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Abstract 

 

This paper first clarifies that, unlike propensity-score weighting in Rubin’s causal model where 

confounding covariates can be endogenous, propensity-score weighting in the DiNardo-Fortin-Lemieux 

(DFL) decomposition analysis may generate biased estimates for the decomposition of inequality into

“direct”and“indirect”components when intervening variables are endogenous. The paper also clarifies 

that the Blinder-Oaxaca method confounds the modeling of two distinct counterfactual situations: one 

where the covariate effects of the first group become equal to those of the second group, and the other 

where the covariate distribution of the second group becomes equal to that of the first group. The paper 

shows that the DFL method requires a distinct condition to provide an unbiased decomposition of 

inequality that remains under each counterfactual situation. The paper then introduces a combination of 

the DFL method with Heckman’s two-step method as a way of testing and eliminating bias in the DFL 

estimate when some intervening covariates are endogenous. The paper also intends to bring gender and 

race back into the center of statistical causal analysis. An application focuses on the decomposition of 

gender inequality in earned income among white-collar regular employees in Japan. 
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DECOMPOSITION OF GENDER OR RACIAL INEQUALITY WITH ENDOGENOUS INTERVENING COVARIATES: 

AN EXTENSION OF THE DINARDO-FORTIN-LEMIEUX METHOD   

 

1.  INTRODUCTION 

         The aim of this paper is to reconceptualize, and reformulate, from the point-of-view of Rubin’s 

causal model (RCM) (Rosenbaum and Rubin 1983 1984, Rubin 1985), the DiNardo-Fortin-Lemieux (DFL) 

method (DiNardo et al. 1996) for the decomposition of inequality based on propensity-score weighting 

and to extend the method for handling cases when covariates include intervening variables that are 

endogenous.   Decomposition analysis is typically concerned with dividing the effects of a dichotomous 

group variable X, such as the distinction between men and women, on the outcome into two 

components, a component explained by the difference in covariates V between the groups, and a 

component not explained (See Fortin et al. (2011) for a comprehensive review of decomposition 

analysis).   

       The decomposition method of analyzing inequality that has been most frequently used is the 

Blinder-Oaxaca method (Blinder 1973; Oaxaca 1973).  Further extensions or modifications of it to solve 

its “identification issue” have also been discussed (e.g., Jones and Kelley 1984; Oaxaca and Ransom 

1999; Yun 2008; Kim 2013).   Extending it to decomposition for hazard rate was also proposed (Powers 

and Yun 2009).    For decomposition analysis based on the Blinder-Oaxaca (BO) method, the two 

counterfactual situations described below are always treated as identical.  The method assumes a pair 

of regression equations, such as 'M M My ε= +β V  for men and 'W W Wy ε= +β V for women.  Then, 

under the assumed independence of the error terms from covariates, we obtain,

 
'( ) ( ' ') . (1)

W M W M MW W My y    − = − + −
   
β V V β β V
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Since '
MWβ V  represents the mean of Y for a counterfactual situation where the covariate distribution is 

that of men while the covariate effects are those of women, the first component of the equation can be 

interpreted as the sex difference in the mean of Y which would be eliminated if women had men’s 

covariate distribution, and the second component can be interpreted as the sex difference in the mean 

of Y that would be eliminated if men had women’s covariate effects.  Considering either of those two 

counterfactual situations leads to the same decomposition result in the BO method. The first portion is 

also called the “explained component” of the inequality because it is attributable to sex differences in 

covariate values.  The second component, called the “unexplained component,” reflects inequality in 

society that results from different “treatments” of men and women with the same covariates.  In their 

review paper on decomposition analysis, Fortin et al. (2011) discussed that the latter component of the 

BO method can be interpreted as the average treatment effect for the treated (Morgan and Winship 

2007) when the group variable can be regarded as a treatment variable.  As explained later in this 

section, this component becomes equivalent with the average treatment effect for the untreated for the 

case where the group variable,  such as the sex  dummy variable, is time-constant.  Generally, the two 

counterfactual situations described above differ when the error term is endogenous, as explained below. 

This point has not been mentioned in the previous literature.  

            The DFL method makes a weaker assumption for the outcome than the BO method. In the 

original formulation, the pair of equations assumed for men and women are expressed as 

( , )M M My φ ε= +V θ   for men and ( , )W W Wy φ ε= +V θ  for women, where φ  is an unspecified 

function, and Mθ and Wθ  are parameters that indicate the covariate effects on the outcome for men 

and women respectively.   Under the assumed independence of the error term from the covariates – 

that is, if the covariates are exogenous – we obtain the following decomposition, 

                ( , ) ( , )) ( , ) ( , )) . (2)
W M W W M W M W M My y φ φ φ φ   − = − + −   V θ V θ V θ V θ  
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Similar to equation (1) of the BO method, the first component of equation (2) reflects inequality that 

would be eliminated if women had men’s covariate distribution, and the second component reflects 

inequality that would be eliminated if men were treated like women.  Since the estimates of 

( , )W Wφ V θ  and ( , )W Wφ V θ  are simply sample means, we only need an estimate of ( , )M Wφ V θ  

obtainable from the following equation for a dichotomous variable X that takes a value of 0 for men and 

1 for women: 

         
( , ) ( , ) ( | 0) ( | ) ( | 0)

( ) ( | ) ( | 1) ( ) (3)

M W W W

W W

f X d E Y f X d

E Y f X d E Yω

φ φ

ω

≡ = = =

= = =

∫ ∫
∫

v v

v

V θ v θ v v v v v

v v v v
 

where ( | )f Xv  indicates the conditional probability density of V, and Eω  indicates the weighted mean 

with weights: 

  
( | 0) ( 0 | ) ( ) / ( 0) ( 1) ( 0 | )( ) . (4)
( | 1) ( 1 | ) ( ) / ( 1) ( 0) ( 1 | )

f X p X f p X p X p X
f X p X f p X p X p X

ω = = = = =
≡ = =

= = = = =
v v v vv
v v v v

 

A consistent estimate of the weight can be obtained by a consistent estimate of ( | )p X v via logit or 

probit regression.  

Hence, the DFL method generalizes the BO method by weakening the assumption for the 

outcome equation by semiparametric modeling.  As Barskey et al. (2002) point out, a major limitation of 

the BO method is that it requires a linear relationship between the dependent variable and its covariates.  

In contrast, the DFL method does not assume such a relationship.  In particular, the DFL method can be 

applied to the decomposition of difference in proportion, as in the decomposition analysis of gender 

difference in the proportion of managers, while the BO method may not be applied to such an analysis.  

This is because linear probability models for regression analysis usually fail to yield consistent parameter 

estimates, with the exception of saturated models with categorical covariates where estimates of 

outcome probabilities always lie between 0 and 1. 
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     The BO and DFL methods also differ where some covariates are endogenous.  For the BO method, a 

typical method of handling an endogenous covariate is the instrumental variable (IV) method for linear 

regression.  The application of the BO method using least-squares or maximum likelihood estimation is 

invalid when covariates are endogenous because the regression coefficient estimates become 

inconsistent. 

      The situation differs for the DFL method as described in this paper.  Note that when the covariates 

are endogenous, ( | ) 0E ε ≠v , and therefore a change in the the error term distribution may  affect the 

mean outcome.  In particular, two counterfactual situations become different.  For the set of 

parameters, covariates, and the error term { }θ,V,ε  that affect the outcome, the counterfactual 

situation where women have men’s covariate distribution implies a combination of women’s { }θ,ε  and 

men’s V.  On the other hand, the counterfactual situation where men have women’s covariate effects 

implies a combination of men’s { }V,ε  and women’s θ .  Hence, the error distribution differs for these 

two counterfactual situations.  This paper shows that the DFL method can reflect each of these 

counterfactual situations under different conditions. In particular, as explained later, the direct effect of 

X on Y not through V will be equated with the counterfactual effect that would be eliminated when 

people in one group with covariates V were treated the same in the society as members of the other 

group with the same V.  That is, the direct effect will be equated with the counterfactual effect that 

would be eliminated if men had women’s covariate effects, and not equated with the other 

counterfactual effect that would be eliminated if women had men’s covariate distributions.  

             I also need to discuss the misconception of some researchers that time-constant variables such 

as gender or race cannot be the “treatment variables” in causal analysis.  The argument is based on the 

fact that if we employ the person-specific fixed-effect model, or the difference-in-difference (DID) 

estimation, with panel survey data, the effect of race or gender is wiped out because it is completely 

collinear with, or is explained by, unobserved population heterogeneity.       
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         In fact, the argument has two conceptual confusions.  One of them is a confusion for whether 

gender or race can be conceived as a variable for treatment or can be conceived as a variable for 

treatment assignment.  Causal analysis based on the use of propensity scores (Rosenbaum and Rubin 

1983, 1984, Rubin 1985, Robins 1998), called Rubin’s causal models (RCM), distinguishes between 

treatment and treatment assignment.  In the standard conception, the treatment assignment 

distinguishes between the treatment group and the control group.  Subjects are assigned to one of 

those two groups, and only subjects in the treatment group get treated. The causal analysis, however, 

conceives for each subject both the outcome under treatment and the outcome under no treatment, 

one of which is unobserved and counterfactual, and therefore the difference between the two is always 

unobservable.  The observed variable that distinguishes between two sexual or racial groups is not a 

variable that indicates a treatment but can be considered a variable that indicates a treatment 

assignment, but unlike a distinction in the standard conception, it is not a distinction between the 

treatment group and the control group, but a distinction between two different control groups.  The 

treatment itself is a hypothetical change in sex or race that nobody in the sample experienced.  Hence, 

no sample subjects are in the treatment group, and as a result, the average treatment effect for the 

treated (Morgan and Winship2007) cannot be estimated.  Although there can be such cases as 

transgender persons, we are concerned here with the effect of a hypothetical change in the value of a 

time-constant variable.  We can conceive, however, the average treatment effect for the untreated, the 

effect of treatment in the outcome obtained by comparing the observed outcome under each control 

state of the variable with the counterfactual outcome under treatment among those whose observation 

is made for just one of the control states, and can estimate the treatment effect under certain 

assumptions described later.    

