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1 Introduction

A struggle on describing heterogeneity and its demand aggregation based on rigorous micro foundation
has a long history. The standard aggregation theory has shown its major development until the early
80s (as a reference, see for example, Deaton and Muellbauer (1980), Houthakker and Taylor (1970),
etc.). The basic standard aggregation theory con�ne its interest to the market transaction under
privately consumption only (e.g., no public goods nor externalities), and provide two core approach
for discuss aggregation. The �rst line of research could be characterized for considering the condition
to describe the aggregated behavior of a group as a single decision maker. These progress exerted
in�uence on the development of recent RBC theory.

A second line of research could be characterized as a struggle on �nding structural features of the
aggregated demand. The famous original problem has been initially raised by Sonnenschein (1973),
Mantel (1974) and Debreu (1974), and now known as the Debreu-Sonnenschein-Mantel Theorem.
They raised a problem on whether the structure of the individual demand, which is based on util-
ity maximization and generates a lot of structure, is preserved by demand aggregation. Among the
sequence of the progress following the result of Sonnenshein, a research on the law of demand aggrega-
tion of su�ciently diverse individual demands may be one of the signi�cant turning points, which was
pioneered by Hildenbrand (1983). In a series of papers referring result in 1983, evidence and further
application of the �Law of Demand� has been considered both in the theoretical and empirical aspects
(see, for example, Hildenbrand and Jerison (1989), Härdle et al. (1991), and Hildenbrand and Kneip
(1999)).

One of the standard model for aggregating consumer demand in the literature of the second line
of research is known as µ model (see, for example Hildenbrand (1994)). First de�ne household i 's
demand function as f i(p, ωi) where p is a price vector for l goods, and ωi is a disposable income
of the household i. To de�ne a micro economic model of a large and heterogeneous population of
household, one has �rst to specify the space F of admissible demand function. The space of household
characteristics is de�ned by the Cartesian product

R+ ×F

Every household is described by a point (ωi, f i) in the space R+ ×F with the distribution µ. In
terms of distribution µ the market demand is de�ned by,

F (p)≡
�

R+×F

f(p, x) dµ
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In the µ model, the heterogeneous households are divided according to its income and preference
structure (f i(p, ωi) ). Then, the admissible demand functions in F are assumed to be parametrized
by a parameter α in some set A . Thus, in stead of f ∈ F , the demand function is assumed to be
written as fα with α ∈ A . As a standard assumptions for the µ model, the following 4 assumptions
are assumed: (i) µ us a probability measure on the σ- �eld of Borelian subsets of R+ ×A , (ii) there
exist mean income and the mean income is �nite, (iii) fα are continuous in (α, p, x) and continuously
di�erentiable in p and x, (iv) average Sultsky substitution matrix is negative semi de�nite.

The household attribute to divide heterogeneous households turns more detail in the following
papers (see, for example, Hildenbrand (1994)) and household attributes, such as age and employment
status or household size, are employed for the empirical calculation.

In this paper, we extend traditional and recent works on demand aggregation under various house-
hold attributes by formulating consumer's utility in probability density function. Here it should be
noti�ed that, in the literature of Hildenbrand, a demand function of each household is a starting point,
and hope nor to resort to sophisticated technical conditions on preferences or utility functions is aban-
doned. However, in our literature, we both employ the preference, or utility functions, and the core
concept of µ model, to divide household's purchasing based on their attributes

Moreover, the introduction of this framework also enable us to provide rede�nition of the restric-
tion condition for the representative agent frequently assumed in RBC model. In RBC model, the
competitive equilibrium of the market economy is achieved under a resource allocation that maximizes
representative household's expected utility. Although this assumption was path-breaking for the devel-
opment of macro economics, this also generated many critics which mainly focusing on i) abstracting
heterogeneity of �rms and households and ii) constraints for all agents to act optimally in all markets
and at all times (see, for example, Kirman (1992)). Following these critics, some research papers with
counterarguments are also published (see, for example, Kiyotaki (2011)). These discussions are, as a
matter of cause, based on the market completeness. In this paper, we address a restricting condition
for the approximation of representative agent when the micro utility functions are de�ned with a shape
of probability density functions. The contribution of this paper in this �eld is to provide the restriction
condition for the representative agent both in case of Markov and non-Markov process.

Lastly, it should also be noted that what we provide is not a complete model to calculate general
equilibrium under dynamic optimization, but one tool which may be used to calculate the demand
part of the general equilibrium model. Therefore we do not set any focus on the pro�t maximization
of �rms, market clearing conditions, etc. in this paper, but con�ne our interest only into the demand
aggregation to provide better approximated description.

The reminder of the paper is organized as follows: Section 2 �rstly examines issues in construction
problem setup for grasping micro-foundation based aggregated demands. Thereafter propose a key
concept for introducing methodology of probability distribution into the consumer choice problem.
Section 3 introduces several patterns for describing dynamics, and provides conditions to maintain as-
sumption of the representative agent. Section 4 provides technical support for conducting an empirical
test. Section 5 concludes.

2 Micro Foundation and Problem Setup

2.1 De�nition of the Micro Foundation

The concept of Pareto optimality is rigorously de�ned in microeconomics (see, for example, Green
(1996)). Consider an economy consisting of I consumers and L goods. Consumer i's preferences
over consumption bundles xi = (x1i, ..., xLi) in his consumption set Xi ⊂ RL are represented by the
preference relation ��i�. The total amount of each good l = 1, ..., L initially available in the economy,
called the total endowment of good l, is denoted by ωl ≥ 0 for l = 1, ..., L.

