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Abstract 

 

Typical analyses of industrial agglomerations start with some aggregate 
measure of the “agglomeration degree” for each industry, and attempt to 
explain differences in these values across industries by regressing them on 
sets of industrial attributes. But this aggregation makes it difficult to capture 
the spatial aspects of individual agglomerations. In the present paper, we 
develop a more explicit spatial approach to identifying agglomeration 
determinants by means of a two-stage analysis. First, we detect individual 
spatial clusters of each industry on a map. We then attempt to explain 
differences in these cluster patterns between industries by employing an 
appropriate regression framework. Here, cluster employment sizes are 
regressed on selected regional attributes for each industry-cluster pair, and 
significant differences between industries are captured in terms of 
industry-level interactions with these attributes. This modeling approach is 
then applied to the three-digit manufacturing industries in Japan. 
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1 Introduction

Typical analyses of industrial agglomeration start with some scalar measure of the “degree
of agglomeration”for each industry, and attempt to explain differences in these values
across industries by regressing them on appropriate sets of industrial attributes (refer to
Rosenthal and Strange [22] for a survey). But it is difficult to capture the spatial aspects of
industrial agglomeration in terms of any such aggregate measure. In the present paper, we
develop a more explicit spatial approach to identifying industrial agglomeration by means
of a two-stage analysis. In the initial cluster-detection stage, we attempt to identify individual
spatial clusters (or agglomerations) of each industry on a map. In the subsequent cluster-
analysis stage, we attempt to explain differences in these cluster patterns between industries
by identifying those local regional factors that may induce each industry to agglomerate.

Here, we again use regression methods. But the key difference is that the relevant
sample units are now clusters for each industry, where the dependent variable is the
size of each cluster (measured by industrial employment), and the candidate explanatory
variables consist of local regional attributes defined with respect to each cluster. By treating
individual industries as fixed effects, we can then include interaction effects to identify
differences between the sets of regional attributes most relevant for each industry.

Within this regression framework, there are a number of key issues that must be ad-
dressed. First there is a question of defining meaningful regional attributes at the cluster
level. In the cluster-detection stage (summarized in Section 2 below), individual clusters
are characterized in terms of “spatially coherent”sets of contiguous municipalities. Hence
local regional attributes can in principle be defined in terms of appropriate averages of mu-
nicipality attributes within each cluster. In our application to the Japanese manufacturing
industries in Section 3, for instance, we have municipality data on populations, incomes,
education levels and the natural conditions (coastal access and climate conditions). So by
using this data together with inter-industry transactions data for the whole of Japan, we
are able to construct a candidate set of local regional attributes. However, it should be em-
phasized that given the limited nature of available data, the present analysis is necessarily
partial in nature. Hence our main objective is to illustrate how this methodology can be
used to extract richer information about the spatial determinants of agglomeration within
each industry.

A second key issue relates to the use of clusters as the appropriate level of spatial
aggregation.1 Why not take the smallest regional units in which the relevant data are
available (municipalities in our case) as the basic spatial units, and use this data directly?
Alternatively, why not aggregate data to a larger prefecture (or state) level where a much

1It should be noted that some researchers (most notably Combes and Overman [3] and Duranton and
Overman [5]) questioned spatial aggregation at any degree, and proposed to use the point pattern of firm
locations directly. We return to this issue in Section 2.3 below.
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richer variety of data is readily available? Because this issue is of central importance for the
present analysis, we undertake a systematic comparison of regressions at these three levels
of aggregation in Section 4 below. In brief, our results at the municipality level indicate
(not surprisingly) that distinctions between adjacent municipalities are so slight that
all potentially relevant relations are dominated by spatial autocorrelation effects within
industries. This autocorrelation results from the fact that a municipality is typically much
smaller than an individual agglomeration. While it might be argued that spatial regression
approaches should be of some help here, it seems clear that with respect to industrial
agglomeration, these municipalities are simply too small for meaningful relations to be
captured.2

In contrast, results at the cluster level exhibit relatively little spatial autocorrelation
within industries, reflecting the fact that the spatial extent of an individual agglomeration
is well approximated by that of the corresponding cluster. More importantly, the regression
results at this level of aggregation appear to be very meaningful, both in terms of economic
and structural differences between the industries studied.

Spatial autocorrelation effects are even weaker at the prefecture level. But as discussed
in Section 4 below, this seems to have more to do with the statistical properties of large
aggregates than with any interesting economic relations at the prefecture level. In partic-
ular, while regressions at the prefecture level do identify sets of significant explanatory
variables which are comparable in number to those at the cluster level, the compositions of
these sets are drastically different. Hence, the results obtained at the cluster level cannot be
approximated by those obtained at the prefecture level. In short, this limited comparison
suggests that clusters identified in our first stage of analysis provide natural spatial units
for comparative analyses of industrial agglomeration.

Finally, it should be stressed that in addition to identifying spatial determinants of
cluster size across industries, an important goal of this research is to determine whether
such clusters are significantly related to industrial productivity. The relation between
industrial productivity and agglomeration has long been studied by economists (see
Rosenthal and Strange [22] and Melo, Graham and Noland [15] for surveys. For a more
recent study of industries in France, see Combes et al. [4]). The standard approach in
this literature is to start with a given regional subdivision (such as counties in the US,
or employment areas and urban areas in France) and to compare agglomeration and
productivity levels among such regions. In particular, agglomeration levels are typically
identified in terms of general employment density (for example, above-median versus
below-median density levels), and are taken to be common to all industries. In contrast,

2With respect to spatial regression approaches, it is also worth noting that the between-industry effects of
primary interest here are (at a minimum) extremely awkward to model in terms of standard spatial error or
spatial lag formulations.
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our present strategy is to identify specific areas of agglomeration for each industry, as in
the cluster-detection stage above. In this context, the most direct approach to productivity
comparisons is simply to test whether productivity in a given industry is higher for
clustered establishments than for non-clusered ones. In Section 5 below, we compute total
factor productivity of individual establishments, and carry out Mann-Whitney tests of
mean-productivity differences. It is shown that establishments within industrial clusters
are generally more productive than those not in clusters.

All methodologies developed here are illustrated by applications to the three-digit
manufacturing industries for Japan in 2001 (of which 163 industrial types are present in the
regional system chosen for analysis).3 The organization of rest of the paper is as follows.
First, to develop our basic two-stage procedure, we begin in Section 2 below with the
cluster-detection stage. Since this procedure has been detailed in Mori and Smith [19],
it suffices to give a brief summary of the main ideas in terms of our Japanese data. The
main body of the paper focuses on the cluster-analysis stage in Section 3, which constitutes
the primal contribution of this paper. Here we begin by identifying a number of regional
attribute variables as possible determinants of agglomeration, which, combined with
identified clusters, are in turn utilized in the regression. We then analyze the desirability
of clusters as regional units, relative to municipalities and prefectures, from the view point
of spatial autocorrelations among regression residuals in Section 4. Finally, in Section 5,
we analyze relations between clustering and productivity of firms. The paper concludes
with brief discussions of related research in Section 6.

2 Identification of Industrial Clusters

We begin with a brief description of our cluster-detection methodology in Section 2.1
below. In Section 2.2, we then compare the results of this method (for the case of Japan)
with the scalar “degree of agglomeration” approach alluded to in the Introduction. Finally,
in Section 2.3, we also give a brief comparison of this method with the “distance density”
approach of Duranton and Overman [5].

2.1 Cluster-Detection Methodology

To motivate our approach to cluster detection, we begin by observing that recent theoretical
results on equilibrium location patterns in continuous space (e.g., Tabuchi and Thisse [23],
Ikeda et al. [10], Hsu [9]) suggest that there is remarkable commonality among possible

3Industrial types are based on the Japanese Standard Industry Classification (JSIC) in 2001. The establish-
ment counts across these industries are taken from the Establishment and Enterprise Census of Japan in 2001. The
mean and median establishment counts per industry are respectively 3958 and 1825. In addition, 147 (90%)
of these industries have more than 100 establishments, and 125 (77%) have more than 500 establishments.
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equilibrium patterns of agglomeration within each industry. In particular, the number, size
and spacing of agglomerations are shown to be well preserved under a variety of stable
equilibria. From this perspective, our objective is to identify these common features. To do
so, we treat such equilibria as stationary states, and develop a probabilistic model of location
behaviour within such stationary states. In particular, while individual location decisions
may be based on the prevailing steady-state distribution, they can nonetheless be treated
as statisitically independent events, i.e, as random samples from this distribution. This
simplification of course precludes any questions about the process of cluster formation, or
even the economic rationale for clustering. Rather, our goal here is to provide a simple
statistical framework within which the most salient features of these equilibrium cluster
patterns can be identified.

To develop this framework, we assume that the relevant location space for establish-
ments is a set, R, of basic regions (municipalities) which are sufficiently small to ensure that
all meaningful clusters for industries can be modeled as contiguous sets of basic regions.
Figure 1 shows the map of municipalities in Japan which are used as basic regions in the
present study.4 In order that a given set, C, of municipalities qualify as a “cluster”, it is
required to be “approximately convex” in an appropriate sense.5

[Figure 1]

With this setting, each spatial pattern of clusters for an industry can be characterized
formally as a cluster scheme, C = (R0, C1, .., CkC,), that partitions R into one or more disjoint
clusters, C1, .., CkC, together with the residual set, R0, of all non-cluster regions.

If we now let I denote the given set of relevant industries, then the problem of cluster
detection for each industry, i ∈ I, amounts to determining the cluster scheme, C∗i , that
“best fits”the observed (stationary) distribution of industry establishments in R. To do so,
we start with the basic idea that meaningful clusters should in some sense correspond
to local “peaks” in this regional distribution of establishments. To formalize this notion,
we first associate with each possible cluster scheme, C, a family of possible location
probability models, pC = [pC(j) : j = 1, .., kC], called cluster probability models, where
pC(j) denotes the probability that a randomly sampled establishment will be located

4We use the municipalities in Japan as of October 1, 2001. Out of a total of 3363 municipalities, we only
consider 3207 (as shown in Figure 1) which are geographically connected to the major islands of Japan (Honshu,
Hokkaido, Kyushu and Shikoku) via a road network. This avoids the need for ad-hoc assumptions regarding
the effective distance between non-connected regions. The only exception here is Hokkaido, which is one of
the four major islands, but is disconnected from the road network covering the other three.