        The other confusion is between the question of whether the treatment effect of change in sex or 

race can be conceived and that of whether the treatment effect of such a change is estimable.  The 
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argument about the fixed-effect model or the DID indicates only that if we assume unconstrained time-

constant unobserved population heterogeneity in determining the outcome, we cannot estimate the 

treatment effect of a time-constant variable.  On the other hand, if we make some different 

assumptions, the effect of a hypothetical change in sex or race becomes estimable.  A major problem, 

however, is that the standard ignorability assumption that the RCM makes is not likely to hold when 

intervening variables that the decomposition analysis employs as covariates are endogenous, as 

explained below.       

         Another argument against the conception of causal analysis about the effect of sex or race is 

substantive.  The argument goes that if women are discriminated against, for example, in employment, 

the cause of discrimination is employer’s attitude, and the effect of gender would disappear if such 

employers’ discrimination against women became absent, and therefore, gender is not a true cause.  It 

is true that gender is not a cause of discrimination.  However, gender discrimination has been concerned 

with whether men and women with the same set of attributes other than sex are treated unequally in 

the society. The analysis of racial or gender discrimination based on an experimental audit study (Pager 

2003; Correll et al. 2007) is concerned with an estimation of  the effect of race or gender on the 

outcome through a differential treatment of people based on gender or race in the society.    

We are interested in such a “treatment effect” of gender, and although it is methodologically different 

from the experimental audit study, what we refer to as causal analysis in this paper is a method of 

estimating the average treatment effect as defined initially by Rosenbaum and Rubin (1983) based on 

the counterfactual conception of treatment.  

         An important issue for a causal modeling of the decomposition analysis is the endogeneity of 

covariates.  As shown below, the ignorability assumption that the method makes may not hold when 

some intervening covariates are endogenous or if the population is defined by a state of an endogenous 

intervening variable.   Such a situation will occur when an intervening covariate includes, for example, 
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educational attainment, and uncontrolled selectivity into higher education affects the outcome.  It may 

also occur when the analysis is applied only to the population of employees, and uncontrolled selectivity 

into and exit from employment affects the outcome.  In other words, both selection bias in the state of 

an intervening variable and sample selection that results from using a population that correspond to a 

particular state of an intervening variable may generate bias in the DFL decomposition as a causal 

analysis.   

       Since the DFL method relies on propensity-score weighting (Rubin 1985, Robins 1998) and makes an 

ignorability assumption that appears to be similar to that of the RCM for the analysis of cross-sectional 

survey data, one may consider that the method can handle endogenous covariates because in the 

standard use of propensity-score weighting, the endogeneity of confounding variables is allowed, and 

that is one of the major merits of the RCM.   The situation, however, differs between the use of 

propensity-score weighting for the RCM, and the use of it in the DFL method for decomposition analysis.   

Let me clarify this by using simplified causal diagrams. 
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         Figure 1: Two causal diagrams with endogenous covariates              

             

 

Case 1 

 

           

 
  

Case 2 

         

 

      Figure 1 consists of two causal diagrams with observed endogenous covariates V.    They are 

endogenous because an unobserved confounder U that affects both V and Y exists.  In case 1, covariates 

V are confounders of treatment variable X and outcome variable Y, and conditional independence of X 

and U, |X U⊥ V , holds.    In case 2, however, covariates V are intervening variables, and even though 

X is assumed to be independent of U, the control for covariates V, which are common causal 

descendants of X and U, induces non-independence between U and  X ( Morgan and Winship 2007, Pearl 

2009).   As an illustration, assume that latent ability U is independent of gender X, and both ability and 

gender affect education V such that people with higher ability are more likely to attend college, and due 

to gender inequality in educational opportunity, men are more likely than women to attend college.  

Assume further for simplicity of discussion that the top 50% of men in ability and the top 25% of women 

in ability go to college.  Then, among college attendants, average ability is higher for women (because it 

is the average of the top 25% for women while it is the average of the top 50% for men).  Similarly, 

among people who do not go to college, average ability is also higher for women than for men (because 
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it is the average of the bottom 75% for women while it is the average of the bottom 50% for men).   

Hence, correlation between latent ability and gender emerges when education is held constant.          

      Generally,  |X U⊥ V  does not hold in case 2.   Case 1 is the situation that the RCM assumes for 

causal analysis with cross-sectional data, and the condition |X U⊥ V  is equivalent to the ignorability 

assumption described later.   On the other hand, case 2 is the typical situation we have for 

decomposition analysis with endogenous covariates.   Even though the independence of X and U may 

exist without controlling for V, by which the total treatment effect of X on Y becomes estimable, we are 

interested in the direct treatment effect of X on Y not through V in decomposition analysis.  With the 

control for V, however, we cannot make the ignorability assumption |X U⊥ V  unless all intervening 

covariates V are exogenous and not subject to selection bias by U.    

            Although the DFL method may thus yield a biased estimate for the direct treatment effect of X 

not through V when covariates include endogenous intervening variables, the method also enables an 

extension that can eliminate this bias, and this paper introduces such an extension for the DFL method.  

Note that the assumption of exogenous intervening variables is a very strong one, and the development 

of a method that can handle the issue of endogenous covariates for decomposition analysis will be a 

very useful advancement. 

          This paper also performs a decomposition analysis of gender inequality in earned income among 

white-collar regular employees in Japan to demonstrate the usefulness of the extension of the DFL 

method. 

 

2. METHOD         

2.1   The Causal Conception of Sex or Race, and Conditions and Results for the Case Where the 

Ignorability Assumption Holds 
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         Below, I (1) describe the standard set of assumptions for the RCM model, (2) modify the 

assumptions for analysis of the decomposition of inequality between sexual or racial groups, and (3) 

clarify the condition where the ignorability assumption holds and the DFL estimate for the 

decomposition is unbiased as a causal analysis.  A formal expression of bias in the DFL method that 

exists when the ignorability assumption does not hold and a method that eliminates this bias will be 

introduced in the following sections. 

         The RCM for cross-sectional data analysis makes the following set of assumptions  (Rosenbaum and 

Rubin 1983 1984; Morgan and Winship 2007). 

        (A1)  The Stable Unit Treatment Value Assignment (SUTVA) is assumed.   This assumption justifies 

conceiving the treatment at the individual level to be independent of the results of treatment 

assignment.  The SUTVA assumes that the counterfactual treatment effect, defined as 1 0i iY Y− , --  where 

1iY indicates either the observed outcome or the potential outcome under the treatment and 0iY  

indicates either the observed outcome or the potential outcome under no treatment for subject i --, 

does not depend on who in the population is assigned to the treatment group. 

      (A2)  The treatment effects are heterogeneous and vary with persons.  This leads to the dependence  

of the average treatment effect in the RCM on the specification of the population, such as the total 

population, the population of the treated, or the population of the untreated. 

     (A3)  The ignorability assumption, 1, 0( ) |Y Y X⊥ V , applies, such that if observed confounding 

variables V that affect both the outcome and the treatment assignment X are controlled, the potential 

outcomes and the treatment assignment are conditionally independent.   This assumption implies that 

no unobserved confounding variables exist.  

   (A4)  The confounding covariates can be endogenous; that is, they may not be independent of the 

unobserved determinant of the outcome. 
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           Note that only A1 and A3 are constraining assumptions.  Assumptions A2 and A4 imply the 

absence of the constraints imposed by many other methods, such as regression-based methods. 

            In the case of the treatment effect of sex or race, we retain assumption A2 on the heterogeneity 

of treatment effects.  Assumption A1, the SUTVA assumption, becomes irrelevant, because nobody in 

the sample has been treated and the “treatment,” a change in gender or race, is only imaginary.  We 

need a notational change for Y0  and Y1 , however, because  the distinction of two sexual groups or two 

racial groups is not a distinction between the treatment group and the control group, but a distinction 

between two control groups.   Unlike the standard notation, where Y1 and Y0 refer to the outcome under 

treatment and under no treatment, respectively, we use notations Y1 and Y0, in conceiving the treatment 

effect of gender or race, to indicate the observed or potential outcome that is generated when the 

subject is treated as a member of group 1 and group 0, respectively.   Therefore, for example, for men 

for whom X = 0, Y0 is the observed outcome, and Y1 is the counterfactual potential outcome with a 

change of sex, and for women for whom X = 1, Y0 is the counterfactual potential outcome with a change 

of sex, and Y1 is the observed outcome.  Y1-Y0 indicates the effect of being treated as a woman versus 

being treated as a man, and is the treatment effect for the untreated for both men and women.   The 

observed outcome can be expressed as 1 0(1 )obsY XY X Y= + −   as in the case of the standard RCM.   

