πe∗− , and the left-derivative

of TF is zero at πe− = πe∗− . Using the same argument for πe− ≥ πe∗− , one can show that the

first derivative of TF is continuous for πe− > πe∗− , and that the right-derivative of TF is zero at

πe− = πe∗− . This proves that TF is a C1 function. We have also shown that ∂TF/∂πe− is strictly

decreasing, implying that TF is strictly concave.

Now we turn to the second derivative of TF . For πe− < πD(θ), the left- and the right-
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derivatives of ∂TF/∂πe− are the left- and the right-derivatives of R̃(πe−, θ) with respect to the

first argument. Because R̃π is piecewise C1, so is ∂TF/∂πe−. The left-derivative of ∂TF/∂πe−

at πe− = πD(θ) is D−R̃π(πD(θ), θ), which is finite.

Consider πe− ∈ (πD(θ), πe∗− ). Let J(x) :=
´ θ
x

[1− P (θ)]dθ/[1− P (x)] for x ∈ [θ, θ], then it is

C1 on (θ, θ), and ∂TF/∂πe− = J ◦ T1. Because T1 : (πD(θ), πe∗− ) → (θ, θ) is piecewise C1, the

derivative of ∂TF/∂πe− is piecewise C1. The right-derivative of ∂TF/∂πe− is

D+

∂TF (πe−)

∂πe−
= D+

[ 1

1− P (T1(πe−))

ˆ θ

T1(πe
−)

[1− P (θ)]dθ
]

= D+T1 ×
p(T1)

1− P (T1)

[ ˆ θ

T1(πe
−)

1− P (θ)

p(θ)

p(θ)

1− P (T1)
dθ − 1− P (T1)

p(T1)

]
,

and the analogous equation obtains for the left-derivative.

What remains to show is whether the right-derivative of ∂TF/∂πe− exists at πe− = πD(θ)

and whether the left-derivative exists at πe− = πe∗− , allowing for −∞.

First we show that the right-derivative of ∂TF/∂πe− exists at πe− = πD(θ). To this end, we

prove that as ∆ ↓ 0, (
∂TF (πD(θ) + ∆)

∂πe−
− ∂TF (πD(θ))

∂πe−

)
/∆

converges to a constant. Denote T1(πD(θ) + ∆) by T1(∆) for simplicity, this term equals

−1

∆

[ ˆ T1(∆)

θ

[1− P (θ)]dθ + (1− 1

1− P (T1(∆))
)

ˆ θ

T1(∆)

[1− P (θ)]dθ
]

= −
[´ T1(∆)

θ
[1− P (θ)]dθ

T1(∆)− θ
T1(∆)− θ

∆
+

1− 1
1−P (T1(∆))

T1(∆)− θ
T1(∆)− θ

∆

ˆ θ

T1(∆)

[1− P (θ)]dθ
]

=
T1(∆)− θ

∆

[ 1
1−P (T1(∆))

− 1

T1(∆)− θ

ˆ θ

T1(∆)

[1− P (θ)]dθ −
´ T1(∆)

θ
[1− P (θ)]dθ

T1(∆)− θ

]
.

It is easy to show that D+T1(πD(θ)) exists and equals 1/D+πD(θ). Thus the first term (T1(∆)−

θ)/∆ converges toD+T1(πD(θ)) as ∆ ↓ 0, which equals 1/D+πD(θ) = −D+R̃π(πD(θ), θ) because

R̃π(πD(θ), θ) = 0. Terms in the brackets converges to

p(θ)

(1− P (θ))2

ˆ θ

θ

[1− P (θ)]dθ − (1− P (θ)) = p(θ)

ˆ θ

θ

[1− P (θ)]dθ − (1− P (θ))

as ∆ ↓ 0. Thus the right-derivative of ∂TF/∂πe− exists and is finite at πe− = πD(θ).
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Now we show that D−∂TF/∂πe− exists at πe∗− . Let T1(∆) = T1(πe∗− −∆), then

1

∆

{
∂TF (πe∗− )

∂πe−
−
∂TF (πe∗− −∆)

∂πe−

}
=
−1

∆

1

1− P (T1(∆))

ˆ θ

T1(∆)

[1− P (θ)]dθ

=
[ −1

p(T1(∆))

1

1− P (T1(∆))

´ θ
T1(∆)

(1−P (θ))/p(θ)
(1−P (T1(∆)))/p(T1(∆))

p(θ)dθ

θ − T1(∆)

]
×
{

(1− P (T1(∆)))
θ − T1(∆)

∆

}
.