5More precisely, we first approximate the original planar regional space by a discrete network of munici-
palities in which adjacent pairs of municipalities are connected by shortest road-network paths between
them (assuming municipal offices as their representative locations). An approximate convex set in this
context is then represented by a convex solid set with respect to the metric on R induced by this municipality
network. See Mori and Smith [19] for details.
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in cluster Cj. If C does correspond to the peaks in this regional distribution, then one
would expect the best fitting cluster probability model for C to have relatively large cluster
probabilities, pC(j), compared to the “non-cluster” probability, pC(R0) = 1− Σj pC(j). In
summary, our basic approach to cluster identification is to hypothesize that the prevailing
steady-state distribution of establishments in each industry i is well approximated by
some cluster probability model as defined above. This, together with our independence
assumption above, implies that the observed pattern of i-establishment frequencies must
be multinomially distributed with respect to these cluster probabities.

Given this family of candidate multinomial models, the task is then to find the cluster
scheme, C∗i , with a corresponding cluster probability model that best fits the observed
distribution of industrial establishments in the sense of maximum likelihood. However,
it turns out that such a procedure always favors cluster schemes with larger numbers of
clusters. So to achieve more robustness, some “penalty”is needed to avoid excessively large
numbers of clusters. While there are a number of methods for doing so, our investigations
have led us to conclude that the Bayesian Information Criterion (BIC) is the most promising
method for purposes of industrial cluster identification. Hence our operational procedure
amounts to an algorithm (detailed in Mori and Smith [19]) for finding a cluster scheme,
C∗i , for each industry i that maximizes this criterion.6

However, it is important to emphasize that even if the distribution of establishments
for industry i were random, this procedure would necessarily produce some “best fitting”
cluster scheme, C∗i . So to determine whether or not there is any meaningful clustering for
industry i, it is crucial to test these results against the null hypothesis, H0, of completely
random locations. Here, random locations are characterized by the uniform probability
distribution over economic area P0 ≡ [P0(r) : r ∈ R] with P0(r) = ar/ ∑j∈R aj where ar is
the size of economic area in region r.7 Hence the final step in this procedure is to simulate
the distribution of BIC for a substantial number of random location patterns (here 1000 are
used), and determine whether or not H0 can be rejected (at the 0.05 level of significance).
If so, then C∗i can be taken to represent a “significant” clustering pattern for industry
i. Otherwise, C∗i is taken to represent “spurious clustering” (i.e., not distiguishable from
random clustering).

6As with most algorithms, this procedure is only guaranteed to find a local maximum of BIC. Hence the
actual procedure used is to start with the “minimal” cluster scheme containing a single cluster consisting of
a single basic region with the highest BIC value, and proceed by incremental steps to find a local maximum,
C∗i , with respect to this starting point. However, our investigations so far indicate that this always produces
reasonable results (Mori and Smith [19, S 5.4.1]).

7To represent the areal extent of each municipality we adopt the notion of “economic area”, obtained
by subtracting forests, lakes, marshes and undeveloped area from the total area of the region. The data are
available from the Toukei de Miru Shi-Ku-Cho-Son no Sugata in 2002 and 2003 (in Japanese) by Statistical Infor-
mation Institute for Consulting and Analysis of Japan. The economic area of Japan as a whole (120,205km2)
amounts to only 31.8% of total area in Japan. Among individual municipalities this percentage ranges from
2.1% to 100%, with a mean of 48.5%.
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For purposes of the second stage of our approach, we are not interested in explaining
such spurious cluster patterns. These industries are thus excluded from the regression
analysis below. In the present case, only 9 of the 163 three-digit manufacturing industries in
Japan were spurious. So the final set of manufacturing industries, I, for the present analysis
consists of the 154 industries exhibiting significant clustering. Moreover, as discussed in
detail in Mori and Smith [19], these 9 industries all involve special locational conditions or
constraints that would qualify them as outliers in any reasonable type of cluster analysis.

2.2 Comparison with the Scalar-Measure Approach

The single most dominant approach to agglomeration comparisons between industries
has been in terms of scalar measures of the overall degree of industrial agglomeration (see,
e.g., Rosenthal and Strange [22] for a survey). These indices are computed by measuring
the discrepancy between the spatial distribution of establishments within an industry and
a given reference distribution representing “complete dispersion” of establishments.8 But,
not surprisingly, such scalar measures often yield similar values for industries with very
different spatial patterns of agglomeration (or dispersion).

This can be illustrated in terms of the D index developed in Mori et al. [16], which for
a given industry i is defined as the Kullback-Leibler [12] divergence of its establishment
location probability distribution, Pi ≡ [Pi(r) : r ∈ R], from purely random establishment
location patterns, P0 ≡ [P0(r) : r ∈ R], as defined in Section 2.1 above. By using the sample
estimate of Pi, namely, P̂i = [P̂i(r) : r ∈ R] with P̂i(r) ≡ nr/n, a corresponding estimate of
this D index is given by

D(P̂i|P0) = ∑
r∈R

P̂i(r) ln

(
P̂i(r)
P0(r)

)
. (1)

The intuition behind this particular index is that it provides a natural measure of distance
between probability distributions. So by taking uniformity to represent the complete ab-
sence of clustering, it is reasonable to assume that those distributions “more distant” from
the uniform distribution should involve more agglomeration. Note also that since both
D and BIC are based on similar log-likelihood measures of “distance from uniformity”,
our cluster identification procedure is closer in spirit to this scalar measure than other
possible choices. Hence D provides a natural candidate for comparing the advantages of
this approach over scalar measures in general.

Given these general observations, the histogram of D values for the 154 three-digit

8In Ellison and Glaeser [7] and Duranton and Overman [5], this reference distribution is defined in terms
of the aggregate distribution of all industries, while in Mori et al. [16], it is taken to be the distribution of
economic area.
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industries in Japan is shown in Figure 2 below, and is seen to range from D = 0.47 to 5.98.

[Figure 2]

To illustrate different patterns with similar values of D, it is first necessary to ask how
similar these values must be in order to qualify as “significantly similar”in a statistical
sense. One straightforward approach is to consider the sampling distribution of D values
for all industries, and simply ask how close two independent sample values, D1 and
D2, must be in order that there be less than a 5% chance of drawing a pair this similar.9

This question can in fact be answered exactly for finite sampling distributions of size
n by simply computing ∆ = |D1 − D2| for all possible n2 realizations of (D1, D2) and
identifying the threshold value, ∆.05, that bounds the smallest 5% of all ∆ values. In the
present case of Figure 2, with n = 154, this value is given by ∆.05 = 0.0786. By employing
this similarity criterion, we now consider a range of example comparisons, starting from
very low values of D and proceeding to higher values. These selected comparisons will
also serve to illustrate the regression results obtained in Section 3.3 below.

Starting at the low end of the D scale, we first note that there is little qualitative
difference between the cluster patterns of industries exhibiting low divergence values.
This is well illustrated by “bakeries and confectionery products” (JSIC127) and “sliding
doors and screens” (JSIC173). These industries have respective D values, 1.031 and 0.760,
which are at the low end in Figure 2, but which are nonetheless considerably more different
than the threshold level, ∆.05, above. Their corresponding cluster patterns are shown in
Panels (a) ad (b) in Figure 3, respectively, where each enclosed gray area represents an
individual cluster, and darker color indicates larger concentration of employment. As is
clear from the figure, these industries are typically ubiquitous, so that their clusters are
found densely over the country.

[Figure 3]

But as cluster patterns become more diversified for larger values of D, larger qualitative
differences begin to appear. Panels (a) through (d) in Figure 4 show the cases of “textile
outer garments and shirts” (JSIC151), “seafood products” (JSIC122), “communication
equipments” (JSIC304) and “paper containers” (JSIC185), respectively. Their D values
are 1.611, 1.646, 1.756 and 1.822, respectively, where the first two, and the last two values
are statistically indistinguishable from one another (refer to Figure 2). But, unlike the
ubiquitous industries discussed above, these cluster patterns are concentrated in certain

9This procedure is of course only meaningful with respect to a given sampling distribution, and in
particular, implicitly assumes that this distribution is sufficiently dense to ensure the presence of some “very
similar”distinct pairs. An examination of Figure 2 suggests that this assumption is not unreasonable in the
present case.
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parts of the country that are specific to each industry. In Section 3.3, we will see that
such variations in cluster localizations can be well distinguished in terms of local regional
attributes of clusters.

[Figure 4]

For industries with even higher values of D, the ambiguity of scalar indices becomes
severer. Panels (a) and (b) in Figure 6 show the cluster patterns of “musical instruments”
(JSIC342) and of “steel with rolling facilities” (JSIC263), respectively. Their D values are
2.953 and 3.000, respectively, and again are statistically indistinguishable. But on the one
hand, the former is seen to be globally more concentrated in the central region of the country
[encompassing Hamamatsu, Nagano and Tokyo, as in Panel (a)], and at the same time is
locally more dispersed (relatively ubiquitous) within this region. On the other hand, clusters
of steel industries are spiker, i.e., locally more concentrated, and spread over a wider area,
i.e., globally more dispersed.

[Figure 5]

A further increase in D can be realized either by more global concentration or by more
local concentration. Panels (a) and (b) in Figure 6 show the cluster patterns of “printing
industries” (JSIC192) and “iron smelting without blast furnaces” (JSIC262), respectively.
Although they have statistically indistinguishable values, 4.272 and 4.237, of D, again
there is difference in spatial scale of agglomerations. Namely, the clusters of the former are
globally more concentrated toward the major metro areas along the Pacific industrial belt
between Tokyo and Fukuoka, while locally more dispersed over suburban areas around
the metro areas (e.g., Tokyo, Nagoya, Osaka, and Fukuoka as indicated in the figure) along
the belt, whereas those of the latter are locally more concentrated but scattered all over the
country.