It is often of interest to ask whether an economic system is producing an �optimal� economic
outcome. An essential requirement for any optimal economic allocation is that it possess the property
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of Pareto optimality. Here, a feasible allocation is Pareto optimal (or Pareto e�cient) if there is no
other feasible allocation such that

∀i, x′i �i xi and ∃i s.t. x′i �i xi. (2.1)

Moreover, the �rst fundamental theorem of welfare economics shows that the condition of a com-
petitive equilibrium, or Walras equilibrium, and Pareto optimal becomes rigorously equal under the
complete market assumption in price taking situation. Therefore, the de�nition of Pareto optimality
(2.1) and de�nition of Walras equilibrium (2.2) becomes rigorously equal:

∀i, x∗i ∈Bi(p∗) and x∗i �i x′i, where Bi(p∗)≡ {xi∈RL+ | p∗·xi≤p∗·ωi} (2.2)

Hereafter we set our focus on the amount of utility along the budget constraint line (dashed line in
Figure 2.1). The utility becomes maximum at the point of Walras equilibrium (x∗), and decays as the
point goes farther from equilibrium point, as long as the utility function is strictly concave (Figure 2.1
above). In this setup, the amount of utility along the budget constraint line could be drawn intuitively
as written in Figure 2.1 below.
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Figure 2.1: Utility along the Budget Constraint Plane

The similar discussion could be extended to the L goods situation. In the L goods situation, the
budget constraint becomes a hyper plane within L-1 dimensional phase space, and the utility along
the budget constraint could be described as a function in a form that u : RL−1

+ → R.
According to the standard µ model, the observable household characteristics is parametrized by µ.

De�ne the set of the households who have a characteristics µ as I(µ) and also de�ne the number of
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households who have characteristics µ as N(µ), and consider consumption bundle of these households.
If we employ the amount of income as one of the characteristics of the households, the distribution of
the consumption bundle who has µ characteristics is allocated along the budget line (dashed line in
Figure 2.2). Also, in the standard µ model, the utility function (or parametrizing factor of the utility
function α) can change independently from other household attribute. This leads that the shape of
utility function can di�er each other even if the amount of income is the same. In general, observable
cloud of the consumption bundle with µ character has some kind of distribution written in Figure 2.2,
and each consumption bundle of household i, i ∈ I(µ) satis�es the Pareto optimal condition according
to each utility function ui(x).
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Figure 2.2: Observable Cloud of Consumption Bundles under the Same Household Characteristics

2.2 Describing Probability Density Function of the Observable Cloud of

Consumption Bundles

One standard way to analyze the distribution of the observable clouds of consumption bundles is to
introduce the concept of probability distribution into the system. If all of the distributions of the
cloud could be well approximated as some function among some set of the households with similar
characteristics µ, the whole demand within nation could also be well approximated by integrating
these attributes. Here we consider the probability process of the consumption bundle xb = {xb(t)}t>0

under price taking situation. Let xb be a non-trivial Lévy process in RL−1
+ which follows the stochastic

di�erential equation as dxb(t) = a(xb(t)) · dt+ b(σ) · dRt.

De�nition. (1) All households are divided into N types as {µi}i≤N according to its attributes.
(2) The budget constraint for the household type µi is de�ned as p · xb = ωi.

(3) The probability density function of the observable clouds for the household type µi is described
as Pµi

(xb).

Assumption 1. ∃N s.t. for∀i, Pµi
(xb) is a continuous function and has a single peak in L − 1

dimensional hyperplane
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Assumption 2. ∃N s.t. for∀i, all consumption bundles within the household type µi has an ergodic
property, i.e.,

1

T

T∑
t=1

xb(t)
p→ E [xb] , T →∞

where E [xb] is a convergence value of the spatial average as sample number n→∞.

The economical meaning of these 2 assumptions are to assume representativeness for a group of
similar household attributes as an approximation. If we closely divide adequate amount of consumers
by its attributes, the assumptions allows us to assume one representative, or typical, consumer for each
segment of consumers with good approximation. For example, we may be able to assume a typical
consumption bundle (with error) for the household whose head is 20 years old man, single, living in
urban area, or the household whose head is 50 years old man, with wife and 2 children, living in suburb,
etc.

In addition, the Assumption 2 could be understood as the most essential assumption for this paper.
To assume ergodic property is equal to abandon treating �xed e�ects for each households, and use a
probability density function alternatively. This assumption, or approximation, may arise a critique
for losing strictness for the aggregation, however, let us show our several counterargument in advance.
First of all, our fundamental motivation is to provide new methodology to approximate a wide variety
of households, and at the same time, to provide theoretical methodology to evaluate the validity of
the approximation empirically. Therefore, if the adequate amount of data is available, there are no
need to discuss the validity of this approximation in theoretical �eld only. Secondly, even under the
assumption of the ergodic property, we allow not only normal di�usion process but so called anomalous
di�usion in the following sections. This expansion may take the theoretical framework more close to
the real economy.

Meanwhile, let us also discuss the advantage for setting the Assumption 2 at the same time. The
core advantage to employ this assumption is that we could expect asymptotic property for estimating
probability density function. In case of rigorous micro-foundation, the functional shape of the utility
function are assumed with mainly focusing on the mathematical convenience to solve equations. How-
ever, this assumption does not necessarily approximate real economy well. On the other hand, our
methodology enables us to approximate actual utility function itself for each household attribute so
long as the previous assumptions could be well achieved as an approximation. Moreover, we can expect
our �tted probability function, or inversely calculated representative utility function, asymptotically
equals to the actual utility function if we could obtain plenty amount of micro data from consumer
survey, or any other micro panel data.

The intuitive understandings for this approximation is described in the Figure 2.3. Most theories
with rigorous micro foundation assumes that all of the household's utility function can be di�erent and
also can move with errors. However, every consumption bundles is settled in the maximizing point
of each utility function and no noise is allowed for achieving utility maximizing condition. On the
other hand, the employment of the Assumption 1 and Assumption 2 enables us to set a representative
utility function for the selected households with similar attributes. Instead of describing household's
heterogeneity by the di�erence of its utility function, we allow the existence of error from equilibrium
point which corresponds to the utility maximizing point for the households.

Now let us compare these two models. The �rst model (Figure 2.3. above) corresponds to a model
without any approximation, and holds as long as we stand on the micro-foundations. On the other
hand, the second model (Figure 2.3. middle) with single, or representative utility function could be
regarded as a model with certain approximation of the �rst model. The major approximation assumed
here is i) the distribution of any individual household's Walras equilibrium point could be approximated
within single utility function, and ii) the dynamics of each household's Walras equilibrium point could
be approximated by well-de�ned process (like Brownian motion, Lévy �ights, etc.).
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Figure 2.3: Aggregation of Heterogeneous Utility Functions and Probability Density Function of the
Consumption Bundles

2.2.1 Describing Dynamics of Observable Clouds

To describe dynamic stochastic path toward equilibrium, an equation to describe dynamics of the
observable clouds is required. For the simplicity, we �rst assume the consumption bundles evolves
with Markov process, and relax this assumption in later section.