      We need to discuss the modification of assumptions A3 and A4 together.  I will illustrate, though it is 

simplified because of the omission of various interaction effects and heterogeneity in the effects of 

variables on their causal descendants, by the causal diagram of Figure 2.   
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                               Figure 2:  A general causal structure 

             

 

 

 

 

Variable X in Figure 2 is a time-constant treatment variable, such as gender or race. Note first that since 

variable X is by assumption not affected by any other variables, no confounders that affect both X and Y 

exist for the total population.  However, an analysis based on a sample of a particular population, such 

as an analysis of gender inequality in wages among employees, may make unobserved  as well as 

observed covariates of Y correlated with X because men and women may become employed and remain 

employed according to gender-specific selection processes.  In Figure 2, such a sample selection bias is 

equated with a control for an intervening variable VI that indicates the presence versus absence of 

employment.   Even if there are no confounders that affect both X and Y, there can be exogenous causes 

of Y that are neither causal antecedents nor causal descendants of X but are correlated with X.   We call 

such variables exogenous correlated causes.  Various family background characteristics as the correlates 

of race, such as parents’ education, occupation, and income, and family intactness at subject’s birth, are 

examples.   In Figure 2, variables VB indicate exogenous correlated causes, and the line without 

arrowheads that connects X and VB indicates a correlation without causation.  Variable U(VB) is the 

unobserved determinant of Y that remains when we control for VB .  We assume that although 

correlated causes VB affect U(VB), as family background affects  subject’s latent trait U(VB),  and the 

affected U(VB) in turn affects the outcome, U(VB) is conditionally independent of X, controlling for VB, 

U(VB) 

Y X 
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U(VB,VI) 

VB 
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that is, ( ) |B BX U⊥ V V .  This is the ignorability assumption we will make in this section.  However, we 

will also introduce later a method for the case where this ignorability assumption does not hold.   

        The variables VI indicate the intervening variables that can be subject to selection bias by an 

unobserved variable and can affect the unobserved variable, as in the case of selection bias in higher 

education by latent ability and the effect of educational attainment on latent ability.  In Figure 2, the 

path from U(VB) to VI, and the path from VI to U(VB,VI) indicate those effects, where variable U(VB,VI) 

indicates the unobserved determinant of Y that remains when we control for both VB and VI.  In 

accordance with the discussion of case 2 of Figure 1 in the previous section, even when  

( ) |B BX U⊥ V V  holds, ( , ) | ,B I B IX U⊥ V V V V  may not hold unless all intervening variables are 

exogenous and are not subject to selection bias by U(VB) .   In summary, in replacing assumption A3, we 

assume in this section, 

      Modified A3:  ( ) |B BX U⊥ V V  for exogenous correlated causes BV  of Y.  

It follows that: 

      Corollary from the modified A3:    ( , ) | ,B I B IX U⊥ V V V V  does not hold generally unless 

intervening variables IV are all exogenous, and, therefore, independent of ( )BU V  . 

      We do not make assumption A4.  Instead, we distinguish below between the case where all 

intervening variables are exogenous, and, therefore,  ( , ) | ,B I B IX U⊥ V V V V  holds, and the case 

where some intervening variables are endogenous, and, therefore,  ( , ) | ,B I B IX U⊥ V V V V  may not 

hold. 

      For the rest of this section, I will show that when ( ) |X U⊥ V V   holds, where V denotes covariates 

taken into account in the decomposition analysis, the DFL estimate of the decomposition provides an 

unbiased estimate of the direct treatment effect of X on Y not through V.  I derive this result by using 

both the standard RCM expression and an alternative expression that is more useful in identifying bias in 
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the DFL estimate.   In the next section, I will formally express the bias in the DFL estimate when 

( ) |X U⊥ V V  does not hold, and in the section after that, I introduce a method that tests and 

eliminates this bias.    

        Generally, the average direct treatment effect of X on Y not through V is concerned with the 

estimation of 1 0( | )E Y Y− V  and its average in the total population  

1 0 1 0( ) ( | ) ( )E Y Y E Y Y f d− ≡ −∫v v v v , where ( )f v is the probability density function of V in the total 

population, its average among the population of group 0, 

1 0 1 0( | 0) ( | ) ( | 0)E Y Y X E Y Y f X d− = ≡ − =∫v v v v , or its average among the population of group 1, 

1 0 1 0( | 1) ( | ) ( | 1)E Y Y X E Y Y f X d− = ≡ − =∫v v v v .     

          Suppose that we are interested in estimating 1 0( | 0)E Y Y X− = .  Since the estimate of 

0( | 0)E Y X =  is simply the sample mean of Y for subjects in group X = 0, we only need an estimate of 

the counterfactual mean 1( | 0)E Y X = .   Suppose that an ignorability assumption, 1 0( , ) |Y Y X⊥ V , 

holds.  This assumption is equivalent to assuming ( ) |X U⊥ V V  , as explained later.  Then  

1( | 0)E Y X =  can be expressed as follows. 

        

1 1

1

( | 0) ( | 0, ) ( | 0)

( | 1, ) ( | 0) (by the ignorability assumption)

( | 1, ) ( | 0)

( ) ( | 1, ) ( | 1)

( | 1) , (5)

obs

obs

obs

E Y X E Y X f X d

E Y X f X d

E Y X f X d

E Y X f X d

E Y Xω

ω

= = = =

= = =

= = =

= = =

= =

∫
∫
∫
∫

v

v

v

v

v v v

v v v

v v v

v v v v

 

 where  ( )ω v  is a weight that is the same as that defined in equation (4), that is, 

[ ] [ ]( ) ( 1) ( 0 | ) ( 0) ( 1| )p X p X p X p Xω = = = = =v v v . 
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and Eω  denotes the weighted mean with the weight ( )ω v .  Note, however, that unlike the derivation 

of equations (3) and (4) for the original DFL method described in the introduction, this derivation relies 

on the ignorability assumption.   Hence, a consistent estimator of the counterfactual mean 

1( | 0)E Y X =  is given as the weighted mean of observed Y among subjects in group X = 1 with weights 

that can be calculated using the consistent estimate of ( 1| )p X = v  by logit or probit regression.  

However, weight estimates  1iω  may not have the average of 1 for sample subjects in group X = 1, and 

therefore, it is better to employ the following adjusted weight for the ratio estimator  because it is 

known to be more efficient than the unadjusted estimate:   

                 ( )*

1 | 1i
i i ii x

Nω ω ω
=

≡ ∑  ,                             (6)    

where N1  is the number of sample subjects in group 1.  Then we obtain the following decomposition of 

difference in the mean of Y between the two groups, and this is the same as the DFL decomposition: 

        1 0

1 0 1 1

( | 1) ( | 0) ( | 1) ( | 0)
( | 0) { ( | 1) ( | 0)}.

E Y X E Y X E Y X E Y X
E Y Y X E Y X E Y X

= − = = = − =
= − = + = − =

               (7) 

      Suppose that X indicates the distinction between women (X = 1) and men (X = 0). Then 

1 0( | 0)E Y Y X− =  indicates the average direct treatment effect of gender on the outcome among men, 

that is, the average effect on men of being treated as a woman.  The second component, 

1 1( | 1) ( | 0)E Y X E Y X= − = , represents the difference in the mean of Y that would be eliminated if 

women had men’s covariate distribution, because 

   
{ }

{ }
1 1 1 1

1

( | 1) ( | 0) ( | 1, ) ( | 1) ( | 0, ) ( | 0)

( | 1, )( ( | 1) ( | 0)) (8)
v

v

E Y X E Y X E Y X p X E Y X p X d

E Y X p X p X d

= − = = = = − = =

= = = − =

∫
∫

v v v v v

v v v v
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holds.  Note that 1 1( | 1) ( | 0)E Y X E Y X= − =  becomes equal to the amount explained by the 

difference in the covariate distribution, because 1 1( | 0, ) ( | 1, )E Y X E Y X= = =v v  holds from the 

ignorability assumption, and without this assumption such an interpretation cannot be made for 

1 1( | 1) ( | 0)E Y X E Y X= − = . 

         Now we consider a slightly different derivation of the average direct treatment effect.  This 

alternative derivation becomes the basis of the extension of the DFL method for causal analysis 

described in the following sections.  We keep the assumptions made above for the modification of the 

RCM model and, in addition, we make the following additional assumption A5, which may appear to 

make the model slightly more specific than the typical RCM model – though generality is actually not 

lost.  The assumption is the following:  

      A5:  The unobserved determinant of outcome Y, including its possible interaction effects with V, is 

functionally linear in affecting the outcomes.   