[Figure 6]

Such differences in spatial scales of agglomeration and dispersion between industrial
patterns with very similar D values are often more readily explained by differences in the
local regional attributes most relevant for each industry. We return to this issue in Section
3.3 below.

2.3 Comparison with the Distance-Based Approach

An alternative distance-based approach, proposed by Duranton and Overman [5], focuses
on the frequency distribution of bilateral distances among establishments.10 The primary

10Macon and Puech [14] propose an alternative cumulative density approach based on the bilateral
distance among establishments.
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motivation for this approach was to avoid the Modifiable Areal Unit Problem (MAUP) by
focusing on point pattern data (see, e.g., Combes and Overman [3]),11 Here agglomera-
tion within an industry is essentially characterized by the presence of significantly high
frequencies of short distances between its firms. But while this approach is useful for
identifying the spatial scale of such agglomerations, it provides no information about their
locations. Hence the most important advantage of our cluster-based approach over this
distance-based approach is its ability to pin down both the location and size of individual
agglomerations. In particular, this allows one to study relations between agglomeration
size and local regional attributes that may serve as possible determinants of agglomeration.

However, it should also be noted that the distance-based approach offers advantages
in studying other aspects of agglomeration. In particular, Duranton and Overman [6]
have used this approach to study co-localization behavior of establishments belonging
to different categories (such as firms in different industries, or existing firms and new
entries within the same industry). While it is in principle possible to contruct tests for
co-localization within our prensent framework, their approach appears to be far simpler
for this purpose.

3 Regression Analyses of Industrial Clusters

Given the cluster patterns identified above, the second stage of our analysis seeks to
explain differences in these cluster patterns between industries in terms of local regional
factors that may be more relevant for some industries than others. In particular, we
employ regression analysis to explain differences in cluster employment sizes between
industries in terms of selected local regional attributes. In Section 3.1 below we employ
both municipality-level data (population, income, education levels, and climate) together
with national-level data on inter-industry transaction linkages to construct a range of
candidate explanatory variables to be used in the regressions. This is followed in Section
3.2 with a formulation and specification of the final regression model, and with results in
Section 3.3.

3.1 Possible Local Determinants of Agglomeration

Below we consider five possible local determinants of agglomeration. Before doing so,
however, it is important to stress that while this terminology is convenient for our purposes,
and has become quite standard in the literature (as, e.g., in Rosenthal and Strange [21]), it
is not meant to imply any notion of “causality”. Our objective here is much more limited

11Note that our cluster-detection procudure can also be used at very fine regional levels, such as ZIP codes,
where the MAUP is less of an issure. Hence this problem is not an intrinsic limitiation of our approach.
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in nature, and focuses rather on the identification of local regional attributes that are (i)
statistically significant correlates of cluster employment size in certain industries, and (ii)
help to account for differences in spatial employment patterns between industries. Such
attributes are here designated as determinants of agglomeration.

Before developing candidate determinants, it is useful to establish certain notational
conventions. If the cluster scheme obtained for industry, i ∈ I, in the first stage above
is denoted by Ci= (Ri0, Ci1, .., CikCi

,), then the relevant sample units for the regressions to
follow are taken to be industry-cluster pairs, (ik : i ∈ I, k = 1, .., kCi). Where no ambiguity
arises, we refer to such sample units simply as clusters. Hence the task at hand is to
construct explanatory variables for each cluster, ik, that constitute potentially relevant
determinants of agglomeration for indusries. We begin with the key market-oriented
variables that appear to be relevant for virtually all industries, and then consider a number
of labor-oriented and the first-nature variables.

3.1.1 Market Access

Access to consumers is perhaps the single most influential determinant of establishment
locations. To model this, we adopt the population share, Pr, of each municipality, r, as a
surrogate for the local consumer market in r (where ∑r∈R Pr = 1).12 But the relevant
consumer market for manufacturing establishments in r may of course be much larger.
Following standard methods, we model accessibility of establishments in r to all population
(in Japan) by introducing an exponential distance decay function,13

αrs ≡ exp[−τd(r, s)] , (2)

and taking the effective market access at r to be representable by population access:14

AP
r = ∑s∈R αrsPs , r ∈ R . (3)

While many choices for α are of course possible, there seems to be general agreement that
effective bandwidth is more important than particular functional forms. In the present
case, since α has maximum value 1 at zero distance, we take the effective bandwidth, dτ, for
each value of the decay parameter, τ, to be the distance (in kilometers) at which α falls to .01.

12Since only the relative attractiveness of each municipality is relevant for our purposes, such “share”
variables will be used throughout.

13It should be noted that access to foreign markets versus domestic market is less of a locational issue in
Japan than in countries with large interiors, such as the US. Virtually all major cities in Japan are on the coast,
so that access to ports, for example, is virtually the same as access to population centers.

14It could be argued total income in each municipality is a more appropriate local market measure. But, if
income access is then defined in the same manner as the population access, their correlation turns out to be
0.990. Hence from a practical viewpoint, these two accessibilities are statistically indistinguishable.
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Here we consider three values of this parameter, τ ∈ {0.20, 0.10, 0.05} [as shown in Figure
7 below] with associated effective bandwidths d.20 = 23.03, d.10 = 46.05, and d.05 = 92.10,
corresponding roughly to 25, 50 and 100 kilometers, respectively.

[Figure 7]

In particular, the middle value, τ = 0.10, corresponds to the standard definition of a
“metropolitan area” given by Kanemoto and Tokuoka [11], and (as will be shown below)
yields the single best representative value for our present accessibility measures. A map of
the population access levels in (3) for all municipalities is shown in Figure 8 below for the
case of τ = 0.10.

[Figure 8]

These market access measures for each municipality are next employed to construct an
appropriate market access measure for each cluster, ik. Here it seems natural to consider
the expected market access for a randomly located establishment in cluster ik. If we denote
the set of municipalities comprising cluster ik by Rik ⊆ R, and assume that all locations
in the economic area, ar, of each municipality, r ∈ Rik, are equally likely, then the chance
that a randomly located establishment is found in municipality, r, is given by the share,
pik

r = ar/Σs∈Rik as, of economic area in r. Hence the desired measure for ik is given by
expected population access,

AP
ik = ∑r∈Rik

pik
r AP

r . (4)

3.1.2 Transactions Access

In addition to consumer markets, industrial factor markets constitute a major determinant
of establishment locations, both in terms of forward and backward linkages. The relative
importance of each link for industry establishments can be captured by the transaction
frequency data.15 In particular, if the total reported transaction linkages between establish-
ments in industries, i, j ∈ I, is denoted by `ij, then for each industry i ∈ I, the transactions
share,

Tij =
`ij

∑h∈I−{i} `ih
, j ∈ I − {i} , (5)

denotes the fraction of all transactions of industry i with industry j (both forward and
backward). Hence in terms of inter-industry linkages, it is reasonable to suppose that

15We use inter-industry transactions data, Kigyo Sokan File, reported in 2006 by Tokyo Shoko Research,
Ltd. This questionnaire-based data set for 2005 contains a total of 4,066,704 transaction partners (suppliers,
customers, major shareholders) as claimed by 146,135 individual firms in the manufacturing industries of the
present study. In particular, the supplier, customer and major shareholder categories account, respectively,
for 49.3%, 46.7% and 4.0% of all transactions. Finally, while each firm also lists the order of importance of
these transaction partners, we give equal weight to all partners.
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the relative importance of each industry j for i is represented by the transactions share,
Tij. Using these shares, we may construct a measure of transactions access appropriate
for establishments in industry i as follows. First, if nrj denotes the share of industry-j
establishments in municipality, r, (where ∑r∈R nrj = 1 for all j ∈ I), then by employing the
distance decay function in (2), we can measure the j-industry access of municipality r in a
manner paralleling (3) as

Arj = ∑s∈R αrsnsj , r ∈ R , j ∈ I . (6)

By combining (5) and (6), we can then summarize the transactions access of muncipality r
relevant for establishments in industry i by the transactions access measure,

AT
ri = ∑j∈I−{i} ArjTij , r ∈ R , i ∈ I . (7)

Finally, we can extend these to transactions access measures for clusters, ik, paralleling (4).
If we again focus on the expected transactions access for a randomly located establishment
in cluster ik, then by using the same notational conventions in (4), it follows that for each
cluster ik the appropriate expected transactions access is given by

AT
ik = ∑r∈Rik

pik
r AT

ri . (8)

But while these variables are perfectly meaningful for each industrial cluster, it turns
out that for the vast majority of industries, expected transactions access across clusters is
strongly correlated with expected access to all industries across clusters.16 Thus, even if
industry-specific access to transactions partners is a relevant predictor of cluster size, it is
difficult to distinguish this effect statistically from access to industries as a whole. However,
by considering transactions access relative to general industry access, one can obtain much
sharper distinctions between industries. These relativized variables (used in our final
regressions) can be defined as follows. First, if the total manufacturing establishment share
in municipality r is denoted by nI

r (where ∑r∈R nI
r = 1), then the overall industrial access of

municipality r is given by
AI

r = ∑s∈R αrsnI
s , r ∈ R (9)

and the corresponding expected industrial access for cluster ik is given by

AI
ik = ∑r∈Rik

pik
r AI

r . (10)

16The correlation between ln AT
ik and ln AI

ik defined by (10) below is 0.943 for the baseline case of τ = 0.1.
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In these terms, the relative transactions access for cluster ik is given by

FT
ik = AT

ik/AI
ik . (11)

This measure for each cluster essentially reflects the density of transaction partners with
respect to all industries at nearby locations. For cluster sizes in particular, higher densities
might serve to increase the visibility of nearby transaction partners, thus rendering certain
clusters more attractive.