The terms in the square brackets diverges to −∞ as ∆ ↓ 0. The remaining terms converge to

a finite, strictly positive number, and thus the right-hand side diverges to −∞. To see this,

observe that, by definition of T1,

∆ = πe∗− − (πe∗− −∆) =

ˆ θ

T1(∆)

{πD(θ)− πD(T1(∆))}p(θ)dθ,

and that

1 = lim
∆↓0

´ θ
T1(∆)
{πD(θ)− πD(T1(∆))}p(θ)dθ

∆

= lim
∆↓0

´ θT1(∆)
{πD(θ)− πD(T1(∆))} p(θ)

1−P (T1(∆))
dθ

θ − T1(∆)

× (1− P (T1(∆)))
θ − T1(∆)

∆
.

As ∆ ↓ 0, terms in the square brackets converges to D−πD(θ) = −1/D−R̃π(πD(θ), θ), which is

a finite, strictly positive number. This implies that lim∆↓0(1 − P (T1(∆))) θ−T1(∆)
∆

exists and is

strictly positive.

Using a symmetric argument, one can show the same properties hold for πe− > πe∗− .

7.3 Proof of Proposition 6

Proof. Conditions 1 and 3 are clearly satisfied. It follows from condition 1 that m =

πeIT (m;m−) for any m ∈ Π. To prove condition 2, observe that condition 1 implies m =

πeIT (m;m−) for any m ∈ Π, and replace the function πeIT (m;m−) in the constraint with m.

Then Proposition 5 implies that the maximization problem in condition 2 is the problem in

equation (20), with the additional constraint π ∈ Γ(m−). Because Γ(m−) is an interval for each

πe−, for a given θ, πD(θ) is either in Γ(m−), or smaller than any element in Γ(m−), or larger
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than any elements in Γ(m−). Because the objective function in equation (20) is strictly concave

in inflation, the optimal inflation choice for given (θ,m−) is (i) πD(θ) if πD(θ) ∈ Γ(m−), (ii)

the smallest element of Γ(m−) if πD(θ) ≤ π for all π ∈ Γ(m−), and (iii) the largest element of

Γ(m−) if πD(θ) ≥ π for all π ∈ Γ(m−). This implies that π∗ solves this problem, and condition

2 is met for (πIT , xIT ,mIT ) = (π∗, x∗, π
e
∗).
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Appendix B: Benchmark Problems

In this appendix, we focus on the quadratic specification in equation (2).

B.1. Full-information problem

The full-information problem has the following recursive formulation:

W FI(πe−) = max
π(.),x(.),πe(.)

ˆ
θ

{
− 1

2
(π(θ)− θ)2 − b

2
x(θ)2 + βW FI(πe(θ))

}
p(θ)dθ,

with the constraints given by

πe(θ) =
1

β
π(θ)− κ

β
x(θ),

for all θ, and

πe− =

ˆ
Θ

π(θ)p(θ)dθ.

Because the return function is quadratic and the constraints are linear, the value function is

quadratic and the policy function is linear. For simplicity, we have disposed of the compactness

of Π and X and assumed that π and x can be chosen from the real line.

B.2. Optimal discretionary policy

We can solve analytically for the optimal discretionary policy, because the problem is linear-

quadratic. (A Markov perfect equilibrium is unique when the return function has the form in

equation (2).) This policy depends only on the current shock θ, and is given by

(πMP (θ), xMP (θ)) =

(
κ2/b

1 + κ2/b
θ,

κ/b

1 + κ2/b
θ

)
.