Assumption 3. Any consumption bundles within the household type µi evolves with Markov pro-
cess, i.e.,

P(Λ ∩ Γ|xb(t)) = P(Λ|xb(t))P(Γ|xb(t)), ∀Λ ∈ σ {xb(s), s ≤ t} , ∀Γ ∈ σ {xb(s), s ≥ t}

where P is a probability distribution function of the probability process xb(t), and σ {·} is a minimum
σ- additive class which makes the probability process written in the bracket measurable.

Hereinafter we write xb(t) as xb for simplicity. Under Markov process assumption, the dynamics
of a probability density function is generally described by its autonomous di�erential equation as:

Proposition 1. The probability density function Pµi(xb, t) evolves with following time dependent
di�erential equation
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∂

∂t
Pµi(xb, t) = −Pµi(xb, t)ξ(xb) +

�
Pµi(x

′
b, t)T (x′b,xb)dx′b (2.3)

where ξ(xb) is a probability to transit from xb, and T (x′b,xb) is a probability to transit from xb
′

to xb during unit time scale.

Proof. First de�ne t′ as t0 < t′ < t. If we assume the probability process of the xb to be a Markov
process, the following relation known as a Chapman-Kolmogorov equation is satis�ed;

Pµi
(xb, t | xb0, t0) =

�
Pµi

(xb, t | x′b, t′)Pµi
(x′b, t

′ | xb0, t0) dx′b (2.4)

Now we consider transition during an in�nitely small amount of time ∆t. As de�nition, a transition

probability from x′b to xb during ∆t is calculated as T (x′b,xb)∆t. On the other hand, a probability
to stay at xb during ∆t is calculated as

{
1−

�
T (xb,x

′′
b) dx′′b

}
∆t. Therefore, a time evolution of the

probability density function during ∆t becomes:

Pµi
(xb, t+∆t|xb0, t0) =

� [{
1−

�
T (xb,x

′′
b) dx′′b

}
∆t δ(xb − x′b) + T (x′b,xb)∆t

]
Pµi

(x′b, t|xb0, t0) dx′b

(2.5)
Taking limit of ∆t→ 0 to obtain

∂

∂t
Pµi

(xb, t | xb0, t0) = −Pµi
(xb, t | xb0, t0)ξ(xb) +

�
Pµi

(x′b, t | xb0, t0)T (x′b,xb)dx′b (2.6)

where ξ(xb) ≡
�
T (xb,x

′′
b) dx′′b. This is a similar expression as written in the Proposition 1 . (For

simplicity, hereinafter Pµi
(xb, t | xb0, t0) is written as Pµi

(xb, t).)

The intuitive understanding of this equation is very simple. The left hand side of the equation
equals to the time di�erential of the probability to stay at xb. Meanwhile, the right hand side of the
equation equals to the sum of 2 components; (1) transition from xb, and (2) transition from other
points (x′b) to xb.

2.2.2 Deriving Fokker Plank Equation

Proposition 2. The time dependent partial di�erential equation on Pµi
(xb, t) could simply be approx-

imated under following Assumption 4 as:

∂

∂t
Pµi

(x1, x2, ..., xL, t) =

− L∑
j=1

∂

∂xj
α1j(xb) +

1

2

L∑
j=1

L∑
k=1

∂2

∂xj∂xk
α2jk(xb)

Pµi
(x1, x2, ..., xL, t)

(2.7)
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Proof. De�ne r as r = x′b−xb and ω(x′b, r) = T (x′b,x). Substitute this expression into equation (2.6)
to obtain

∂

∂t
Pµi(xb, t) = −

�
ω(xb, r) drPµi(xb, t) +

�
ω(xb − r, r) drPµi(xb − r, t) (2.8)

Here we introduce following formula for the further calculation.

exp

[
−r ∂

∂xb

]
f(xb) =

∞∑
n=0

(−r)n

n!

(
∂

∂xb

)n
f(xb) = f(xb − r) (2.9)

Substitute this formula into the previous equation, and also assume appropriate convergence condition,

calculation be proceeded as follows;

∂

∂t
Pµi

(xb, t) = −
�
ω(xb, r) drPµi

(xb, t) +

�
dr

∞∑
n=0

(−r)n

n!

(
∂

∂xb

)n
ω(xb, r)Pµi

(xb, t)

=

∞∑
n=0

(−1)n

n!

(
∂

∂xb

)n �
dr rnω(xb, r)Pµi

(xb, t)

=

∞∑
n=0

(−1)n

n!

(
∂

∂xb

)n
αn(xb)Pµi(xb, t) (2.10)

where αn(xb) =
�
dr rnω(xb, r).

If we con�ne our attention to the dynamics around the equilibrium point, it may be reasonable to
ignore higher-order terms of the Taylor expansion. More rigorously, we set the followingAssumption 4
for the better approximation:

Assumption 4. The coe�cients αn(xb) are �nite for every n and αn(xb) = 0 for some even n

According to the Pawula theorem (Pawula (1967)), if the coe�cients αn(xb) are �nite for every n
and if αn(xb) = 0 for some even n, αn(xb) = 0 for all n ≥ 3. If we employ this assumption, equation
(2.9) could be approximated simply as follows.

∂

∂t
Pµi(xb1, xb2, ..., xbL−1, t) =

− L−1∑
j=1

∂

∂xj
α1j(xb) +

1

2

L−1∑
j=1

L−1∑
k=1

∂2

∂xj∂xk
α2jk(xb)

Pµi(xb1, xb2, ..., xbL−1, t)

(2.11)

This equation is known as Fokker-Planck equation which describes the dynamics of probability
density function under certain potential. In the literature of the physics, the �rst term of the RHS
equals to a �rst order derivative of the external potential, and the second term equals to the e�ect of
di�usion.