       With this additional assumption, we can express the observed and potential outcomes by excluding 

the random error term whose mean for each individual is zero without loss of generality as:  

         0 0 0( , ) ( )i i u i iY uφ θ= +θ v v , and 

         1 1 1( , ) ( )i i u i iY uφ θ= +θ v v                                                   (9) 

Here,φ  is an unknown function, 0θ and 1θ  are parameters that characterize the effects of covariates V 

on Y0 and Y1, respectively, U is the unobserved determinant of the outcome, and 0 ( )uθ v  and 1 ( )uθ v , 

respectively, characterize the effect of U on Y0 and Y1 and its possible dependence on V due to possible 

interaction effects of V and U on Y0 and Y1.  The RCM model, without assumption 5, corresponds to a 

more general expression such that 0 0( , , )i i iY uφ= θ v and 1 1( , , )i i iY uφ= θ v .  However, since U is an 

unobserved variable that is not constrained in form, and since equation (9) can reflect the 
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unconstrained interaction effects of U and V on the outcome, the expression of equation (9) does not 

lose the generality of the RCM regarding the unconstrained heterogeneity of the treatment effects.   

     The ignorability assumption can now be expressed as |X U⊥ V , because as assumed in equation (9), 

Y0 and Y1 are functions of variables V and U.   Then, 1( | 0)E Y X =  is given as follows: 

,  

1 1 1

1 1

1 1

( | 0) ( ( , ) ( ) ) ( , | 0)

( | 0) ( ( , ) ( ) ) ( | , 0)

( | 0) ( ( , ) ( ) ) ( | , 1) (because | )

= ( | , 1) ( | 0)

( ) ( | , 1)

uu

uu

uu

obs

obs

E Y X u f u X dud

f X u f u X du d

f X u f u X du d U X

E Y X f X d

E Y X

φ θ

φ θ

φ θ

ω

= = + =

 = = + = 
 = = + = ⊥ 

= =

= =

∫ ∫
∫ ∫
∫ ∫
∫

v

v

v

v

θ v v v v

v θ v v v v

v θ v v v v V

v v v

v v ( | 1)

( | 1), (10)obs

f X d

E Y Xω

=

= =
∫v v v

 

where ( )ω v  is the same as that defined by equation (2).  Naturally, we obtain the same results for 

1( | 0)E Y X =  as equation (1). 

 

2.2   The Case Where Endogenous Intervening Variables Exist      

         In this section, I assume that the ignorability assumption |X U⊥ V  may not hold for the pair of 

equations (9) given in the previous section, either (a) because  the covariates of the decomposition 

analysis include some endogenous intervening variables or (b) because the ignorability assumption 

( ) |B BX U⊥ V V  does not hold even before the control for the intervening variables. 

        When X indicates a gender distinction as before, the mean of the counterfactual outcome where 

men had women’s covariate effects is now given as:           

      
1 1 1

1 1

( | 0) ( ( , ) ( ) ) ( , | 0)

( , ) ( | 0) ( ( ) | 0). (11)

uu

u

E Y X u f u X dud

f X d E u X

φ θ

φ θ

= = + =

= = + =

∫ ∫
∫

v

v

θ v v v v

θ v v v v
           

On the other hand, the weighted mean of observed outcomes among women with weights  
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( | 0) ( 1) ( 0 | )( )
( | 1) ( 0) ( 1 | )

f X p X p X
f X p X p X

ω = = =
≡ =

= = =
v vv
v v

                   

defined before in equation (2) is given as: 

       

1 1

1 1

1 1

( | 1) ( ) ( ( , ) ( ) ) ( , | 1)

( | 0) ( ( , ) ( | 1) ( | , 1) ( ( ) | 1))
( | 1)

( , ) ( | 0) ( ( ) | 1)). (12)

obs uu

uu

u

E Y X u f u X du d

f X f X f u X du d E u X
f X

f X d E u X

ω

ω

ω

ω φ θ

φ θ

φ θ

 = = + = 
=  = = = + = =

= = + =

∫ ∫

∫ ∫

∫

v

v

v

v θ v v v v

v θ v v v v v
v

θ v v v v

 

       Then from equations (11) and (12), we obtain 

      1 1 1( | 0) ( | 1) { ( ( ) | 0) ( ( ) | 1)}obs u uE Y X E Y X E u X E u Xω ωθ θ= = = + = − =v v .    (13) 

         The DFL estimator of the “unexplained” inequality with covariates  V is given as 

      ( | 1) ( | 0)obs obsE Y X E Y Xω = − = , and, therefore 

           1 0

1 1

( | 0) [DFL estimator for unexplained inequality]
       +{ ( ( ) | 0) ( ( ) | 1)}. (14)u u

E Y Y X
E u X E u Xωθ θ

− = =
= − =v v

           

Hence, the DFL estimator is an unbiased estimator of 1 0( | 0)E Y Y X− = only if U is independent of X in 

the weighted population with weights ( )ω v  for X = 1 and constant weights of 1 for X = 0.  However, if U 

affects intervening variables V, this does not hold because the DFL estimator has a bias of 

1 1( ( ) | 0) ( ( ) | 1)u uE u X E u Xωθ θ= − =v v .  In the next section, I introduce a method to eliminate this 

bias. 

         It is worth examining whether the DFL estimator for explained inequality can be interpreted as 

inequality that would be eliminated under another counterfactual situation: where women had men’s 

covariate distribution but retained their own value of u.  Recall that for such an interpretation, we have 

already seen in equation (8) that 1 1( | 1) ( | 0)E Y X E Y X= − =  requires the ignorability assumption 

|X U⊥ V  to hold.  However, we are concerned here with the meaning of 

( | 1) ( | 1)obs obsE Y X E Y Xω= − = , which can be expressed as 



 20 

( | 1) ( | 1) ( | 1, , ) ( , | 1)

( | 1, , ) ( ) ( , | 1)

( | 1, , )( ( | 1) ( | 0)) ( | 1, )

( | 1, )( ( | 1) ( | 0)) . (15)

obs obs obsv

obsv

obsv

obsv

E Y X E Y X E Y X u f u X d du

E Y X u f u X d du

E Y X u f X f X f u X d du

E Y X f X f X d

ω

ω

= − = = = =

− = =

= = = − = =

= = = − =

∫
∫
∫
∫

v v v

v v v v

v v v v v

v v v v

. 

         Hence, the interpretation holds: the DFL estimate for the “explained” component of inequality can 

still be interpreted as the extent of inequality that would be eliminated if women had men’s covariate 

distribution.   

However, there is an important caveat.  There is an inherent ambiguity in conceiving the 

counterfactual situation at the individual level for the case where women have men’s covariate 

distribution.  This is unlike the other counterfactual situation where men have women’s covariate 

effects, which can be specified at the individual level as a change of parameters from the set of 

0 0{ , }uθθ to the set of 1 1{ , }uθθ .  The derivation above is based on an implicit assumption that 

( | 1, )f u X = v remains the same when the  macro-social distribution of V changes.  Such a result will be 

realized under the counterfactual situation where for each group of women for a given v, their 

proportion in the population changes from ( | 1)f X =v  to ( | 0)f X =v .  Then, ( | 1, )f u X = v  will 

remain the same because we have the same set of women for each value of v.  As an example, this 

implies that for a counterfactual situation where the proportion of college graduates increases from a 

factual 40% to a hypothetical 50%, we are assuming implicitly that the 40% of women who actually 

attained college graduation would occupy the 50% of women.  This contrasts with counterfactual 

situations where women’s proportion of college graduation reached 50% via other mechanisms: for 

example, where an additional 10% of women, among those who actually did not attain college 

education, newly attain college graduation.  In this case, the ( | 1, )f u X = v  may not remain the same 

because we do not know the joint distribution of  U and  V for those additional 10%.  Hence, if we do not 
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make the assumption that ( | 1, )f u X = v  will remain the same under macro-social change in the 

distribution of V, we cannot interpret the DFL component of “explained inequality” as the extent of 

inequality that would be eliminated when women had men’s covariate distribution.  Note that if we 

make a stronger assumption that the covariates are exogenous, and therefore 

( | 1, ) ( | 1)f u X f u X= = =v , then the above-mentioned qualification for the counterfactual situation 

when women have men’s covariate distribution becomes unnecessary.  This is the situation that the 

original DFL method as well as the BO method assumes.   

As a conclusion, the DFL method permits an interpretation of the “explained” component of 

inequality – even when covariates are endogenous – as the extent of inequality that would be 

eliminated under the counterfactual situation where each group of women who attained a distinct set 

of covariate values occupies the women’s population as much as the group of men of the same 

covariate set does for the men’s population.  However, the “unexplained” component may not be 

interpreted as the extent of inequality that would be eliminated if men were treated like women.   

    

2.3   A Method for Eliminating Bias in the Decomposition Analysis 

          A good thing about the results of equation (14) is that in order to eliminate bias in the DFL 

estimate of unexplained inequality as an estimate of the direct treatment effect of X on Y, we do not 

need to eliminate selection bias in all the endogenous intervening variables, but only need to eliminate 

the effect of covariance between X and U that may exist when covariates V are held constant.  This is 

because we already have some methods for handling such a problem.   Another merit of equation (11) is 

that it shows that bias in the DFL estimate arises from a significant covariance between X and U 

independent of the cause of the covariance between X and U.  The covariance may be introduced by 

holding intervening covariates VI constant or may have existed prior to a control for intervening 

variables because the ignorabillity assumption ( ) |B BX U⊥ V V does not hold.  Regardless of the 



 22 

alternative cause of the covariance between X and U, we can obtain an unbiased estimate of the direct 

treatment effect of X if we eliminate the effect of this covariance.    