The distinction among AI
ik, AT

ik and FT
ik can be illustrated by the industry, i = “musical

instruments” (JSIC342), as shown in Figure 9. Panel (c) shows the distribution of log
relative transactions access, ln FT

ir ≡ ln(AT
ir/AI

r) [as defined by (11) above],17 for i across
municipalities, r. This is compared with both the numerator [log transactions access, ln(AT

ir)]
in Panel (b) and the denominator [log industry access, ln(AI

r)] in Panel (a). Here it is clear
that the numerator is much more correlated with the denominator than with the ratio.18

Moreover, the ratio in this case turns out to be much more informative about the special
features of transaction linkages in the musical instruments industry than is the numerator,
as discussed further in Section 3.3.

[Figure 9]

3.1.3 Labor Access

In addition to consumer markets and inter-industry factor markets, it should be clear that
labor market access is also a major determinant of establishment locations. Moreover, in a
manner similar to transaction linkages, the relevant labor markets for each industry can
be quite different. Perhaps the most basic distinction is between “high tech” and “low
tech” industries, which tend to exhibit sharp differences in required skills. While the
specifics of these requirements can be quite complex, such distinctions can be broadly
captured in terms of education levels. For Japan, data is available on shares of population
in each municipality with maximum eduction level corresponding to J = “Junior high-
school”, H = “Highschool”and U = “University”, where the last represents all educations
levels beyond highschool.19 These can in principle serve to differentiate the labor-skill
requirments for each industry.

In a manner similar to general population access, we can formalize access to populations
with various education levels as follows. If we denote a generic level of education by

17We use logs to reflect the fact that all variables are logged in the regressions to follow.
18Not surprisingly, both the numerator and denominator are also highly correlated with the log of general

population access in (3).
19The total population of each municipality, together with sub-population totals of four education levels

(junior-highschool, highschool, junior or technical college, university and above) are available from the
Population Census of Japan in 2000.
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e ∈ Ed = {J, H, U}, then as a refinement of the total population share, Pr, for each
municipality, r, [as in (3) above], we denote the population share with education level e in
municipality r as the e-population share, Pe

r , in r.20 As a parallel to (3) we may then define
the corresponding e-population access of municipality r by

Ae
r = ∑s∈R αrsPe

s , e ∈ Ed , r ∈ R . (12)

Similarly, for each cluster ik, we can employ the same concepts and notation in (4) to define
the corresponding expected e-population access of cluster ik as follows:

Ae
ik = ∑r∈Rik

pik
r Ae

r . (13)

In a manner similar to inter-industry transactions above, it is not surprising that these
expected e-population access levels are all highly correlated with expected population
access in (4). So by again taking ratios, and defining associated relative e-population access,

Fe
ik = Ae

ik/AP
ik , (14)

these relative values again yield sharper distinctions between e-populations which are
useful for our present analysis.

As in Figure 9 above for inter-industry linkages, these distinctions are seen more clearly
at the municipality level. Hence if the log of relative e-population access for municipality
r is denoted by ln Fe

r ≡ ln(Ae
r/AP

r ) [as defined by (14) above], then the distributions of
these values for e = junior highschool (J), highschool (H), and university (U), are shown,
respectively, in Panels (a), (b) and (c) of Figure 10.

[Figure 10]

Here one can see that populations with the highest education levels [Panel (c)] are heavily
concentrated in the major urban centers shown. In contrast, those with the lowest education
levels [Panel (a)] exhibit almost exactly the inverse relation, with lowest concentrations in
urban centers. Finally, populations with intermediate education levels [Panel (b)] exhibit a
spatial distribution qualitively different from either of these extremes. This distribution is
mostly concentrated in suburban areas surrounding major population centers, as discussed
in more detail in Section 3.3 below. The key point here is that the differences between these
distributions are seen most clearly in terms of relative access measures.

20Note that since populations with education levels below J are not included, the total of these shares (Pj
r+

PH
r + PU

r ) is less than Pr.
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3.1.4 Labor Cost Advantage

In addition to labor access, it should also be clear that labor costs, in terms of nominal wage
rates, are a relevant determinant of establishment locations. For example, in industries
where proximity to consumers is not essential but where production is highly labor
intensive (such as textile products), it is reasonable to suppose that establishments are
strongly attracted to areas with relatively low wages. As a proxy for the nominal wage,
we use per-capita nominal (pre-tax) income, yr, of salaried population (who are here
interpreted as potential “workers”) in municipality, r.21 If the probability p(r|s) that a
worker in municipality s chooses to work in municipality r is assumed to be proportional
to the relative access between s and r, i.e., αsr/ ∑v∈R αsv, then the expected nominal wage
in r is given by

Wr = ∑s∈R ysws
αsr

∑v∈R αsv
, (15)

where ws the share of workers in municipality s. By using the same notational conventions
in (4), it follows that for each cluster ik the appropriate expected nominal wage in cluster ik is
then given by

Wik = ∑r∈Rik
pik

r Wir . (16)

3.1.5 Natural Conditions

As potential “first nature” determinants of agglomeration, we consider coastal access,
and three climate conditions: annual precipitation, mean hours of sunshine, and mean
temperature.22

If the set of municipalities on coastal boundaries facing the ocean is denoted by B ⊂ R,
then coastal access, AC

r , of a given region r ∈ R can then be defined by

AC
r = max

s∈B
αrs . (17)

Given the large share of domestic freight transportation accounted for by coastal shipping
(42.1% in ton-km in 2001),23 the most important measure of coastal access for a cluster
appears to be the total amount of its land accessible to the coast.24 Thus, rather than using

21Both the total before-tax annual income and the number of tax payers in 2000 are available for each
municipality in the report, Shi-cho-son Zei Kazei Jokyo Tou No Shirabe (2001) from the Local Tax Bureau in the
Ministry of Internal Affairs and Communications of Japan. This data distinguishes between salaried and
non-salaried populations, and allows us to use per-capita nominal income per salaried worker as the proxy
for average nominal wage of workers.

22All climatic data are obtained from the Mesh Climatic Data 2000 provided by Japan Meteorogical Agency.
Each data set involves 1km mesh data based on mean values from 1971 to 2000. The value in each munici-
pality thus represents the mean value of all data points within the municipality.

23This share is computed from Table 1-1 of the report, Rikuun Toukei Yoran (in Japanese), provided by
Ministry of Land, Infrastructure, Transport and Tourism of Japan (2006).

24This is also consistent with our preliminary analyses, which indicated that total coastal access was the
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the average accessibilities defined for clusters so far, the coastal access of a given cluster ik
is here defined in terms of total access,

AC
ik = ∑r∈Rik

ar AC
r . (18)

Finally, we consider three possibly relevant climate conditions, denoted respectively
Pcp = annual parcipitation, Sun = mean hours of sunshine, and Temp = mean temper-
ature. If the level of each climate condition, m ∈ Cl ≡ {Pcp, Sun, Temp} in municipality,
r ∈ R, is denoted by Am

r , then we assume that the corresponding climate condition for
each cluster, ik, is given by

Am
ik = ∑r∈Rik

pik
r Am

r , m ∈ Cl (19)

where pik
r is the share of total area (rather than economic area) of municipality r in cluster ik

(i.e., ∑r∈Rik
pik

r = 1).

3.2 Regression Methodology

In this section, we propose a basic regression framework for analysis of industrial clusters
in relation to the local regional attributes defined in the previous section. In Section 3.2.1,
we first formulate the basic regression model and discuss some of its properties. In Section
3.2.2 we then summarize the results of a number of exploratory analyses using this model.
In particular, we pare down the set of final explanatory variables based on these results.
The final model specification is then presented in Section 3.2.3.

3.2.1 A Regression Model for Comparative Analyses of Cluster Size

In the analyses to follow, we characterize the size of each individual cluster for an in-
dustry in terms of employment levels. So for each sample, ik, the dependent variable
of interest is taken to be the employment level, Eik, of cluster k in industry i.25 As is often
true of nonnegative dependent variables, log transformations tend to yield more reliable
parameter inference with respect to normality assumptions. This is indeed the case here,
so that the dependent variable of interest is taken to be log employment, ln E. As mentioned
above, our primary objective is to identify a set of local regional attributes, Q, such that the
corresponding attribute variables, {Xq : q ∈ Q}, are potentially significant predictors of

most effective explanatory variable for use in the regressions of Section 3.3 below.
25Though one could also use the number of industry establishments in each cluster, the results are

essentially the same. In terms of our ultimate goal in this analysis, the best choice for a dependent variable
would of course be the industrial productivity of each cluster. But as discussed further in Section 5 below,
this data is not currently available at the desired level of aggregation.
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log employment. In addition, we are interested in comparing differences in the significance
of predictors across industries. The simplest way to do so is to treat industries as “fixed
effects” by introducing industry dummies, (di : i ∈ I), [with di(j) = 1 if i = j and di(j) = 0
otherwise]. In this way, we can distinguish the relevant sets of local regional predictors
for each industry i by interacting di with each predictor variable. This yields a multiple
regression model of the following form:

ln Eik = β0 + ∑j∈I β jdj(i) + ∑q∈Q βqXik,q + ∑j∈I ∑q∈Q β jqdj(i)Xik,q + εik , (20)

where the residuals, εik, are assumed to be iid normal.26 But to interpret this model in the
most natural way, it is convenient to renormalize these dummy variables to sum to zero.
While this procedure is quite standard, it is worthwhile making it explicit here in order to
facilitate the subsequent interpretation of all parameters. To do so, we start by selecting a
reference industry, say i = 1, and defining a new set of indicator variables (δi : i ∈ I) as
follows:

δi(j) = di(j)− d1(j) , i 6= 1 , (21)

δ1(j) = −∑i 6=1 di(j) . (22)

In these terms, expression (20) is then simply rewritten as

ln Eik = β0 + ∑j∈I β jδj(i) + ∑q∈Q βqXik,q + ∑j∈I ∑q∈Q β jqδj(i)Xik,q + εik . (23)