Now let us move our focus back to our assumptions. As previously described, we assumed this
process as the Markov process, and therefore the e�ect of friction or any other term which violate a
Markov process assumption is ignored. On the other hand, an e�ect of friction plays important role
in economics because this term generally governs a speed of relaxation after drastic change of external
environment (e.g., tax revisions, monetary policy change, etc.). Therefore, we introduce an expansion
of this equation to include the e�ect of friction and derive Kramers equation in the next subsection.
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2.2.3 Deriving Kramers Equation

Proposition 3. The dynamics of probability density function under an external potential and a friction
could be described in the form (Kramers equation):

∂

∂t
Pµi

(xb, vb, t) =

− L−1∑
j=1

∂

∂xbj
vbj +

L−1∑
j=1

∂

∂vbj

(
− ∂

∂xbj
uR(x) + γvbj

)
+D

L−1∑
j=1

∂2

∂v2
bj

Pµi
(xb, vb, t)

(2.12)

Proof. The derivation of Fokker-Planck equation (2.12) is conducted in general coordinate, and this
relation satis�es even if we expand the coordinate to the phase space made of xb and vb (a time
derivative of xb). Here �rst de�ne A as At ≡ (xb, vb) and rewrite Fokker-Planck equation within this
phase space as:

∂

∂t
Pµi

(xb, vb, t) =

− 2(L−1)∑
j=1

∂

∂Aj
α1j(A) +

1

2

2(L−1)∑
j=1

2(L−1)∑
k=1

∂2

∂Aj∂Ak
α2jk(A)

Pµi
(xb, vb, t) (2.13)

Here α1j(A) = lim
∆t→0

<∆xbj>
∆t = vbj for j ≤ L − 1, α1j(A) = lim

∆t→0

<∆vbj>
∆t = ∂

∂xbj
uR(x) − γvbj for

L ≤ j ≤ 2(L − 1), α2jk(A) = lim
∆t→0

<∆vj∆vk>
∆t = 2Dδjk , and all other terms vanishes at order of ∆t.

Thus, the generalized di�usion process satis�es

∂

∂t
Pµi

(xb, vb, t) =

− L−1∑
j=1

∂

∂xbj
vbj +

L−1∑
j=1

∂

∂vbj

(
− ∂

∂xbj
uR(x) + γvbj

)
+D

L−1∑
j=1

∂2

∂v2
bj

Pµi
(xb, vb, t)

(2.14)

Proposition 4. The solution of the Kramers equation in equilibrium becomes

P eqµi
=

1

Z
exp

[
−H(xb, vb)

γD

]
, H(xb, vb) ≡

L−1∑
i=1

vbi
2
− uR(xb)

where Z is a normalization factor.

This solution can be easily con�rmed by setting LHS of (2.15) as zero and plugging this solution
and into the RHS of (2.15).

The Kramers equation is mainly composed of two parts of e�ects: i) an e�ect from external force
and friction, and ii) an e�ect from di�usion. In our economic model, the �rst part represents a
force to stay close to the consumption bundle of the typical household. This e�ect could be seen
when the crowd with the same attribute conform some trend and most of households follow similar
consumption attribute. Next, the second part represents the e�ect to di�use from initial consumption
bundle. This e�ect could be seen when there is a blind purchase, unexpected consumption, etc. In
the �eld of behavioral economics, topics like emotional e�ects in economic decisions or non-rational
decision making are established, and the ideal optimization process is abandoned in this theory. There
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are several motives for abandoning the ideal of optimization. For example, facts like i) no exact
optimizing strategy is known in many real-world situations or, ii) it may demand unrealistic amounts
of knowledge about alternatives and consequences even when an optimizing strategy exists, could be
motives for abandoning ideal of optimization.

The approximation this model employs could also be well explained as to assume i) the �uctuation
of the utility function among each agent, and ii) deviation from ideal optimization (e.g., e�ect of blind
purchase or unexpected consumption) as i.i.d., and treat sum of these two e�ects as single error.

3 Demand Aggregation

3.1 Dynamics of Each Consumption Bundle under Representative Utility

Function

For describing dynamics of the consumption bundles under given potential, or utility function, us-
ing a methodology for calculating dynamics of particle under physical potential instead of analyzing
dynamics of distribution as a whole plays key role. In this subsection, we �rstly revisit standard the-
ory for describing particle dynamics in the �eld of physics, and secondly provide concept to connect
methodology in physics with economical phenomenon.

3.1.1 Derivation of the generalized Langevin equation

Proposition 5. Under the assumption of the ergodic property, following Liouville equation is derived

∂

∂t
ρ = iL ρ ≡ {ρ,H} =

L−1∑
j=1

(
∂ρ

∂xbj

∂H

∂vbj
− ∂ρ

∂vbj

∂H

∂xbj

)
(3.1)

where L is a Liouville operator, ρ = ρ(xb,vb, t) is a density of representative points (xb,vb) at time

t and H is a Hamiltonian which satis�es following condition:

˙xib =
∂H

∂vbj
, ˙vib =

∂H

∂xbj

The detailed proof of this proposition is left in the Appendix A-1.

Proposition 6. The equation of motion of each consumption bundle could be described in the form of
the generalized Langevin equation as follows:

d

dt
vb(t) = −

� t

−∞
γ(t− t′)vb(t′)dt′ +∇uR(xb) + R(t) (3.2)

where γ(t) represents a retarded e�ect of the frictional force at time t, and R(t) is a random force.

The detailed proof of this proposition is left in the Appendix A-2. This concept is �rstly developed in
the �eld of statistical physics (see, for example, Mori (1965) and Kubo (1966)), and here let us spare
several lines to consider economical meaning of this equation. The left hand side of the generalized
Langevin equation equals to a rate of acceleration for the movement of the consumption bundles. The
�rst term of the right hand side equals to the friction toward sudden change of the consumption bundle.
This term could be interpreted as an e�ect of a relaxation against drastic transformation of the exterior
environment (e.g., tax revisions, monetary policy change, etc.). In general, most of economic models
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has a feature to relax gradually to the equilibrium, and this term governs the speed of relaxation from
the aspect of consumption adjustment. Next, the second term represents an e�ect to con�ne their
consumption bundles around typical household's one. This e�ect is related to our Assumption 1 , and
it is intuitively rational to assume a typical consumption bundle within limited type of households. The
third term represents the noise which yields deviation from typical household's consumption bundle.

In most cases, the random force R(t) is assumed to be independent and identically distributed.
However, our fundamental assumption (Assumption 2. ) abandoned to distinguish individual house-
holds to describe representative households, and setting i.i.d. assumption in addition to this assumption
may become too strong to describe real economy. Therefore, we �rst set assumptions to achieve i.i.d.
property for R(t), and thereafter relax each assumptions in the following sections.