          When the methodological issue is the endogeneity of variable X, then a standard econometric 

method includes the econometric instrumental-variable (IV) method for linear regression.  However, we 

will not use that method.  The method makes a much stronger assumption than the RCM, and, in 

particular, assumes that the effect of X on Y is homogenous and is represented by a single regression 

coefficient.  Although the reformulation of the IV method from the RCM was made by Angrist et al. 

(1996) as the local average treatment estimator (LATE), this alternative method requires that the single 

dichotomous instrumental variable causally precedes and affects the treatment variable X.   Such an 

instrumental variable assumed by the LATE, however, does not exist when the treatment variable 

indicates a variable such as sex or race that is not affected by any other variable.  A person-specific 

fixed-effect model with panel survey data can be employed for the BO decomposition method to handle 

the issue of endogenous covariates if the treatment variable is time-varying (Fortin et. al. 2011). A a 

model with person-specific fixed effects, however, cannot be employed in the present case where the 

treatment-assignment variable is gender or race where nobody in the sample experienced a treatment, 

that is, an observed change in race or gender.     

             Hence, this paper considers a combination of the method introduced in the preceding section 

with Heckman’s two-step estimation method (Heckman 1979; Heckman and Robb 1986 ) for handling 

selection bias in the state of a dichotomous categorical state by modeling correlated errors, because 

although it makes additional assumptions about a parametric characterization of the error terms, and 

about a condition described below for instrumental variables to satisfy , we can retain other 

assumptions described in the preceding sections.  The original Heckman method, however, was 

developed for linear regression models for the outcome. We therefore need a modified derivation of 
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the method with a semiparametric model for the outcome without assuming independence between 

covariates and the unobserved determinant of the outcome. 

          Since this method relies on a probit regression that assumes an underlying continuous variable X*, 

described below, one may argue that it is not adequate for predicting X, such as sex or gender, which is 

a nominal categorical variable.   If we assume the error to be subject to unobserved random variability 

beyond the binomially distributed random error associated with a dichotomous outcome of a latent 

probability, probit regression with the normally distributed error seems an acceptable option. However, 

researchers who are hesitant about this option may employ a variation of the Heckman method based 

on the logistic selection equation (Dubin and Rivers 1989), though such an alternative does not permit 

the two-step procedure described below.   

            We consider the weighted population characterized by weights ( )ω v , which are defined by 

equation (2) for X = 1 and are constant at 1 for X = 0.  It is because we are concerned with the 

elimination of non-independence between X and U that may exist after this weighting.  For the weighted 

population, we assume X ⊥ V because both group 0 and group 1 have ( | 0)f X =v  when 

observations in the group with X = 1 are weighted by ( ) ( | 0) / ( | 1)p X p Xω = = =v v v .  We assume 

that the sample weighted by the estimate of ( )ω v  also satisfies X ⊥ V statistically – though this 

condition actually needs to be satisfied with the propensity scores estimated in the analysis.   The model 

for the observed and potential outcome at the individual level is the same as equation (6), as before, 

although we denote the unobserved determinant of Y by  Uy below.    

         We assume that for the weighted population, the set of covariates W predicts variable X* defined 

below.   We do not include covariates V as predictors of X because V should be statistically independent 

of X for the weighted sample.  Note that not unlike the estimation of the propensity score ( 1 | )p X = v  

in the DFL method, the use of the probit model in predicting X does not imply that the variables W affect 

X, because we are concerned only with the modeling of covariance of Ux and Uy , where Ux indicates the 
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error term of X* defined in equation (17) given below, to eliminate bias generated by covariance 

between X and Uy .  However, variables W should be instrumental variables for which the following 

condition must hold:  

      | , . (16)obsY X⊥ W V  

It is a condition that can actually be tested with data for the candidates of instrumental variables.  It 

follows that the parameters of equations (9) are not affected by W.  Note that since 1 obsY Y=  when X = 

1 and  0 obsY Y=  when X = 0,  Y1 and Y0 are both are functions of V and Uy .  It follows that the condition 

of equation (16) also implies that | ,U X⊥ W V holds.  In other words, although we do not make the 

ignorability assumption of  |U X⊥ V , we make a distinct ignorability assumption | ,U X⊥ W V  for 

the instrumental variables.    

    For such W, we also make the following assumption:   

 A6: Variable X takes a value of 1 if  X* > 0 is satisfied for the latent continuous variable X*, and X* 

satisfies the following model: 

      ,* ( ) ,  i i x iX uγ= +w                                                           (17) 

, ,where ( ) 0,  ( ) 1,x i x iE u V u= = and ( )γ w  is a parametric function of W that needs to be specified.  

Finally, we also make another assumption about the bivariate distribution of Ux and Uy : 

     A7   For given values of V, Variable Uy has conditional mean ( | )yE u v  and variance 

2( | ) ( ),y yV u σ=v v and {Ux, Uy} are bivariate normally distributed with covariance 

( , | ) ( ).x y xyCOV u u σ=v v  
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     Hence, we allow the mean and the variance of Uy and the covariance between Ux and Uy to depend 

on V.   This seems natural, because the covariance between X and Uy can be induced by holding 

covariates V constant. 

               According to Johnson and Kotz (1972; see also Heckman 1979, Maddala 1983), we generally 

obtain for a bivariate normal distribution ( , , , , )x y x y xyN u u σ σ σ with ( ) ( ) 0x yE u E u= = ,  

        

( )( | ) ( / ) ,
1 ( )y x xy x

ZE u u c
Z

φσ σ> =
−Φ

 

where / xZ c σ= , and ( )Zφ  and ( )ZΦ are, respectively, the probability density function and the 

cumulative distribution function of the standard normal distribution. 

        Since ( | ) ( ) ( | ) ( ) ( ) 0,y x x y x x yE u u c p u c E u u c p u c E u> > + < < = =   

we obtain
  

( | ) ( | ) ( )) / ( ))

( ) 1 ( ) ( )( / ) ( / ) .
1 ( ) ( ) ( )

y x y x x x

xy x xy x

E u u c E u u c p u c p u c
Z Z Z

Z Z Z
φ φσ σ σ σ

< = − > > <

−Φ
= − = −

−Φ Φ Φ

 

      For the present method, the mean of yu may depend on covariates V because of their possible 

endogeneity.  However, since the above characteristics hold for * ( | )y y yu u E u≡ − v  that satisfies 

( * | ) 0yE u =v
 and ( , * | ) ( , | )x y x yCOV u u COV u u=v v , we obtain from | ,yU X⊥ W V  and 1xσ =  

that 

           

( | , , 0) ( | , 0) ( | , ( ))

( ( ))( | ) ( )
( ( ))
( ( ))( | ) ( ) , (18)

1 ( ( ))

y y y x

y xy

y xy

E u X E u X E u u

E u

E u

γ

φ γσ
γ

φ γσ
γ

= = = = < −

−
= −

Φ −

= −
−Φ

v w v v w
wv v
w

wv v
w
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and    

           

( | , , 1) ( | , 1) ( | , ( ))

( ( ))( | ) ( )
1 ( ( ))

( ( ))( | ) ( ) . (19)
( ( ))

y y y x

y xy

y xy

E u X E u X E u u

E u

E u

γ

φ γσ
γ

φ γσ
γ

= = = = > −

−
= +

−Φ −

= +
Φ

v w v v w
wv v

w
wv v
w

               

      Now we can reevaluate bias in the DFL estimate, which is given in equation (14) as 

1 1( ( ) | 0) ( ( ) | 1)u uE u X E u Xωθ θ= − =v v .   We first derive the case where neither 1 ( )uθ v  nor ( )xyσ v  

depends on V.  Then, we obtain from equations (18) and (19), 

{ }
{ }

1 1

1

1

1

1

( | 0) ( | 1)

( | , , 0) ( , | 0)

( ) ( | , , 1) ( , | 1)

( ( ))( | ) ( | 0) ( , | 0)
1 ( ( ))

( ) ( | ) ( | 1) ( )

u y u y

u y

u y

u y xy

u yv

E u X E u X

E u X f X d d

E u X f X d d

E u f X d f X d d

E u f X d

ωθ θ

θ

θ ω

φ γθ σ
γ

θ ω ω σ

= − =

= = =

− = =

 
= = − = −Φ 

− = +

∫ ∫
∫ ∫

∫ ∫ ∫

∫

v w

v w

v v w

v w w v w v

v v w w v w v

wv v v w v w v
w

v v v v v

1

( ( )) ( , | 1)
( ( ))

( ( )) ( ( ))0 1 . (20)
1 ( ( )) ( ( ))

xy

u xy

f X d d

E X E Xω

φ γ
γ

φ γ φ γθ σ
γ γ

 
= Φ 

     = − = + =    −Φ Φ     

∫ ∫v w

w w v w v
w

w w
w w

 

Note that the first component of 1( | 0)u yE u Xθ = and that of 1( | 1)u yE u Xω θ =  that depend on 

( | )yE u v  are canceled out because ( ) ( | 1) ( | 0)f X f Xω = = =v v v .    