To see the advantage of this renormalization, consider any given industry i 6= 1 and
observe that since δi(i) = 1 and δi(j) = 0 for j 6= i [by expresssion (21)], it follows that for
all clusters, k, of industry i, expression (23) reduces to:

ln Eik = β0 + βi + ∑q∈Q βqXik,q + ∑q∈Q β jqXik,q + εik

= (β0 + βi) + ∑q∈Q(βq + βiq) Xik,q + εik . (24)

Similarly, since δ1(1) = 0 and δ1(j) = −∑i 6=1 di(j) = −1 for all j 6= 1 [by expresssion (22)],
the corresponding regression for the reference industry, i = 1, takes the form

ln Eik = β0 −∑i 6=1 βi + ∑q∈Q βqXik,q + ∑q∈Q

(
−∑i 6=1 β jq

)
Xik,q + εik

=
(

β0 −∑i 6=1 βi

)
+ ∑q∈Q

(
βq −∑i 6=1 β jq

)
Xik,q + εik . (25)

26The possibility of spatially autocorrelated residuals is discussed in detail in Section 4 below.
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Expressions (24) and (25) amount to a set of separate regressions for each industry, with
the added feature that the usual intercept and slope parameters have been decomposed
into two parts. By focusing on the slope parameters for a given explanatory variable, q,
we see that these parameters for each industry have a common part, βq, together with
individual parts that sum to zero. Hence the mean slope across all industries is precisely βq,
and the individual parts represent deviations from this common mean. Notice also that
the choice of reference industry here makes no difference. In particular, if we now set
β1 = −∑i 6=1 βi and β1q = −∑i 6=1 β jq, so that expression (24) holds for all industries, then
the resulting parameter values are easily seen to be invariant with respect to the choice
of reference industry. Hence this renormalization provides a natural intepretation of all
parameters.

The main effect, βq, for each explanatory variable in (24) is the average slope coefficient
of regional variable, Xq, across all industries, and the interaction effect, βiq, in (24) represent
the slope deviation for each industry i. So for example, a significantly negative value of
βiq does not necessarily imply a negative influence of Xq on the (log) employment size
of clusters in industry i. Rather it indicates that this influence is significantly below the
average for all industries. To determine the actual sign of this influence, one must test
the sign of the whole effect, βq + βiq, for industry i. We shall return to these points when
discussing regression results in Section 3.3 below.

Finally it should be noted that the same argument applies to the intercept term, β0 + βi,
in (24) as well. So here βi is not a “main effect” for industry i. Rather it is again a
deviation, with significant positive (negative) values denoting intercepts significantly
above (below) average. So a significantly negative value of βi, for example, would indicate
that employment levels in the clusters of industry i tend to be smaller than average, other
things being equal.

3.2.2 Model Specifications and Preliminary Findings

A number of exploratory analyses were run using the regression framework above, to-
gether with the full set of candidate explanatory variables in Section 3.1. Here it was
found that, as with the dependent variable, more stable results were obtained by using log
tranformations of all (nonnegative) explanatory variables. But even with these transforma-
tions it was found that certain variables provided little information about variations in
employment size among clusters.

Climate Variables This was particularly evident for the three climate variables, ln APcp,
ln ASun and ln ATemp. Here it was found that none of these variables were even weakly
significant in any regressions. Moreover, as can be seen in Table 1, none of these three
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variables exhibit substantial correlation, either with each other or with any other candidate
explanatory variables. So collinearities do not appear to be an issue here.

[Table 1]

However, further investigation suggested that climate does indeed matter at a more
fundamental level. For most industries, it appears that climatic conditions influence almost
all location decisions in a similar way. For example the “communication equipment”
industry (JSIC304) tends to concentrate most of its production in the relatively dry Tohoku
region of Japan, as seen in Figure 4(c). A similar example is provided by the “watches and
clocks”industry (JSIC327), not shown.

While these examples are of course anecdotal, one can actually test such hypotheses by
looking for significant climatic differences between municipalities in clusters for a given
industry and those municipalities not in clusters. More formally (recalling the notation in
Section 2.1 above), if for each industry i we let Ri denote the set of all municipalities in
the clusters of scheme, Ci, so that by definition the set of all municipalities not in clusters
is given by, R0i = R− Ri, then for each climatic variable, m ∈ {Pcp,Sun,Temp}, one can
test whether mean values of m are significantly different between municipalities in Ri

and R0i. While t-tests of such mean differences can easily be constructed using indicator
variables similar to the regression framework above, non-parametric tests seem to provide
a more robust alternative here. In the present case we employ the Mann-Whitney U-Test.
Since this test is developed in detail is Section 5 below, it suffices to simply sketch its
application here. In the present case, the null hypothesis of “no difference”can be modeled
by simulating randomly reassigned values of m between municipalities in Ri and R0i. If
the U-statistic for testing mean difference in variable m is denoted by Um, then one can
simply compare the observed Um-value with the corresponding frequency distribution
of simulated Um-values.27 For example, if the observed value is significantly small (in
the top 5%) then one may conclude that mean levels of m are significantly higher inside
clusters than outside. We have conducted 1000 simulated reassignments for each climatic
variable, m ∈{Pcp, Sun, Temp}, and the test results are very clear. For 86%, 95%, and 99% of
industries, respectively, municipalities inside clusters have significantly less precipitation,
more sunshine, and higher mean temperature.

Hence, while these climatic conditions appear to be important determinants of indus-
trial location in general, they do not help to explain size variations of clusters in terms of
employment. For this reason, the corresponding variables, ln APcp, ln ASun and ln ATemp,
were not used in the final regressions.

27To construct Um in the present case, one starts with any municipality, r ∈ R0i, and counts the number, nr,
of municipalities in Ri with less favorable values of climatic condition, m (such as “more rainfall”in the case
of communication equipment). Then Um is simply the sum of these values, i.e., Um = ∑r∈R0i

nr.
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Labor-Related Variables While collinearties were not an issue with these climatic vari-
ables, the opposite is true for labor-related variables. This is not surprising in view of
the fact that (i) population access, ln AP, is a crucial variable for predicting employment
sizes, and (ii) many labor-related variables are closely tied to population. This is par-
ticularly true for labor costs, ln W, which exhibited the single highest correlation (0.932)
with ln APamong all pairs of variables studied. The inevitable conlusion here seems to
be that this income variable is too closely tied to market access to provide any additional
information. So in the absence of more detailed information on labor costs, it was decided
to drop ln W from the final analysis.

This is also true of the education variables that reflect access to different labor skills.
This can be seen in Table 1, where the three highest absolute correlations (shown in bold)
all involve eduction variables. In particular, there is a strong negative correlation (-0.9233)
between the variables, ln F J and ln FU, reflecting relative access to junior-high and univer-
sity educated workers, respectively. It is also clear that both these variables are strongly
correlated with population access, ln AP. This adds further confirmation to the map com-
parisons in Section 3.1.3 above, where it was seen that the highest educated workers are
concentrated in population centers, while the lowest educated workers exhibit the opposite
tendency. Not surprisingly, the results of the full regression model (23) showed consid-
erable variation, depending on which subset of these three variables (ln AP, ln F J , ln FU)
was present. Since tri-variate collinearities of this type are not fully captured by pairwise
correlations, it was decided to examine this issue further by regressing both ln FU and ln F J

on all other explanatory variables. In both cases, R2 was close to 90% percent. Even when
ln F J was omitted from the ln FU regression, and visa versa, R2 was still above 70% in both
cases. So in spite of the potential relevance of all these variables for predicting cluster em-
ployment sizes, it was necessary to omit some from the final regression. Since population
access, ln AP, was again deemed to be the most important of these three variables (both
with respect to labor-demand and final-demand considerations), it was decided to omit
both ln FU and ln F J from the final regression. It is also worth noting that that by omitting
ln FU and ln F J , the resulting variance inflation factor on ln AP was drastically reduced,
thus ensuring more reliable estimate of its effect on cluster employment size.

Finally, as noted in Section 3.1.3 above, relative access to highschool-educated workers,
ln AH, appears to behave quite differently from the two extremes above. This is again
evident in the correlations of Table 1. More importantly, our exploratory regressions
suggest that this variable does indeed provide useful additional information about cluster
employment sizes. As will be discussed further in Section 3.3 below, workers with this
intermediate level of education are mostly concentrated in suburban area around major
population centers. These areas also appear to offer strong locational advantages for certain
types of industries. In particular, they combine access to urban centers with relatively low
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costs of both labor and land.

3.2.3 Final Model Specification

These preliminary analyses have led to a certain paring down of our intial list of candidate
variables. So the final set of explanatory variables (Xq : q ∈ Q) in model (23) consist of the
four variables:

ln AP = Population Access
ln AC = Coastal Access
ln FT = Relative Transactions Access
ln FH = Relative Highschool-Education Access

which we shall occasionally denote by Q = {P, C, T, H}. For sake of completeness, it is
convenient to specify this model for a typical industry-cluster sample, ik, as is done in
model (24) above:

ln Eik = (β0 + βi) + (βP + βiP) ln AP
ik + (βC + βiC) ln AC

ik

+(βT + βiT) ln FT
ik + (βH + βiH) ln FH

ik + εik . (26)

It is this model that we shall analyze in detail below.

3.3 Regression Results

First recall from the discussion in Section 3.1.1 that the distance decay parameter for this
analysis is set to τ = 0.10.28 Hence all access variables are defined in terms of this value.
Next observe that for the 154 industries with non-spurious clusters, there are a total of
12,350 clusters. So the number of distinct samples, ik, in this regression is 12,350. With these
preliminary observations, the summary results of this regression are displayed in Table 2.
Note first that the low value of adjusted R2 (0.3447) reported here serves to underscore the
data limitations of the present study.29 As more data becomes available at the municipality
level, we anticipate that a more complete account of agglomeration determinants can be
given. Hence the present regression is best viewed as a demonstration of the types of local
spatial analyses that can be carried out with cluster information obtained in stage one of
our proposed approach.