3.1.2 Assumptions for the Normal Di�usion

For the sake of simplicity and idealization, let us �rst assume the simple constraints for the property
of the error term R(t) to acquire i.i.d. property as follows:

Assumption ND− 1. There are no auto correlation function in R(t), i.e.,

< R(t1)R(t2) >= 2πGRδ(t1 − t2) (3.3)

where GR is the constant and δ(t1 − t2) is Dirac's delta function

Assumption ND− 2. The process R(t) is a Gaussian process

Both assumptions are concerning the randomness of the error term. The �rst assumption is es-
pecially concerning the friction term of the generalized Langevin equation. The friction term of the
generalized Langevin equation is

� t
−∞ γ(t− t′)u(t′)dt′ and the assumption is to set γ(t− t′) as a Dirac's

delta function. The meaning of this assumption is to ignore the �memory e�ect� of the particle. When
we ignore the memory e�ect of the particle, its dynamics follows Markov processes and no need to pre-
serve �memory� of the previous process as long as we analyze dynamics in (xb, vb) space. In general,
the memory less property of the Markov process is described as:

P(T > t+ s|T > s) = P(T > t)

The second assumption especially sets its focus on the characteristics of dynamics. Let us visit
the fundamental motivation to use this relation into physics. In the model of physics, this Gaussian
assumption becomes reasonable for a Brownian particle having a mass much larger than the colliding
molecules, because the motion of Brownian particle is a result of a great number of successive collisions,
which is a condition for the central limit theorem. The Gaussian assumption also sets restriction on
the form of the mean square displacement as:

< (∆x)2 >∝ D∆t, t→∞ (3.4)

where < (∆x)2 > is the mean square displacement, D is a di�usion constant and ∆t is time for the

displacement.
As a result of these two assumptions, the generalized Langevin equation could be rewritten simply

as:

d

dt
vb(t) = −γvb(t) +∇uR(xb) + Rw(t) (3.5)

with using standard white noise which satisfy Assumption ND− 1. and Assumption ND− 2.

written as Rw(t).
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3.1.3 Assumption for Non-Markov Process

As previously indicated, there are two ways to relax approximations employed to derive normal di�usion
model. Here we �rst relax Assumption ND− 1., an assumption of Markov Process, and obtain a
description of generalized Langevin equation with white noise term. As the generalized Langevin
equation still holds in the Non-Markov process, the generalized Langevin equation with white noise
term could be led in the form,

d

dt
vb(t) = −

� t

−∞
γ(t− t′)vb(t′)dt′ +∇uR(xb) + R(t) (3.6)

This kind of equation of motion will be realized when we consider some kind of auto regressive
(AR) processes as a probability process. If we just assume that the value vb(t) follows standard
Oshtein-Uhlenbeck process with unit auto regressive term like

dvb(t) = µvb(t) · dt+∇uR(xb(t)) · dt+ R(t) (3.7)

the standard Langevin equation introduced in (3.5) will be derived. Therefore, if we would like to

derive the generalized Langevin equation written in (3.6), we need to assume the auto regressive term

to satisfy
� t
−∞ γ(t− t′)vb(t′)dt′ except for the standard AR(1) process as µvb(t) · dt .

When we calculate and discuss this equation, the shape of the retarded e�ect of the frictional force
becomes a problem to be solved. The most simplest form for the retarded friction force function is
to assume exponential decay for the past memories. In general, the Mittag-Le�er function is used
as a generalization of exponential function. The so-called three-parameter Mittag-Le�er function
introduced by Prabhakar (1971) is described as:

Eρµ,ν(t− t′) =

∞∑
k=0

(ρ)k
Γ(µk + ν)

(t− t′)k

k!
, (3.8)

with Re(µ) > 0, Re(ν) > 0 and Re(ρ) > 0 and z ∈ C. When the parameter ρ = 1, we get the two

parameter Mittag-Le�er function as was introduced by Agarwal, and with ρ = ν = 1, we recover the
Mittag-Le�er function originally introduced by Mittag-Le�er. The case ρ = ν = µ = 1 reduces to the
exponential function.

The economical meaning of this relation is, as already mentioned, the description of an e�ect of a
relaxation against drastic transformation of the exterior environment. If Assumption ND− 1. does
not hold in micro data, the retarded e�ect of the frictional force no longer be the Dirac's delta function,
and the relaxation process could no longer be well approximated by an exponential function.

3.1.4 Assumption for Anomalous Di�usion

Lastly let us now consider relaxation of the assumption on Gaussian process (Assumption ND− 2.).
In a wide diversity of physical systems, anomalous di�usion is found in several cases. The anomalous
di�usion shows the non-linear growth of the mean square displacement in the course of time. In the
anomalous di�usion case, it is known that the relation between the mean square displacement and
time changes as:

Assumption AD− 1. The auto correlation function of R(t) has the form

< R(t1)R(t2) >= 2πGRδ(t1 − t2) (3.9)
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< (∆x)2 >∝ 2D∆tα, t→∞ (3.10)

where α 6= 1. Firstly let us consider the meaning of this assumption in terms of the probability

process. This assumption will be reasonable if we consider to change the distribution of the step-
length. For example, if we assume that the distribution of the step-length follows Pareto distribution,
this probability process becomes Lévy �ight, and the index α > 1 in general.

According to Jespersen et. al. (1999), in the �eld of physics, sub-di�usive transport (0 < α < 1) is
encountered in a diversity of systems, including the charge carrier transport in amorphous semiconduc-
tors, NMR di�usometry on percolation structure, and the motion of a bead in a polymer network. On
the other hand, the enhanced di�usion (α > 1) include tracer particles in vortex arrays in a rotating
�ow, layered velocity �eld, and Richardson di�usion.

Now let us bring our focus back onto the economics. In sub-di�usive case (0 < α < 1), the
consumption bundle di�use slowly, and therefore households with similar consumption bundles tend
to stay still close after several periods. On the other hand, in enhanced di�usion case (α > 1), the
di�usion of the consumption bundles are very quick, and households with similar consumption bundles
may stay far away even after some short periods. We do not evaluate actual economical activity in
this paper because of the lack of adequate data set of consumption bundles, however, it is technically
possible to evaluate α if we could obtain adequate panel data.