       Let H for each person i with iw be defined as     

       

( ( )) when 0
1 ( ( ))

. (21)
( ( )) when 1
( ( ))

i
i

i
i

i
i

i

X
H

X

φ γ
γ

φ γ
γ

 = −Φ ≡  
 =
 Φ 

w
w

w
w

 

Then, by combining this with equation (14), we obtain: 
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( ) ( ){ }

1 0

1

( | 0) ( | 1) ( | 0)

       0 | 1 . (22)
obs obs

u xy

E Y Y X E Y X E Y X

E H X E H X
ω

ωθ σ

− = = = − =

− = + =
 

      Since the estimates of ( )0E H X =  and ( )| 1E H Xω = can be obtained from weighted probit 

regression with X as the dependent variable and W as covariates, the remaining issue is the estimation 

of 1u xyθ σ .   The expected value of the observed outcome at the individual level for person i with Xi = 1, is 

given from equations (9) and (19) as: 

           
, | 1 1 1

1 1 1

( ) ( , ) ( | , 1)

( ( ))( , ) ( | ) . (23)
( ( ))

iu obs i x i u y i i

i
i u y i u xy

i

E y E u X

E u

φ θ

φ γφ θ θ σ
γ

= = + =

= + +
Φ

v θ v

wv θ v
w

 

Hence, an estimate of 1u xyθ σ  is given by the coefficient of ( ( )) / ( ( ))i iφ γ γΦw w , which is Heckman’s 

inverse Mill’s ratio.  Note that ( | )y iE u v  is not a function of unknown individual  ,y iu  but is a function 

of iv  and the parameters of the conditional distribution of yu , ( | )yf u v .   Since 1( , )φ v θ  and 

( | )y iE u v are both functionally unspecified, we have two options here in estimating 1u xyθ σ .     

        Suppose that we have an effective single categorical instrumental variable W, and let  

     ( ) ( | 1) / ( | 1, )W p W X p W Xω ≡ = =v V  .                                                   (24) 

Then, it follows that 

    

( | 1)( ) ( , , | 1) ( | 1) ( | 1, ) ( | 1, , )
( | 1, )

( | 1) ( | 1, ) ( | 1) since | ,

( , | 1) ( | 1). (25)

W y y

y y

y

p w Xf w u X p X p w X p u X w
p w X

p X p u X p w X U W X
p u X p w X

ω =
= = = = =

=
= = = = ⊥

= = =

v v v v v
v

v v V
v
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            Equation (25) shows that the data of X = 1 weighted by ( )Wω v  preserve the joint distribution of  

V and U and the distribution of W becomes independent .  This independence of W from the weighted 

joint distribution of V and U  holds when the data of X =1 is weighted further by 

( ) ( | 0) / ( | 1)p X p Xω = = =v v v .   When W is independent of (V,Uy) for X = 1, then 

( ( )) / ( ( ))i i iH φ γ γ= Φw w  in equation (23) is independent of both 1( , )φ v θ  and ( | )y iE u v . Then we 

can apply a regression equation y a bH ε= + + to the data of X = 1 weighted by the estimate of 

( ) ( )Wω ωv v , because the effects of 1( , )φ v θ  and ( | )y iE u v are independent of H in the weighted 

sample and can therefore be ignored, and we obtain an estimate of 1u xyθ σ  as the estimate for 

coefficient b.  This strategy retains the semiparametric characteristic for the outcome.    

           When an effective single categorical instrumental variable is not available, however, we have to 

control for the effects of covariates V in linearizing the covariate effects in equation (19) in order to 

obtain an estimate of 1u xyθ σ .  Since we wish this estimate to depend little on the modeling of 

1( , ) ( | )i y iE uφ +v θ v as a function of iv , it is desirable to employ the categorical expression of 

covariates, and all significant two-way and higher-order interaction effects among the covariates should 

be included in the model.  

                When either 1 ( )uθ v  or ( )xyσ v  or both depend on V, equation (20) holds for each given set of 

covariates V, and therefore, we obtain 

       ( ) ( )( ){ }
1 0

1

( | 0) ( | 1) ( | 0)

       ( ) ( ) , 0 | , 1 . (26)
obs obs

u xy

E Y Y X E Y X E Y X

E E H X E H X
ω

ωθ σ

− = = = − =

− = + =v v v v
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 We can model and estimate 1 ( ) ( )u xyθ σv v by including the interaction effect of covariates V and the 

control variable H. Two options regarding the unbiased estimation of such interaction effects are the 

same as before. 

        We need caveats for interpreting the interaction effects of X and another variable, say V1 , on the 

outcome, that is, for the estimate of 1 0 1 1 0 1( | 0, ) ( | 0, )E Y Y X V a E Y Y X V b− = = − − = = .  Interpreting 

them requires caveats because although we can obtain an unbiased treatment effect of X by following 

the procedure described above, we do not make any control for possible selection bias in the state of  

V1 , and therefore, the interaction effect 1 0 1 1 0 1( | 0, ) ( | 0, )E Y Y X V a E Y Y X V b− = = − − = =  cannot be 

interpreted as the unbiased effect of V1  on change in the direct treatment effect of X on Y.   On the 

other hand, each of 1 0 1( | 0, )E Y Y X V a− = =  and 1 0 1( | 0, )E Y Y X V b− = =  permits an interpretation 

respectively as the direct treatment effect of change in X among people with X = 0 and 1V a=  and that 

among people with X = 0 and 1V b= , but the interaction effect should be interpreted simply as a 

difference in the treatment effect of X on Y between the two groups that differ in the state of V1 , and 

this difference is not independent of the selection bias in the state of  V1  .    

      The application should be done in the following steps. 

    Step 1.  We employ either a logit or probit regression to obtain a consistent estimate of 

( 1 | )p X = v .   We need to conduct a diagnosis for an adequate construction of propensity scores to 

generate weighted sample for which statistical independence between X and V should hold.  

    Step 2.  We create weights ( )ω v for the group with X = 1, and constant weights of 1 for the  group 

with X = 0.    We need to re-create ( )ω v   when the diagnosis indicates inadequacy. 

    Step 3.  We apply the probit model using the instrumental variable W with data weighted by ( )ω v .     
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    Step 4.   We create variable 
( ( ))
( ( ))

i
iH φ γ

γ
=
Φ

w
w

 for each sample individual i in group X = 1, and assign a 

value of 
( ( ))

1 ( ( ))
i

i
i

H φ γ
γ

=
−Φ

w
w

 for each sample individual i in group X = 0. 

   Step 5.  If an effective single categorical instrumental variable W was available and employed in step 

3, we need to create a second set of propensity-score weights, ( )Wω v  by obtaining the estimate of 

( | 1, )p W X = v  with the data of X = 1 by logistic regression or probit regression, or by their multinomial 

versions.  We need to conduct a diagnosis for an adequate construction of the weight that should attain 

statistical independence between W and V.   

      Step 6.  With sample data of X = 1 weighted by ( ) ( )Wω ωv v , we run the outcome regression with 

only H as the  predictor to obtain an estimate of 1h xyθ σ . as the regression coefficient of H .   

     Step 7.   We should elaborate step 6 by trying various possible interaction effects of H and a subset 

of V to identify the best fitting model.   

    Step 8.  If the control variable H shows a significant effect in step 6 or 7, then we calculate the 

adjusted estimate of 1 0( | 0)E Y Y X− =  by using equation (22) and the estimate of 1h xyθ σ when no 

interaction effect of H and V exist, and by using equation (26) and the estimate of 1 ( ) ( )u xyθ σv v  when 

some interaction effects of H and V exist.  

     The following step 5* should be substituted for steps 5 and 6 when we do not have an effective  

single categorical instrumental variable, and should conduct step 7 as an elaboration of step 5*.       

 Step 5*.  With the sample data of X = 1  weighted by ( )ω v we run the outcome regression with X, 

covariates V, and H as predictors to obtain an estimate of 1u xyθ σ . 
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      Note that if we wish the outcome to reflect an alternative counterfactual situation where women 

for whom X = 1 were treated like men (for whom X = 0), we only need to replace the above-described 

procedure by switching the categories of the dummy variable X. 

3.  APPLICATION 

3.1   Data and Alternative Hypotheses on the Nature of Endogeneity 

        The application presented here employs data from the Comparative Survey of Work Life Balance 

conducted in 2009 by the Research Institute of Economy, Trade and Industry (RIETI) in Japan for the 

population of employees in four countries.  The following analysis uses the sample of employed men 

and women of ages 23-59 in Japan.   The survey for Japan includes a nationally representative random 

sample of white-collar regular employees in firms with 100 or more employees.  Excluding  692 samples 

with missing values of annual wage/salary, or 7.3% of the total, reduces the sample size to 8,811; 6,145 

men and 2,666 women.  While about 41% of people in the labor force were women in Japan, regular 

employment was underrepresented by women, leading to a smaller proportion of female samples than 

that in the labor force. 

       The analysis focuses on the decomposition of gender inequality in earned annual income into 

components that are not explained by the following covariates.   Two nested models for covariates are 

employed.  The first model employs age (7 categories), education (4 categories), employment duration 

for the current employment (8 categories), and marital status (2 categories).  The second model adds to 

model 1 the average hours of work per week (4 categories).  The two models are used to clarify how 

much of the proportion of gender inequality in earned annual income is explained by gender difference 

in the first four covariates and how much more can be explained by taking into account gender 

difference in hours of work as an additional covariate.  Unlike employees in the United States, the 

majority of white-collar employees in Japan, other than those in the managerial position and certain 
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professionals, are not exempt from payment for overtime work, and therefore, hours of work strongly 

affect earned annual income among white-collar regular employees.      