The welfare delivered by this policy is given by

WMP =
1

1− β
E

[
−1

2

1

1 + κ2/b
θ2

]
= − 1

2(1− β)(1 + κ2/b)
E[θ2].
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Appendix C: Computing the private information solution

This appendix details the algorithm we use to compute the private information solution. We nu-

merically implements the Bellman operator T with discrete types. We also discretize the choice

sets for inflation, the output gap, and expected inflation, and introduce lotteries/randomization

over these sets to convexify the problem. As a result the problem becomes a concave dynamic

programming problem, and we apply the method proposed by Fukushima and Waki (2013).

We begin with convexifying the Bellman operator T in equation (18). Let X̂, Π̂, and Θ̂

be grids over X, Π, and Θ, respectively. We assume that grids are such that co(X̂) = X and

co(Π̂) = Π. Let p̂ denote a discrete approximation of density p. In each state πe−, for each θ,

the mechanism designer chooses a lottery γx over X̂, and a lottery γπ over Π̂, in addition to

(π(.), x(.), πe(.),W (.)).

We define the Bellman operator Tl as follows: for all πe− ∈ Π,

TlF (πe−) = max
∑
θ

p̂(θ)

∑
πi∈Π̂

γπ(πi|θ){A(πi) + θπi}+
∑
xi∈X̂

γx(xi|θ)B(xi) + βW (θ)


subject to the feasibility constraints,

πe− =
∑
θ

p̂(θ)π(θ) (25)

π(θ) = βπe(θ) + κx(θ), ∀θ ∈ Θ̂, (26)

the lottery constraints,

γπ(πi|θ) ∈ [0, 1], ∀θ ∈ Θ̂, πi ∈ Π̂, (27)

γx(xi|θ) ∈ [0, 1], ∀θ ∈ Θ̂, xi ∈ X̂, (28)∑
i γ

π(πi|θ) =
∑

i γ
x(xi|θ) = 1, ∀θ ∈ Θ̂, (29)
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the consistency constraints,

π(θ) =
∑
πi∈Π̂

γπ(πi|θ)πi, ∀θ ∈ Θ̂, (30)

x(θ) =
∑
xi∈X̂

γx(xi|θ)xi, ∀θ ∈ Θ̂, (31)

the incentive-compatibility constraint,

∑
πi∈Π̂

γπ(πi|θ){A(πi) + θπi}+
∑
xi∈X̂

γx(xi|θ)B(xi) + βW (θ)

≥
∑
πi∈Π̂

γπ(πi|θ′){A(πi) + θπi}+
∑
xi∈X̂

γx(xi|θ′)B(xi) + βW (θ′), ∀(θ, θ′) ∈ Θ̂2, (32)

and the upper-bound constraint,

W (θ) ≤ F (πe(θ)), ∀θ ∈ Θ̂. (33)

Equations (27) to (29) require that, for each θ, both γπ(.|θ) and γx(.|θ) are lotteries over Π̂ and

X̂, respectively. Equations (30) and (31) requires that π and x are achieved on average by γπ

and γx.

This operator Tl satisfies Blackwell’s sufficient condition, and thus is a contraction mapping.

This dynamic programming problem is a concave problem, allowing us to apply the method

in Fukushima and Waki (2013) to compute its solution. Because Π is unknown, we use a

sufficiently large interval Πe ⊂ Π as the state space, and then check that the computed solution

is interior. This leads us to the following algorithm based on Fukushima and Waki (2013):

1. Fix a compact interval Πe ⊂ Π and a finite grid Π̂e on Πe.

2. Set the initial condition v0 = minU for value function iteration. Let TlL be the numerical

Bellman operator that approximates Tl from below (see Fukushima and Waki, 2013).

Then vn := (TlL)nv0 is increasing in n and converges uniformly to the fixed point of TlL.

3. Stop if a pre-specified stopping criterion is satisfied: ||vn− vn−1|| < ε for some constant ε.

4. Use the computed value function vn to check whether the solution is interior. If it is, use

vn as an estimate for the true value function.
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