3.2 Restriction toward Aggregation

For the demand aggregation, whether the distribution has a stability or not plays crucial role. If the
distribution before aggregation does not have a stability, the error term of the aggregated variable (e.g.,
aggregated consumption) does not have simple distribution (like Gaussian) and standard assumption
for the error term, like having an i.i.d. property, no longer holds. This leads to the failure of the
assumption of the representative agent because if the aggregated variable of the representative agent
does not have normal error term, the usual calibration methodology can not be applied. On the other
hand, if all of the distribution before aggregation has a similar type of stability, the error term of an
aggregated variable has also similar type of distribution, and this leads that the aggregated demand
could be described with similar methodology as used so far.

3.2.1 Case of Normal Di�usion under Markov Process

In the case of normal di�usion under Markov process (case of no previous memory), there are no re-
striction for the demand aggregation, because the Gaussian process generally has a stability. Therefore,
in this model setting, the typical assumption for the representative agent is satis�ed.

3.2.2 Case of Non-Markov Process

If we set focus on the steady state distribution, the di�erence in its process does not a�ect its result.
However, if we set focus on the relaxation process, its dynamics di�ers dramatically. The Langevin
equation in Markov process (3.5) has a shape of homogeneous di�erential equation. This corresponds
that the relaxation process follows exponential function just as calculated in many economic models.
On the other hand, if we introduce generalized memory term in the Langevin equation, its solution
no longer follows usual exponential relaxation but shows slow relaxation process because of having
previous memories. The detailed formulation of this e�ect is described in the section 4.

3.2.3 Case of Anomalous Di�usion

In case of the anomalous di�usion, whether the probability density function calculated from the previ-
ous Langevin equation (in general, fractional Fokker-Plank equation, see Metzler and Klafter (2000))
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shows stability or not is of high concern. Now consider to calculate the distributions of consumption
bundles for all of the household attribute µ. If any of the probability density function does not present
additive property, the description of the aggregated demand may become complicated.

To consider these issues, an approach to consider the stability in non-trivial Lévy process plays
key role because Lévy process includes several probability process which shows anomalous di�usive
property (e.g., Lévy �ight). A useful diagram for judging stability of a non-trivial Lévy process is
known as �Takayasu Diamond� (Takayasu (1990)), whose basic concept was originally derived by
Lévy (1937) and Khintchine (1938). The de�nition of the stable distribution is given by Feller
(1966) as:

De�nition 7. Let X, X1 , . . . , Xn be independent random variables with a common distribution
R. The distribution R is stable if and only if for Yn ≡ X1 +X2 + . . . +Xn there exist constant cn and
εn such that

Yn
d
= cnX + εn (3.11)

where
d
= indicates that the random variable of both sides have the same distribution.

In general, the sum of random variables with a common distribution becomes a random variable
with a distribution of di�erent form. However, for random variables with a stable distribution, an
appropriate linear transformation makes the sum of random variables obey the same distribution.

Using the characteristic function of a distribution,

φ(z) ≡< eiXz >=

� +∞

−∞
eiXzdR(X) (3.12)

the relation (3.10) is transferred into

φn(z) = φ(cnz) · eiεnz (3.13)

Proposition 8. (3.12) can be solved completely and the solution becomes:

ψ(x, t) ≡ log φ(z) = iµz − ν|z|α
{

1 + iβ
z

|z|
ω(z, α)

}
(3.14)

where α, β, µ, ν, are constants (µ is any real number, 0 < α ≤ 2, −1 < β < 1, and ν > 0 ), and

ω(z, α) =

[
tanπα2 if α 6= 1
2
π log|z| if α = 1

(3.15)

α is called the Lévy index or characteristic exponent. The limiting case α = 2 corresponds to the
Gaussian normal distribution governed by the central limit theorem. For β = 0, the distribution is
symmetric. µ is the parameter which translates the distribution, and ν is a scaling factor for X. The
proof of this proposition could easily be done by just plugging (3.13) and (3.14) into (3.12).
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Proposition 9. The equations (3.13) and (3.14) can be rewritten more simply in the form:

ψ(x, t) = −|z|αexp
{
i
πβ

2
sign(z)

}
(3.16)

with the new centering constant β which is restricted in the following region:

|β| ≤
[

α if 0 < α ≤ 1
2− α if 1 < α ≤ 2

(3.17)

where sign(z) ≡ z
|z| represents sign of z.

The resulting allowed parameter space (Takayasu Diamond) is portrayed in Figure 3.1. All pairs
of indices inside and on the edge of the diamond shape refer to proper stable laws. The double
line denotes one-sided stable laws (OS). The letters represent the normal or Gaussian law (N), the
Holtsmark distribution (H), the Cauchy or Lorentz distribution (C), and the approximate log-normal
distribution (L) close to α ≈ 0.
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Figure 3.1: Parameter Space for Stable Laws

4 Toward an Empirical Test

4.1 Calibration of the Representative Utility Function

Calculating the representative utility function from the distribution of consumption bundles is di�-
cult in general, however, it becomes possible if we set an assumption that the consumer panel data is
acquired under equilibrium. The �rst and foremost condition to guarantee the validity of this approx-
imation is that the probability density function of consumption bundles during the data acquisition
�uctuates only around the error term, and no dynamical change of the probability density function is
observed. If this approximation could be regarded as rational, we can use steady state Fokker-Planck
equation or Kramers equation and able to calculate representative potential inversely.
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4.2 Evaluating an Assumption of Non-Markov Property

A methodology for an empirical test to verify the validity of the assumption of the representative
agent could be provided via these theoretical frameworks. Firstly, the assumption of the �Non-Markov
property� of each household could be con�rmed by calculating mean square displacement < X2(t) >.
According to Viñales and Despósito (2007), mean square displacement for times t � τ under gener-
alized Langevin equation with Mittag-Le�er function is calculated as:

< X2(t) >≈ 2γDt2E1
2−µ,3[−(ωµt)

2−µ] + 2γD
τµ

γµ

{
1− E1

2−µ,1[−(ωµt)
2−µ]

}
. (4.1)

where γµ and ωµ are constant.

Therefore, if we could obtain panel data of household's consumption breakdown, we can evaluate
the existence of memory term in actual consumption bundles by calculating time variation of the mean
square displacement.