      For the gender effect, exogenous correlated causes may not exist, because men and women are 

equally likely to be born into various families.   Age, education, and employment duration are major 

human-capital variables in Japan, where the age-based or duration-based nenko wage system is still 

quite prevalent.  Hours of work differ greatly depending on the combination of gender and marital 

status, because married women work fewer hours than married men even among regular employees.  

The instrumental variables are (1) whether the subjects ever had a childcare leave, and (2) the extent of 

agreement about a statement that “men and women should both aim at a balance between family and 

work.”  For item (2), two dummy variables were constructed for the responses “I strongly agree” and “I 

somewhat agree” as contrasted with the remaining  three categories, which did not indicate agreement.  

As shown later, those three variables, one for childcare leave and two for work-family balance, have 

strong correlations with gender, and at the same time no unique effects on earned annual income when 

the effects of the four covariates of model 1 and their significant interactions are controlled for. 

           Marital status is a strong indicator of gender-specific sample selection because about 60%-70% of 

women quit their jobs during periods of childrearing, and because many Japanese firms give priority for 

regular employment to those who have graduated from schools in the recent past, many women 

reentering the labor force after they quitted their jobs get employed as irregular employees.  Hence, a 

strong interaction effect of gender and marital status on exit from and reentry into regular employment 

exists.  Hence, sample selection bias in regular employment by the unobserved determinants of income 

may also exist for the combination of gender and marital status, in addition to the possible induced 

correlation between latent ability and gender when education is held constant under gender inequality 

in educational attainment in Japan.  The gender-specific selection mechanism associated with marital 
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status may generate an association between the unobserved determinant of income and gender in two 

ways that predict the opposite direction of association. 

 

      The opportunity costs hypothesis.  Women whose opportunity costs of leaving their jobs are 

relatively higher because of their better prospects for future income are more likely to remain as regular 

employees during the periods of childrearing and are more likely to reenter the labor force. This 

tendency will generate a positive correlation of marital status (the married versus the single) with the 

unobserved variable that positively affects income among women. 

      

      The adverse selection hypothesis.  Statistical discrimination against women -- which is believed to 

exist strongly in Japan, especially for married women, because of many employers’ reinforcement of the 

traditional division of household labor-- will make women with higher income potential than others 

more likely to quit during the periods of childrearing  and less likely to reenter the labor force.  This 

tendency will generate a negative correlation of marital status (the married versus the single) with the 

unobserved variable that positively affects income among women.   

 

          The theory of the adverse selection mechanism associated with discrimination was introduced by 

Schwab (1986), who applied the theory of information asymmetry and consequent adverse selection 

initially theorized by Akerlof (1970)  in the context of the commodity market rather than in the context 

of the labor market.  Since selection bias in the unobserved variable occurs mainly for women after 

marriage, the two hypotheses will yield a significant correlation of gender and the unobserved variable 

among the married, but in the opposite direction. 

         

3.2     Preliminary Analyses 
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        Two kinds of preliminary analyses were conducted. One was concerned with the diagnosis of 

adequacy in the construction of propensity scores.  While the statistical independence of the joint 

distribution of covariates from gender by weighted data cannot be tested completely, the paper tests (1) 

the statistical independence of each covariate from gender after weighting by ( )ω v and (2) the absence 

of significance of all covariates combined for the logistic regression model employed in estimating 

propensity scores after the weighting.   

      The second preliminary analysis is concerned with testing the adequacy of the instrumental variables. 

 

3.2.1.   Propensity Score Estimation and Its Diagnosis 

          A logistic regression is employed in the estimation of propensity scores in predicting the gender 

distinction.  For model 1 with four covariates, in addition to the main effects of the covariates, 

significant category-by-category interaction effects between education and age, and marital status and 

age, were found by pairwise tests of all possible interaction effects and are therefore included.  For 

model 2, various interaction effects involving hours of work as well as its main effects were found to be 

significant, and they were all necessary to attain statistical independence between gender and the five 

covariates.  Those interaction effects included in model 2, in their most parsimonious form, are (a) 

category-by-category interaction effects between hours of work and marital status, (b) interaction 

effects between working 49 hours or more and education, (c) interaction effects between working 49 

hours or more  and linear age (based on the distinction of 7 categories), (d) three-factor interaction 

effects between working 49 hours or more, marital status, and education, (e) three-factor interaction 

effects between working 49 hours or more,  marital status, and linear age.   While factor (c) was not 

statistically significant, it was included because higher-order interaction effects, factor (e), need to be 

included. 
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       Table 1 presents for each model the test of independence between each covariate and gender, and 

the significance test of the effects of all covariates, including their interaction effects, in the logistic 

regression before and after weighting by the propensity-score weights.   The results in Table 1 show that 

although the covariates are strongly associated with gender individually as well as jointly, those 

associations almost completely disappear for data weighted by propensity-score weights defined by 

equation (2).    

                                                         (Table 1 About Here) 

 

3.2.2    Examinations of Instrumental Variables 

       We need to confirm two facts for the instrumental variables to be effective: (1) condition 

| ,obsY X⊥ W V  holds, and (2) the instrumental variables are strongly associated with gender. 

      Table 2 presents the results from a linear regression model on income with gender, the four 

covariates, and all significant category-by-category interaction effects between gender and each 

covariate as control variables, along with instrumental variables.  The coefficients for the control 

variables are omitted.   Results show that none of the instrumental variables affect income significantly.   

An additional analysis with five covariates, though the results are omitted here, led to the conclusion.   

                                                (Table 2  About Here)   

       Table 3 shows, for data weighted by propensity scores obtained for each of the two models for 

predicting propensity scores, the results of a probit regression with instrumental variables.  The results 

indicate that, controlling for covariates V, the effects of instrumental variables in predicting the 

proportion of women are all significant at the 0.1% level for the results from each model and that 

women are more likely to take a childcare leave and are more likely to agree with the statement on the 

importance of balancing family and work for both men and women. 

                                           (Table 3 About Here) 
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3.3  Main Analyses 

          First, I tested whether gender was correlated with the unobserved determinant of the outcome.  

Since no effective single categorical instrumental variable was available, I employed the second 

procedure for the estimation of 1h xyθ σ  by using the sample of women as specified by equation (19).  

The control variables included in modeling equation (19) to estimate 1h xyθ σ  for the model with four 

covariates are categorical effects of all the four covariates and category-by-category interaction effects 

of age and education that were found to be significant.  For the model with the five covariates, the main 

categorical effects of hours of work and category-by-category interaction effects of age and hours of 

work were also added.  The effect of the inverse Mills ratio was not significant at the 5% significance 

level, and neither were its interaction effects with each of the covariates for each of the two models.  

Hence, neither the opportunity costs hypothesis nor the adverse selection hypothesis was supported – 

though it is possible that both hypotheses held but their effects canceled out each other.  Hence, in the 

present analysis, the DFL estimate can be interpreted as the decomposition of gender inequality in 

income into the direct treatment effect of gender and the effect explained by gender difference in 

covariate distributions.      

      Table 4 shows the results from (1) the unweighted regression without covariates (model 0),  (2) the 

weighted regression without covariates (model 1A) and with covariates (model 1B) with weights based 

on the propensity scores of model 1 with four covariates, and (3) the weighted regression without 

covariates (model 2A) and with covariates (model 2B) with weights based on the propensity scores of 

model 2 with five covariates.  Models 1A and 2A give the standard DFL estimates, and models 1B and 2B 

give doubly robust estimates of them (Bang and Robins 2005).  Models 0, 1A and 2A without covariates 

do not assume any regression equation, because their coefficients are just the average income for men 

for the intercept and the difference in the average income between women and men for the effect of 
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gender.   Agreements in the gender effect between models 1A and 1B and between models 2A and 2B 

are expected from the statistical independence between gender and covariates in the weighted sample 

and are confirmed here. A comparison of models 0 and 1A indicates that the gender difference in 

earned annual income explained by the gender difference in the four covariates (age, education, 

employment duration, and marital status) is about  34% [=(189.7-125.9)/189.7=0.336].  Similarly, a 

comparison of models 0 and 2A indicates that the gender difference explained by five covariates (the 

four covariates and hours of work) is about 43% [=(189.7-108.4)/189.7=0.429].  Hence, by adding hours 

of work as an additional covariate, the proportion of explained gender inequality increases by about 9%.    