[Table 2]
28The basic results remain essentially the same under τ = 0.05, 0.20.
29However, it is worth noting that such low values are not uncommon in the industrial agglomeration

literature. For example, while the many regressions in Rosenthal and Strange [21] are not directly comparable
with our framework, the maximum values of adjusted R2 for their regressions are between 0.3 and 0.4.
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To interpret the additional summary results in Table 2, note first that the variable,
δ, here represents the full set of indictator variables, δi, for all industries, i ∈ I, each
with corresponding coefficient, βi, in expression (26). Since these coefficients must sum
to zero by contruction, there are only 153 (= 154− 1) independent parameters. So the
first line of this summary table reports the results of testing the null hypothesis that
β1 = · · · = β153 = 0. The F value (8.8434) shows that there is indeed a great deal of
variation in average cluster employment levels among these industries.30 Similarly, the
interaction variables, such as δ× ln AC in the last row of the table, represent the full set
of interactions, δi × ln AC, between industries, i ∈ I, and in this case, coastal access. Each
interaction variable has associated coefficient, βiC, in expression (26), where again only
153 are independent. So the last row of the table summarizes the results of testing the null
hypothesis, β1C = · · · = β153,C = 0. Here the F value (1.7443) again indicates that (for
this large sample size) there are significant differences between industries in terms of the
importance of coastal access as a predictor of cluster employment size. Similar conclusions
hold with respect to all interaction variables in the table. The rows corresponding to
individual explanatory variables, such as ln AC, simply report the significance of “main
effects” (average slopes), such as βC in expression (26). All are significantly different
from zero except for ln AH, indicating that the average slope, βH, on access to highschool-
educated labor is not significantly different from zero. As will be evident below, this does
not imply that this variable is insignificant across industries, but rather the positive and
negative effects tend to balance out on average.

Finally, we turn to the results of most interest, namely the significance results for
predictors of cluster-employment size by industry. These are reported in Table 3 below.
Since there is a great deal of information conveyed in this table, it is instructive to take
industry, i = “seafood products”, in the first row as an illustrative example. Note that we
have included the divergence values, D, for each industry in the first column (which for
seafood products is Di = 1.6464, indicating a farely ubiquitous industry as mentioned
in Section 2.2 above). Turning next to population access, ln AP, the actual coefficient
value shown is the regression estimate, β̂P + β̂iP = 0.2674, of the whole effect, βP + βiP, for
ln AP in expression (26). Similarly, all coefficient values shown in each column denote
whole effects, β̂q + β̂iq, q ∈ {P, C, T, H}. The number in parentheses below this coefficient
is the associated t-value (3.98), indicating that this effect is significantly positive.31 Such
significance is also indicated by ∗∗ in the usual star system [where ∗∗ denotes significance at
the 0.05 level and ∗ denotes (weak) significance at the 0.10 level]. The value of the interaction

30For ease of exposition, we drop all references to “logged”values in the discussion to follow.
31Here it should be noted that while standard software reports significance levels for individual coefficients,

this is not true for sums of coefficients. Such customized tests (especially large numbers of such tests as in
the present case) must usually be done either off-line or with customized scripts. We have written a Matlab
program for this purpose.
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effect, βiP, is not shown. But its sign and level of significance are shown by the double minus
(−−) placed under ∗∗, indicating that βiP is significantly negative. So for this example, even
though population access is a significant predictor of cluster employment for the seafood
industry, its effect is significantly smaller than average for all industries. More generally a
single minus (−) denotes a weakly signficant interaction effect, while (++) and (+) denote
significant and weakly significant positive interaction effects, respectively. For example, the
last entry in this row shows that the estimated whole effect (β̂C + β̂iC = 0.2274) of coastal
access for the seafood industry is not only very significant, but is also (not surprisingly)
way above average (++).

[Table 3]

Given this general description of Table 3, we now discuss its substantive results in more
detail. In doing so, our main objective is to illustrate the kinds of information provided by
this two-stage procedure that is not obtainable by any scalar measure of agglomeration
degree. For convenience, we again focus on the examples presented in Section 2.2 above,
starting with less concetrated industries (in terms of D index) and proceeding to more
concentrated industries.

3.3.1 Less “Concentrated” Industries

Recall from Section 2.2 that industries with very low degrees of agglomeration (in terms
of D) are by definition present almost everywhere (ubiquitous), and in this sense exhibit
similar spatial distributions. Typical examples of such industries are “bakeries and con-
fectionery products” (JSIC127) and “sliding doors and screens” (JSIC173) as discussed in
Section 2.2 above (refer to Figure 3). Since these ubiquitous industries tend to be strongly
consumer oriented, it is not surprising that their main agglomeration determinants also
tend to be quite similar. As indicated in Table 3, the coefficient of market access for both
of these industries is positive and significantly larger than average.32 So in such extreme
cases, scalar measures of agglomeration do seem to work rather well, i.e., industries with
low degrees of agglomeration are necessarily similar in many other important ways.

However, as the degree of agglomeration increases, industries with similar D values
start to exhibit subtantially different patterns of spatial agglomeration. As discussed in
Section 2.2, “textile outer garments and shirts” (JSIC151) and “seafood products” (JSIC122)
have very different cluster patterns [refer to Panels (a) and (b) in Figure 4 above, re-
spectively], although they have statistically indistinguishable values of D. On the one
hand, textile industries are typically labor cost sensitive, concentrating more in low-wage

32Ubiquitous industries whose clusters are densely dispersed over the nation all exhibit similar tendencies.
This includes most food products, as well as weight/bulk gaining industries such as “beverages and feed”
(JSIC13), “lumber and wood products” (JSIC16), and “furniture and fixtures” (JSIC17) .
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peripheral regions such as Kyushu, San-in and Tohoku as indicated in Figure 4(a). As
mentioned in Section 3.2.2, this effect is picked up by the strongly positive coefficient
for highschool labor access in the “textile outer garments and shirts” industry, reflecting
suburban concentration of clusters around major metro areas (e.g., Tokyo, Osaka and
Nagoya) as shown in Figure 4(a). On the other hand (as pointed out in the illustration
above), the dominant agglomeration determinant for “seafood products” is coastal access.

A second example in this range of D values is “communication equipment” (JSIC304)
versus “paper containers” (JSIC185), which are also statistically indistinguishable in terms
of D. But, again these two industries have very different cluster patterns as depicted in
Panels (c) and (d) in Figure 4 above, respectively. The dominant effect for “communication
equipment” is clearly transactions access, which is significantly positive and way above
average. This reflects the heavy concentration of this industry near its transaction partners
in the northeast region of the main island. On the other hand, the “paper containers”
industry is more consumer oriented, with clusters found mainly in the suburbs of major
metro areas along the Pacific Coast between Tokyo and Fukuoka. In the present regression
results, this pattern is consistent with the above-average positive effects of both market
and highschool labor access.33

3.3.2 More “Concentrated” Industries

At higher levels of concentration, these differences are well illustrated by “musical in-
struments” (JSIC342) and “steel with rolling facilities” (JSIC263), which have statistically
indistinguishable D values [refer to Panels (a) and (b) in Figure 5 above, respectively]. But,
again, both their cluster locations and significant agglomeration determinants are quite
different. With respect to the “musical instruments” industry, the major clusters (Tokyo,
Hamamatsu, and Nagano) are all within a one-day trip of each other. There is also a strong
overlap in the range of modern musical instruments produced in each cluster, suggesting
strong production linkages between them.34 This is quite consistent with our regression
results, where the dominant factor for this industry is clearly seen to be transactions access.

In contrast, the dominant factor for “steel with rolling facilities” is seen to be access to
population centers, which in Japan coincide with major port locations along the Pacific
Coast. Given the weight/bulk gaining nature of its outputs, final outputs are highly
sensitive to transport costs, so that access to major ports is important for steel exports.
Moreover, since most of its final markets inside Japan are also concentrated in population
centers, this creates an added locational incentive (as can be seen by the positive signifi-
cance of transactions access). So while coastal access does exhibit some degree of positive

33Recall that highschool labor access acts as a surrogate for suburban attraction.
34Here it should be noted that most of the other clusters in Figure 5(a), including Fukuyama, Morioka,

and Minamiaizu, specialize in more traditional Japanese musical intruments.
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signficance for this industry, such effects are heavily outweighed by access to population
centers.

Our final example, at even higher levels of concentration, is provided by the “pub-
lishing” (JSIC192) industry versus the “iron smelting without blast furnaces” (JSIC262)
industry. While their degrees of concentration are virtually indistinguishable, their major
agglomeration determinants are again quite different [refer to Panels (a) and (b) in Figure
6 above, respectively]. On the one hand, “publishing” is a typical market-oriented urban
industry for which population access is clearly the major determinant (together with
transactions access). But for “iron smelting without blast furnaces”, the major determinant
is seen to be coastal access. In contrast to “steel with rolling facilities” above, this industry
is strongly weight/bulk reducing in terms of final outputs. So coastal access is far more
critical for its inputs than its outputs. This is also evident in the below-average significance
of transactions access for this industry, again reflecting the locational importance of inputs
versus outputs.

In addition to these specific examples illustrating the limitations of scalar agglomeration
measures, Table 3 contains a wealth of information about the agglomeration determinants
of manufacturing industries in Japan. Just to mention a few, coastal access is seen to be
particularly important for industries like “spinning mills” (JSIC142), where inputs are
mostly imported and outputs are mostly exported. Another interesting class of industries
are those typically involving vertically integrated firms, such as those in the two-digit
categories, “chemical and allied products” (JSIC20), “leather products and fur skins”
(JSIC24), “ceramic, stone and clay products” (JSIC25), “non-ferrous metals and products”
(JSIC27), and “general machinery” (JSIC29). As seen from the table, these industries
naturally tend to be quite sensitive to transactions access. Finally, industries requiring both
large land inputs and access to consumer markets, like those in the two-digit catergory
“pulp and paper products” (JSIC18), are generally attracted to suburban areas which satisfy
both these requirements. Consequently, their coefficients for both market and highschool
labor accessibilities are significantly positive.