4.3 Evaluating an Assumption of Anomalous Di�usion

Secondly, the assumption of normal di�usion could be evaluated by observing the shape of a probability
density function of any attribute of consumers. For instance, an analysis of consumption bundles of
30-40 years old, urban living, married households may be able to reveal the existence of anomalous
di�usion. In general, the probability density function under anomalous di�usion presents fat tail
(not decay in exponential). The solution of steady state probability density function under harmonic
potential (in our model, to assume uR(xb) as uR(xb) ∼ − 1

2λx
2) is calculated in Jespersen et. al.

(1999) and the result shows asymptotic power law behavior:

P eqµi
(xb) ≈ Dγ

µλ|xb|1+µ
(4.2)

where γ denotes friction coe�cient and µ is a exponent of a characteristic function (p(k)) of the

noise variable (p(k) = exp(−D|k|µ) ). Therefore, if we could obtain the probability density function of
consumption bundles for any type of consumer attribute, we can con�rm the existence of anomalous
di�usion by evaluating a tail of the probability density function whether to obey exponential decay or
power-law.

5 Conclusions

In this paper we established new methodology for approximating huge amount of consumers. The
approximation of this model is to assume i) the �uctuation of the utility function among each agent
and ii) deviation from ideal optimization (e.g., e�ect of blind purchase or unintended payment) as
i.i.d. and treat sum of these two e�ects as single error. If this assumption holds generally and the
consumption bundles of each household attributes acts like standard Brownian motion, the assumption
of the representative agent holds and aggregation process becomes quite simple. In addition, even if the
consumption bundles of each household attribute follows non-Markov process, or anomalous di�usion,
the assumption of the representative agent still holds within limited parameter space.

We would like to point out that our approach allows us to provide new methodology to verify the
rationality of representative agent, and also hope that this theoretical framework encourages future
applications in empirical works.
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A Mathematical Miscellany

A.1 Derivation of the Liouville equation

First de�ne phase space constructed by L − 1 generalized coordinate (x1b, x2b, · · ·, xL−1b) and its
conjugate momentum (v1b, v2b, · · ·, vL−1b) (here the mass of the particle is normalized as one), and
consider the dynamics in this phase space. Every state realized in this system within the phase space is
generally called as representative point. Here de�ne ρ = ρ(xb,vb, t) as a density of the representative
point in L − 1 × L − 1 dimensional phase space at time t. Then, there are ρ(xb,vb, t)∆x1b∆x2b · · ·
∆xL−1b · ∆v1b∆v2b · · · ∆vL−1b representative points in the in�nitely small volume as ∆x1b∆x2b · · ·
∆xL−1b ·∆v1b∆v2b · · ·∆vL−1b. Now let us consider the dynamics of the representative points in this
phase space. The number of representative points which pass through a surface of x = x1b equals to

ρ(xb,vb, t) ˙xb1∆V−x1b
(A.1)

where ∆V−x1b
= ∆x2b · · · ∆xL−1b · ∆v1b∆v2b · · · ∆vL−1b. Similarly, the number of representative

points which pass through a surface of x = x1b + ∆x1b equals to

{ρ(xb,vb, t) ˙xb1} |x1b+∆x1b
∆V−x1b

=

(
ρ(xb,vb, t) ˙xb1 +

∂ρ(xb,vb, t) ˙xb1
∂xb1

∆x1b

)
∆V−x1b

(A.2)

Therefore, the number of representative points in ∆x1b∆x2b · · ·∆xL−1b ·∆v1b∆v2b · · ·∆vL−1b decreases

in every unit time as:

∂ρ(xb,vb, t) ˙xb1
∂xb1

∆x1b∆x2b · · ·∆xL−1b ·∆v1b∆v2b · · ·∆vL−1b (A.3)

The similar discussion could also be applied to other surfaces and as a result, the time di�erential

equation of the density of representative points could be described as:

∂

∂t
ρ = iL ρ ≡ {ρ,H} =

L−1∑
j=1

(
∂ρ

∂xbj

∂H

∂vbj
− ∂ρ

∂vbj

∂H

∂xbj

)
(A.4)

A.2 Derivation of Generalized Langevin Equation

By expanding the dimension of the phase space to the Hilbert space, the Liouville equation can be
written as

d

dt
Aµ(t) = iLAµ(t) (A.5)

and formally be solved in the form Aµ(t) = exp(iL t)Aµ(0). Next, we de�ne a inner product of

dynamical values F ,G with requiring the following restrictions:

(F,G) = (G,F )∗, (A.6)

(G,G) ≥ 0, (A.7)
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(
∑
i

ciF,G) =
∑
i

ci(F,G) (A.8)

For the simplicity, we assume the orthogonality and normalization for {Aµ(0)} as

(Aµ(0), Aν(0)) = δµν (A.9)

where δµν is Dirac's delta function. Here de�ne the projection operator P which project dynamical

value G to the space mapped by {Aµ(0)} as

PG(t) =
∑
ν

(G(t), Aν(0))Aν(0) (A.10)

The following relation about the projection operator can be easily proved.

(PF,G) = (F,PG) (A.11)

(P ′F,G) = (F,P ′G) (A.12)

P2 = P, P ′2 = P ′, PP ′ = P ′P = 0 (A.13)

where P ′ = 1−P. Now we de�ne Ξµν(t) as

Ξµν(t) = (Aµ(t), Aν(0)) (A.14)

Then the projection of Aµ(t) to A is given by

PAµ(t) =
∑
ν

Ξµν(t)Aν(0) (A.15)

On the other hand, we de�ne A′µ(t) as

A′µ(t) = P ′Aµ(t) (A.16)

Using (A.15), (A.16) and the de�nition of P ′, Aµ(t) can be rewritten in the form

Aµ(t) =
∑
ν

Ξµν(t)Aν(0) +A′µ(t) (A.17)

Operating P ′ to the Liouville equation from the left and using (A.16) and (A.17) to obtain

d

dt
A′µ(t) = P ′iLA′µ(t) +

∑
ν

Ξµν(t)P ′iLAν(0) (A.18)

The solution of (A.18) becomes

A′µ(t) =
∑
ν

� t

0

Ξµν(s)Γν(t− s)ds (A.19)
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Γν(t) = exp [tP ′iL] P ′iLAν(0) (A.20)

By substituting (A.17) into the LHS of (A.5), we obtain

d

dt
Aµ(t) =

∑
ν

Ξµν(t)iLAν(0) + iLA′µ(t) (A.21)

Here we de�ne iΩµν and Mµν(t) as

iΩµν ≡ (iLAµ(0), Aν(0)) (A.22)