          Table 5 shows the results from (1) the unweighted regression without covariates, and (2) the two 

DFL estimates, but adds the main effects of marital status and the interaction effect of gender and 

marital status.  Similar to models 0, 1A, and 2A in Table 4, those three models without covariates do not 

assume any regression equation, because their results are based only on the average income for the 

cross-classification of gender and marital status without weights and with weights.  It should be noted 

first that the propensity-score weighting we employed makes only gender distribution statistically 

independent of the covariates; it does not make marital-status distribution statistically independent of 

the covariates.  Hence, as described in the section “Method,” the strong interaction effect of gender and 

marital status, which indicates that gender inequality in income is much greater for married women 

than for single women, does not indicate the average treatment effect of marital status.  Since the RCM 

assumes heterogeneity of treatment effects, which are gender effects here, the greater gender effect on 

income among the married than among the single can reflect both (a) the treatment effect of marital 

status on income, and (b) difference between single and married persons in the composition of 

heterogeneous gender effects on income. On the other hand, we can still interpret the gender effect 

after the weighting by propensity-score weights as the average treatment effect of gender for each 

category of marital status.   The results of Table 5 for those gender effects are summarized in Table 6.  
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The decomposition in Table 6 is based, for example, on the calculation that the extent of gender 

inequality in annual income explained by the gender difference in age, education, and employment 

duration is 38% [=(101.7-63.1)/101.7] for the single and 30% for the married   [=(101.3+113.2-63.1-

86.4)/(101.3+113.2)] .   In particular, the results of Table 5 indicate that the additional consideration of 

gender difference in hours of work makes only a small contribution to the explained proportion for the 

single, but it makes a much larger contribution to the explained proportion for the married, increasing 

the proportion from 30% to 41%.  Hence, gender differences in income come not only from gender 

differences in human capital but also from gender differences in hours of work among married women, 

which seem to be caused by the greater share of family roles for married women than for married men.   

However, for both the single and the married, nearly 60% of the gender inequality income cannot be 

explained by the covariates included in the model, suggesting some consequences of discrimination 

against women.   

               

4. CONCLUSION 

      While decomposition analysis for inequality is quite useful, its assumption may be problematic when 

we evaluate the method from the counterfactual conception of causality despite the fact that the 

decomposition itself implicitly assumes a counterfactual situation.  This paper reformulated the 

DiNardo-Fortin-Lemieux (DFL) method from the viewpoint of the Rubin’s causal model and introduced a 

method to correct its possible bias by combing the DFL method with Heckman’s two-step method for 

the control of selection bias.  I consider the use of the method introduced in this paper a complement to 

the DFL method for examining the possibility of bias in DFL decomposition analysis and for detecting the 

direction of bias. 

      Since the issue in decomposition analysis is the possible non-independence between the unobserved 

determinant of the outcome and the treatment variable, some other methods, such as the use of a pair 
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of latent-class variables, may be used for the same purpose when the outcome variable is categorical, 

such as being a manager or not, because the method introduced in this paper by combining the DFL 

method with a linear regression based on Heckman’s method for adjustment is not employable for such 

a dichotomous outcome.  The formal expression of bias by equation (14), however, holds regardless of 

the choice of a method for eliminating the bias, and the formal results shown in this paper will be useful 

for such further methodological developments. 

        This paper also intends to bring gender and race back into the center of statistical causal analysis.  

As I discussed in the introduction, the use of panel survey data for causal analysis seems to have 

diminished the importance of gender or race in statistical causal analyses because of a lack of 

methodological framework to handle such time-constant exogenous variables as the treatment variable 

in causal analysis.  I believe that the discussion and the method presented in this paper will lead to a 

reconsideration of such trends, and will be complementary to the experimental audit method, since 

gender and racial inequality is a major substantive research topic in sociology.  
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      Table 1. Diagnostic Tests of Statistical Independence between 

           Gender and Covariates after Weighting 

───────────────────────────────────────────────────────────────────   
 Covariates                                 
                             L2    df     P      L2    df     P     
┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉ 
I. Before propensity-score weighting 
1. Pairwise test on independence of the covariate from gender  
 (1) Age                   545.96   6   0.000                              
 (2) Education             956.63   3   0.000       
 (3) Employment duration   247.89   7   0.000          
 (4) Marital status        757.98   1   0.000                
 (5) Hours of work         804.27   3   0.000  
 
2. Logistic regression to predict propensity scores 
Model 1 with 4 covariates 2,202.98 41   0.000       
Model 2 with 5 covariates 2,805.20 58   0.000    
 
II. After propensity-score weighting 
 
                            Model 1                 Model 2 
1. Pairwise test on independence of the covariate from gender 
 (1) Age                    1.82   6  0.935      6.68   6   0.352  
 (2) Education              1.57   3  0.666      0.49   3   0.922    
 (3) Employment duration    3.86   7  0.797      6.96   7   0.434 
 (4) Marital status         0.14   1  0.713      0.10   1   0.750  
 (5) Hours of work          ----   -  -----      6.46   3   0.091    
 
2. Logistic regression to predict propensity score      
                           19.52  41 0.998      42.79  58   0.933      
         
   
──────────────────────────────────────────────────────────────────── 
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Table 2. Insignificance of Instrumental Variables on Income 

(in 10,000 yen)    

───────────────────────────────────────────────────────────────────   

                           Coefficient   S.D.      t      P                                                                             
┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉ 

I. Intercept + Covariate effects (38 parameters)   Omitted 
II. Instrumental variables. 
1.  Ever had a childcare leave 

                              6.385      8.153      .78    .434   
2.  Importance of balancing family and work for both men and women 

(versus “can’t agree or disagree”, “somewhat disagree” or 
“strongly disagree”                  

(1) “strongly agree”   -1.753     4.533      .39    .699  
(2) “somewhat agree”   -2.164     4.479      .48    .629     

───────────────────────────────────────────────────────────────────   
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Table 3. The effects of Instrumental Variable on Gender for the 
Weighted Population: Probit Regression 
───────────────────────────────────────────────────────────────────  

                       Model 1                        Model 2  

                     B    S.D.   Z    P      B    S.D.   Z    P                                                                       
┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉ 
  
1. Intercept       -1.016 0.032 32.04 .000  -1.017 0.032 31.97 .000  
2. Ever had a childcare leave 
                    1.522 0.055 27.92 .000   1.410 0.056 25.11 .000     
3. Importance of balancing family and work for both men and women 
(versus “can’t agree or disagree”, “somewhat disagree” or “strongly 
disagree”                  
  “strongly agree”  0.601 0.039 15.51 .000   0.636 0.039 16.42 .000  
  “somewhat agree”  0.279 0.040  6.97 .000   0.309 0.040  7.73 .000  
    
───────────────────────────────────────────────────────────────────   
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Table 4. The DFL analysis for the effect of gender on Income (in 
10,000 yen) 

───────────────────────────────────────────────────────────────────   

              Unweighted          DFL-1                 DFL-2       
                  ┉┉┉┉┉┉┉┉┉┉┉    ┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉--    ┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉- 
               Model 0      Model 1A   Model 1B   Model 2A  Model 2B                                                                                                                                              
┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉ 
1.  Intercept    530.8***     530.8***  342.4***    530.8***  341.7***     
2. Gender (versus men) 
  Women        -189.7***    -125.9*** -122.8***   -108.4*** -110.7*** 
3. Age (versus 23-29) 
  30—34          -----       -----      45.0***    -----     46.9***  
  35-49          -----       -----      96.6***    -----    100.7***   
  40-44          -----       -----     147.7***    -----    153.0***  
  45-49          -----       -----     187.8***    -----    193.2*** 
  50-54          -----       -----     202.5***    -----    199.5*** 
  55-59          -----       -----     220.8***    -----    228.6*** 
4. Education (versus four-year college) 
  JC/ATS1         -----        -----    -59.8***    -----    -62.7***       
  VS2             -----        -----    -73.4***    -----    -63.8***  
  high school    -----        -----    -99.4***    -----   -103.6***  
5. Employment Duration (versus 0-5 years)  
  6-10           -----        -----     35.6***    -----     35.9*** 
 11-15           -----        -----     36.1***    -----     34.7*** 
 16-20           -----        -----     59.8***    -----     63.0*** 
 21-25           -----        -----     68.0***    -----     58.3*** 
 26-30           -----        -----     85.4***    -----     90.4*** 
 31+             -----        -----    122.0***    -----    125.5***  
 Missing         -----        -----     59.0***    -----     61.3***          
6. Marital Status (vs. Single) 
 Married         -----        -----     35.3***    -----     35.5***      
7. Hours of Work per week (vs 40 or less) 
 41-48           -----        -----     -----      -----     18.3*** 
 49 or more      -----        -----     -----      -----     36.6*** 
 Missing         -----        -----     -----      -----      2.7 
───────────────────────────────────────────────────────────────────   
1Junior college or advanced technical school (14 years of education) 
2Vocational School after high school. 

***p<.001; **p<0.01; *p<0.05; #p<0.10 
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Table 5.  An Analysis of the Average Gender Effect by Marital Status  
(in 10,000 yen) 
───────────────────────────────────────────────────────────────────   

                  Unweighted            DFL-1       DFL-2          
┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉ 
1.  Intercept       434.8***            434.8***      434.8*** 
2. Gender (versus men) 
  Women           -101.7***            -63.1***      -59.5***  
3. Interaction: Gender  Married 
                  -113.2***            -86.4***      -67.8***  
4. Marital Status (vs. Single) 
   Married         132.7***            132.7***      132.7***          
 
───────────────────────────────────────────────────────────────────   
1Junior college or advanced technical school (14 years of education) 
2Vocational School after high school 
3Numbers in parentheses are those confounded with the values of H.   
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Table 6.  A Summary of Treatment Effects by Marital Status 
    
 Total population Single Married 
Covariates Age, education, employment 

duration, marital status 
Age, education,  
employment duration 

% Explained                    33.6       38.0      30.4 
% Unexplained                    66.4       62.0      69.6 
Covariates Age, education, employment duration, 

marital status, hours of work  
Age, education, employment 
duration, hours of work 

% Explained                    42.9      41.5      40.8 
% Unexplained                    57.1      58.5      59.2 
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