4 Spatial Autocorrelation Issues

As is well known, regressions involving spatial units often exhibit spatial autocorrelation
effects which violate the assumption of independent residuals [as in (20) above]. But, as
mentioned in the Introduction, industrial clusters tend to exhibit far less spatial autocorre-
lation than other spatial units in common use. To justify this claim, we now compare the
spatial autocorrelation of regression residuals at various levels of spatial aggregation, by
essentially repeating the analysis above at both the municipality level and the prefecture
level in Japan. At the municipality level, recall that the 3207 municipalities of Japan were

25



shown in Figure 1 above. At the prefecture level, the 46 prefectures of Japan used in the
present study are shown in Figure 11 below.35

[Figure 11]

Since clusters of different industries overlap, systematic comparisons can only be made
on an industry-by-industry basis. So here the full regression model with interaction effects
in (26), is replaced by a single-industry version defined for each industry i ∈ I. To do so,
it is convenient to denote the set of prefectures by Pref, and to denote the set of clusters
for each industry i by Ki. With this notation, the general regression model for this section
can be defined in terms of spatial units, s ∈ S, which are taken to mean, r ∈ R, at the
municipality level, k ∈ Ki, at the cluster level, and p ∈ Pref, at the prefecture level. In these
terms, our regressions at each level for industry i can now be written in terms of sample
units, is, as follows:

ln Eis = β0 + βP ln AP
is + βT ln FT

is + βH ln FH
is + βC ln AC

is + εis, s ∈ S . (27)

To illustrate the appropriate construction of explanatory variables in (27) at each level,
s ∈ {r, k, p}, we focus on population access. First, for s = r, the quantity, AP

is, is precisely
expression (3) above, namely

AP
ir = ∑s∈R αrsPs , r ∈ R . (28)

Similarly, for s = k, the quantity, AP
is, is given by (4) above, i.e.,

AP
ik = ∑r∈Rik

pik
r AP

r , k ∈ Ki . (29)

Finally, if the set of municipalities in prefecture, p, is denoted by Rp ⊂ R, then for s = p,
the quantity, AP

is, is given by

AP
ip = ∑r∈Rp

pip
r AP

r , p ∈ Pref (30)

where pip
r = ar/Σv∈Rp av. All other explanatory variables are defined at each level in a

similar manner. With respect to these explanatory variables, the coefficients in (27) are
simply standard beta coefficients. So for s = k in particular, coefficients like βP in (27) now
correspond to whole effects rather than to main effects, as in (26).

As with any multiple regression, the residuals, εis, in (27) are implicitly assumed to
be iid normal at each given level of aggregation. If this assumption is treated as a null
hypothesis, then this hypothesis can be tested using Moran’s I statistic. As with all such

35One prefecture, Okinawa, is excluded as it is disconnected from other major islands.
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spatial tests, this statistic is constructed with respect to some pre-specified measure of
spatial proximity. In the present case, since all access variables are defined for each pair of
spatial units, s, v ∈ S [as in (2)] by the distance decay function36

ατ(s, v) = exp[−τd(s, v)] , (31)

we use this as our basic measure of proximity. But to add further flexibility to the test
statistic, we also employ m-nearest-neighbor truncations of this decay function.37 So if for
each spatial unit, s ∈ S, we denote the set of m nearest neighbors of s by Nm(s) ⊂ S, then
the relevant set of spatial proximity weights are here defined for each pair of spatial units
(s, v) ∈ S2 by:

wmτ(s, v) =

{
ατ(s, v) , v ∈ Nm(s)

0 , otherwise
(32)

With these definitions, if we now denote the estimated residuals in regression (27) by
ε̂is, then for each industry, i ∈ I, the relevant family of Moran’s I statistics for our purposes
takes the form:

Imτ(i) =
|S|

∑s ∑v wmτ(s, v)
∑s ∑v wmτ(s, v)ε̂is ε̂iv

∑s ε̂2
is

, (33)

where |S| denotes the appropriate number of spatial units (i.e., municipalities, clusters, or
prefectures).

Here, rather than appealing to the asymptotic normality of Imτ(i) under the null hypoth-
esis of independent residuals, we choose to use random permutation tests based on Imτ(i).
In these terms, the appropriate null hypothesis is taken to be that the estimated residu-
als (ε̂is) are not statistically distinguishable from random spatial permutations of these
values.38 To test this hypothesis, the given set of regression residuals (ε̂is) are randomly
permuted (reassigned) among spatial units in S a number of times (t = 1, .., T). For each
permutation, t, Moran’s I is recomputed as I(t)mτ(i), t = 1, .., T, and the histogram of these
values is used to estimate the sampling distribution of Imτ(i) under the null hypothesis.
One can then construct p-values for a standard two-sided tests of this hypothesis.

Here a number of combinations of (m, τ) were tried for all industries, using m ∈ {3, 5}
and τ ∈ {0.05, 0.10, 0.20}. For each combination, permutation tests were run using
T = 1000 random permutations. Since there was little difference between values of m, only

36Here distances, d(s, v), between both cluster pairs and prefecture pairs are computed as median distances
between their constituent municipalities.

37As is well known, such tests of spatial autocorrelation in terms of distance decay (kernel) functions are
often sensitive to truncation points (kernel bandwidths).

38This is actually a somewhat weaker version of the above independence hypothesis, in the sense that
spatial residuals are only hypothesized to be “exchangeable”with respect to locations. But given the present
sample sizes (expecially at the prefecture level), such permutation tests are typically more robust that tests
based on asymptotic normality.
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results for m = 3 are reported.
Table 4 summarizes the share of industries (out of 154) for which spatial autocorrelation

appears to be significant (i.e., for which the randomness hypothesis is rejected). These
shares are reported for both 0.01 and 0.05 levels of significance. These results are organized
with rows denoting selected distance decay levels, τ = 0.05, 0.10, 0.20, and columns
denoting significance levels, grouped by levels of aggregation (municapilities, clusters,
prefectures).

[Table 4]

Note first that with respect to distance decay, there is little qualitative difference
between the three rows of Table 4. As expected, there is a general tendency for the
fractions of significant values to decrease as τ increases (since all distance effects are
diminishing toward zero). But even these effects are minimal within the given range of τ

values.
Far more interesting for our purposes are the differences between levels of spatial

aggregation. In this regard, it should be clear from the first two columns that spatial
autocorrelation of regression residuals is strongly evident at the municipality level. This
is not surprising in view of our clustering results, which show that industry clusters
almost always consist of many contiguous municipalities. Hence the residuals for these
municipalities must surely include many common unobserved properties of both the
firms in these clusters and the agglomeration determinants attracting these firms. A more
surprising fact is that significant negative levels of autocorrelation are quite common here,
and in fact are present about 45% (70 of 154) industries at the municipality level for the
case of τ = 0.10. We shall return to this issue in the discussion of autocorrelation at the
cluster level below. But the key conclustion at the municipality level (as suggested in
the Introduction), is that these spatial units are simply too small to capture meaningful
relations between industrial employment and potential determinants of agglomeration.

4.1 Cluster-Level Autocorrelation

Turning next to the cluster level, it is clear that spatial correlation effects are dramatically
reduced. While rejection frequencies are still somewhat larger than the theoretical “size”of
these tests,39 the assumption of independent residuals appears to be much less of a problem
at the cluster level.

Nonetheless, one can gain further insight here by noting that in cases where autocorre-
lation is significant at the cluster level, this appears to be largely due to the presence of
contiguous clusters. But even here there appear to be two types of effects. These are well

39Under “perfect randomness”, one would expect to reject about 5% of these industries at the 0.05 level.
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illustrated by the two industries shown in Figure 12, where dark clusters correspond to
positive regression residuals and light gray clusters to negative residuals.

[Figure 12]

Here the industry, “fabricated constructional and architectural metal products” (JSIC284),
in Panel (a) exhibits extreme positive autorcorrelation, and the “newspaper” (JSIC191) in-
dustry in Panel (b) exhibits extreme negative autocorrelation. Notice in particular the
differences between residual patterns in the enlarged Tokyo region for each panel. Here it
is clear that residuals around Tokyo in Panel (a) are almost all positive, indicating a general
degree of underestimation of employment in this area. Such positive correlation between
nearby residuals is rather intuitive, and suggests that there must be strong linkages be-
tween firms in these clusters that are not fully captured by our limited set of explanatory
variables.

But in Panel (b) we see quite a different picture, where a darker cluster (positive
residual) is surrounded by lighter clusters (negative residuals) yielding strong negative
correlations among these contiguous neighbors. Closer inspection reveals that there is a
sharp peak of employment in the central cluster, which falls off in surrounding clusters.
This central cluster, Chiyoda, contains 440 establishments with a total of 25,002 workers.
In fact, this single cluster accounts for 8% of all establishments and 34% of all employment
in the industry. In contrast, its seven contiguous neighbors account for less than 1% of all
establishments and less than 3% of employment. So not only is concentration of establish-
ments in this central cluster much denser, but also its establishments are on average much
larger. As often occurs with such strong nonlinear data patterns, our linear regression
model is underestimating central employment and overestimating peripheral employment.
It is this spatial configuration of errors that produces negative autocorrelation.

More importantly, this type of pattern is not uncommon, and occurs in about 15% (22
of 154) industries at the cluster level. One might think that this is perhaps an artifact of our
clustering procedure in stage one. But as mentioned above, such negative autocorrelation
is even more common at the municipality level. Indeed, 18 of the above 22 industries also
exhibit significant negative autocorrelation at the municipality level. So while these effects
are occurring at somewhat different scales, they appear to be qualitatively similar. More
generally, this suggests that at smaller spatial scales, the distribution of employment for
many industries becomes more “spiky”, leading to more frequent occurrences of locally
negative autocorrelation.