Mµν(t) ≡ −(iLΓµ(0), Aν(0)) (A.23)

Taking an inner product with Aν(0) on (A.21) from the right and using (A.19) and (A.20) to obtain

a di�erential equation about Ξµν(t) as

d

dt
Ξµν(t) =

∑
τ

Ξµτ (t)iΩτν −
∑
τ

� t

0

Ξµτ (s)Mτν(t− s)ds (A.24)

Representing in a form of a matrix,

d

dt
Ξ(t) = Ξ(t) · iΩ−

� t

0

Ξ(s) ·M(t− s)ds (A.25)

The Laplace transformation of (A.25) becomes

−1̂ + zΞ(z) = Ξ(z) · iΩ− Ξ(z) ·M(z) (A.26)

Therefore

Ξ(z) =
1̂

z − iΩ +M(z)
(A.27)

On the other hand, if we substitute (A.19) into (A.17) and conduct Laplace transformation to obtain

A(z) = Ξ(z) · {A(0) + Γ(z)} (A.28)

Using (A.27) and (A.28),

{z − iΩ +M(z)} ·A(z) = A(0) + Γ(z) (A.29)

By applying the inverse Laplace transformation on (A.29) and rewrite the equation in the form of

generalized coordinate, we obtain the generalized Langevin equation as:

d

dt
Aµ(t) =

∑
ν

iΩµνAν(t)−
∑
ν

� t

0

MµνAν(t− s)ds+ Γµ(t) (A.30)

Here the terms except for Γµ(t) are linear with respect to Aµ(t) and all non-linear e�ects are re-

normalized into a �uctuating term as Γµ(t). The second term at the right hand of the equation
represents a �memory� of the past movement and the function Mµν(t) are called as memory function.
Moreover, the �uctuation dissipation theorem of the second kind holds between memory function and
�uctuating force.

19



References

Andreu Mas-Colell, Michael D. Whinston and Jerry R. Green, Microeconomic Theory, Oxford Univer-
sity Press, 1995.

Deaton, A. and Muellbauer J., Economics and Consumer Behavior, Cambridge University Press, 1980.

Debreu, G., Excess-demand functions, J. Mathematical Economics, 1, 15�21, 1974.

Feller, W., An introduction to probability theory and its applications, Wiely, vol. 2, 1966.

Härdle W., Hildenbrand W. and Jerison M., Empirical Evidence on the Law of Demand. Econometrica,
59, No.6, 1525-1549, 1991.

Hildenbrand, W., On the "Law of Demand", Econometrica, 51, No.4, 997-1019, 1983.

Hildenbrand, W. and Jerison M., The demand theory of the weak axioms of revealed preference,
Economics Letters, 29(3), 209-213, 1989.

Hildenbrand, W. and Kneip, Family expenditure data, heteroscedasticity and the Law of Demand,
Ricerche Economiche 47, 137-165, 1993.

Hildenbrand W., Market Demand: Theory and Empirical Evidence, Princeton Press, 1994.

Hildenbrand, W. and Kneip, A., Demand Aggregation under Structural Stability, J. Mathematical
Economics, 31, 81-109, 1999.

Hoderlein S., How many consumers are rational?, J. Econometrics, 164, 294-309, 2011.

Houthakker, H. S. and Taylor, L. D., Consumer Demand in the United States: Analyses and Projec-
tions, Second Edition, Harvard University Press, 1970.

Jerison M., Aggregation and Pairwise Aggregation of Demand When the Distribution of Income is
Fixed, J. Economic Theory, 33, 1-31, 1984.

Jespersen, S., Metzler, R., and Fogedby H. C., Lévy �ights in external force �elds: Langevin and
fractional Fokker-Planck equations and their solutions, Phys. Rev. E., 59 (3), 2736-2745, 1999.

Khintchine, A. Ya., Limit Laws for Sums of Independent Random Variables, ONTI, Moscow-Leningrad
(Russian), 1938.

Kirman, A. P., Whom or What Does the Representative Individual Represent?, he Journal of Economic
Perspectives, 6 (2) , 117-136, 1992.

A Perspective on Modern Business Cycle Theory, Kiyotaki N., Economic Quarterly, 97 (3), 195�208,
2011

Kubo R., The �uctuation dissipation theorem, Rep. Prog. Phys., 29, 255-284, 1966.

Lévy, P., Théorie de l'addition des variables aléatoires, Gauthier-Villars, Paris., 1937, 1954.

Mantel, R., On the characterization of aggregate excess-demand, J. Economic Theory, 7, 348�353,
1974.

Metzler, R. and Klafter, J., The random walk's guide to anomalous di�usion: a fractional dynamics
approach, Physics Reports, 339, 1-77, 2000.

Mori, H, Transport, Collective Motion, and Brownian Motion, Prog. Theor. Phys., 33 (3), 423-455,
(1965)

20



Pawula, R. F., Approximation of the Linear Boltzman Equation by the Fokker-Planck Equation, Phys.
Rev., 162 (1) 186-188, 1967.

Prabhakar T. R., A singular integral equation with generalized Mittag-Le�er function in the kernel.,
Yokohama Math. J., 19, 7-25, 1971.

Sonnenschein, H., Do Walras' Identity and Continuity Characterize the Class of Community Excess
Demand Functions?, J. Economic Theory, 6, 345�54, 1973.

Takayasu H., Fractals in the Physical Sciences, Manchester University Press, 123-128, 1990.

Viñales A. D. and Despósito M. A., Anomalous di�usion induced by a Mittag-Le�er correlated noise,
Phys. Rev. E, 75, 042102, 2007

21


	1 Introduction
	2 Micro Foundation and Problem Setup
	2.1 De˝nition of the Micro Foundation
	2.2 Describing Probability Density Function of the Observable Cloud ofConsumption Bundles
	3 Demand Aggregation
	3.1 Dynamics of Each Consumption Bundle under Representative Utility Function
	3.2 Restriction toward Aggregation
	4 Toward an Empirical Test
	4.1 Calibration of the Representative Utility Function
	4.2 Evaluating an Assumption of Non-Markov Property
	4.3 Evaluating an Assumption of Anomalous Di˙usion
	5 Conclusions
	A Mathematical Miscellany
	A.1 Derivation of the Liouville equation
	A.2 Derivation of Generalized Langevin Equation
	References