4.2 Comparison of Cluster- and Prefecture-Level Regressions

Finally we consider regression results at prefecture level in relation to those at the cluster
level. Notice first from Table 4 that there is even less spatial autocorrelation at the prefecture
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level. Indeed, rejection levels here are quite consistent with the size of each test, and suggest
that independence of residuals is quite a reasonable assumption. So at first glance it might
appear that our regression model exhibits more desirable properties at the prefecture level.
But while the residuals are consistent with independence, the key questions of interest
must be in terms of what the model tells us about industrial employment patterns. To
anticipate the more detailed results below, recall from our introductory discussion that
prefectures are simply too large to capture the kinds of industrial agglomeration behavior
that we are after. Indeed, the average size of prefectures in terms of economic areas is
about eight times that of the industrial clusters identified in stage one. This of course helps
to explain why autocorrelation is not much of a problem at this level. But more important
is the fact that at this scale, different types of relationships are being picked than those we
are interested in.

To substantiate this claim, we now compare results for the cluster and prefectue level
in more detail. To do so, it is important to note that while regression model (27) was useful
for comparing spatial residual autocorrelation at each level of aggregation, it is far less
useful for actual inter-industry analyses of agglomeration determinants. Hence, in order
to develop a fair comparison between cluster and prefecture levels, it is appropriate to
construct a parallel version of model (26) for spatial units defined by prefectures. This can
be accomplished by simply replacing the cluster-sample units, ik, in (26) with prefecture-
sample units, ip, as follows:

ln Eip = (β0 + βi) + (βP + βiP) ln AP
ip + (βC + βiC) ln AC

ip

+(βT + βiT) ln FT
ip + (βH + βiH) ln FH

ip + εip , (34)

where the definitions of explanatory variable used here are the same as those in model (27)
above with s = p. Hence the key difference between these two formulations is that we can
now compare estimates of industrial interaction effects (such as β̂iP for population access)
between the cluster-level regression [model (26)] and prefecture-level regression [model
(34)]. In Table 5 we present a summary comparision between these interaction effects.

[Table 5]

By way of illustration, the first row of this table lists the number of industries in
each model for which interaction effects with population access (denoted by δ× ln AP)
are significant (either ++ or −−). Here there are seen to be 33 industries with significant
interaction effects at the cluster level (26) and 22 significant at the prefecture level (34).
While these numbers would seem to be comparable in magnitude, the final column shows
that only two industries are common to both lists. So it should be clear that quite different
information is being provided by each model about the relative importance of population
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access for predicting employment levels across industries. Note that a similar pattern
appears in all four rows, suggesting that this is not simply a coincidence. So the major
questions remaining are exactly how and why these results are so different. As stated
above, the key element appears to be the relative sizes of clusters and prefectures.

This is best seen by simply illustrating the results for a typical example in the first
row. Here we have already seen that “bakeries and confectionery products” (JSIC127) is
strongly consumer oriented, and hence exhibits a population-access effect at the cluster
level that is way above average (++). Yet surprisingly this industry fails to exhibit even a
weak interaction with population access at the prefecture level, suggesting that location
sensitivity of “bakeries” to consumer markets is no more than average across industries.
Why is this happening? Part of the story can be seen from the plot of “bakeries” em-
ployment by prefecture in Figure 13, where darker color indicates larger concentration of
employment.

[Figure 13]

Here it is enough to consider the northern most prefecture, Hokkaido. As seen in the
figure, a substantial portion (4%) of all such employment is in Hokkaido. Moreover, a
comparison of clusters for “bakeries” in Figure 3(a) with population access at the mu-
nicipality level in Figure 8 shows that in Hokkaido this industry is heavily concentrated
around the large population centers of Sapporo and Asahikawa (where Sapporo alone
is the seventh largest city in Japan). So this employment concentration in Hokkaido is
completely consistent with a strong population-access effect. But at the prefecture level,
population access looks dramatically different. As seen by a comparison of Figures 1 and
8, most of the municipalities in Hokkaido have very low levels of population access. So
when AP is calculated at the prefecture level by averaging over municipalities, as in (30), it
is not surprising that a very low level of population access is obtained. This leads to an
extreme underestimate of “bakeries” employment in Hokkaido, based only on population
access. It is this type of error that reduces the overall estimated sensitivity of “bakeries” to
population access at the prefecture level.40

Similar examples can be illustrated for the opposite case in which interaction effects are
significant at the prefecture level but not at the cluster level. But in all cases the stories are
similar. In general, such differences arise from coarse aggregations of regional attributes
at the prefecture level that tend to distort the desired determinants of local industrial
employment.

40A similar story can be given for Niigata prefecture indicated in Figure 13.
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5 Productivity of Clusters

In this section, we consider the relation between industrial agglomeration and produc-
tivity. Here, we use data from the Census of Manufactures of Japan to estimate total factor
productivity (TFP) for individual establishments.41 To obtain a sufficiently large number of
observations for the comparison of productivities inside and outside clusters, our present
strategy is to group the 154 three-digit industries into their corresponding 22 two-digit
categories, and then to test each category for differences in average productivity between
establishments that belong to clusters (at the three-digit level) and those that do not.

To formalize this approach, let G denote the set of all 22 two-digit industry categories,
and for convenience, refer to each member of G as an industry category, g ∈ G, to distin-
guish them from three-digit industries, i ∈ I. Next, if J denotes the set of all establishments,
j, then Ji and Jg denote the sets of esblishments in each industry, i , and category, g, respec-
tively. In particular, if Ig denotes the set of industries in category g, then these sets are
related by Jg = ∪i∈Ig Ji.

To measure TFP for individual establishments, j ∈ Jg, we adopt the standard approach
of postulating Cobb-Douglas production technologies for each industry category, g, and
treating the log of TFP as the residual term in a log linear regression of value added, V,
on capital, K, and labor, L. More specifically, for each category, g ∈ G, we consider a
regression of the form:

ln Vj = β0 + βK ln(Kj) + βL ln(Lj) + φj, j ∈ Jg (35)

where β0, βK and βL are category-specific constants to be estimated, and where the residual,
φj is taken to be ln(TFPj) for each establishment j ∈ Jg. Our baseline estimates, φ̂ , of these
residuals, φ , are obtained by OLS. (Such estimates are later checked for robustness, as
discussed below.)

Using these estimates, we next identify those establishments inside clusters and outside
clusters for each category, g ∈ G. In particular, the set of establishments, Jg, is now
partitioned into the set, Cg, of those establishments located in at least one cluster of some
industry, i ∈ Ig, and the complementary set, Cg = Jg − Cg, of establishments outside the
clusters of these industries. We are then interested in whether the average productivity of
establishments belonging to Cg is significantly greater than that of establishments in Cg.

To test this difference, we employ a (one-sided) Mann-Whitney U-Test, in a manner sim-
ilar to the tests of climatic conditions in Section 3.2.2 above.42 The appropriate U-statistic

41This data is provided by the Research Institute of Economy, Trade and Industry of Japan, and covers the
subset of establishments included in Section 2 above to identify industrial clusters which actually produce
outputs and employ at least four workers.

42Here it should be noted that while there are many tests of mean differences (such as the standard Welch
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for this non-parametric test can be constructed as follows. First, for each establishment,
j ∈ Cg, let nj denote the number of establishments in Cg with productivity levels lower than
that of j.43 Then the value of the U-statistic for category g is obtained by simply adding
these counts for all j ∈ Cg, i.e.,

Ug = ∑j∈Cg
nj . (36)

Notice that by construction, relatively small values of Ug indicate that productivity levels
in Cg tend to be higher than those in Cg.

As with the Moran tests of spatial autocorrelation above, rather than using the stan-
dard asymptotic normal approximation for this U-test, we again choose to employ a
permutation-test version.44 In this case, the null hypothesis of “no productivity difference”
is operationalized by hypothesizing that the observed sets of productivity levels in Cg and
Cg are not statistically distinguishable from random permutations (reassignments) of these
levels between Cg and Cg. To test this hypothesis, we again generate a number of such
random permutations, t = 1, .., T, and construct U-values, U(t)

g , for each. The histogram
of these values is then used to estimate the sampling distribution of Ug under the null
hypothesis. Using this distribution, one can then construct p-values for a one-sided test
of this hypothesis. In particular, if the value of Ug is significantly small, then we may
conclude that the clustered establishments have significantly higher average productivity
levels than non-clustered ones.

Columns (1) through (3) in Table 6 below summarize the results of these tests, based
on 10,000 random permutations for each industry category, g ∈ G. As indicated by
the p-values of Mann-Whitney test listed in column (2), the average productivity of
clustered establishments is seen to be significantly higher than that of non-clustered
establishments in all industrial categories45 except for “petroleum and coal products”
(JSIC21), as discussed further below. This is also seen in terms of relative median TFP
levels in column (3), where values greater than one (except for the “petroleum and coal
products” category) show that median productivity is higher inside clusters than outside
clusters.46

test used in most software), the Mann-Whitney test depends only on ordinal properties of the data, and
hence is completely insensitive to outliers. In the present data, there are a number of industrial categories, g,
with relatively few non-cluster establishments, so that mean productivities in Cg are particularly sensitive to
outliers.

43Note that since the Mann-Whitney test depends only on the ordering of data values, it makes no
difference whether TFP or ln(TFP) values are used for productivity.

44This permutation test is generally much more reliable in cases where the size of one set (in this case
Cg) is much smaller than the other. In the present case, the share of establishments outside clusters, i.e.,
|Cg|

/
|Ng| is 0.26 at maximum, and 0.06 on average.

45While three are only weakly significant (below 0.10), most p-values are below 0.001.
46If the same tests are conducted for three-digit industries in I, the smaller sample sizes (especially for

non-cluster establishments) yield results that are somewhat less clear. But even here, productivity differences
are significant for 85 out of 154 industries (with 12 of those being weakly significant). Moreover, there is no
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As for the exceptional case of “petroleum and coal products”, the higher median TFP
value outside clusters appears to be due the unusual industrial composition of this cate-
gory. Among the six three-digit industries in this category there is one industry, “pavement
material” (JSIC215), which is by far the largest. Since this industry is very dispersed, it
accounts for 75.6% of all non-cluster establishments, but only 42.7% of clustered establish-
ments. So comparison between non-clustered and clustered establishments is here largely
a comparison between this pavement-material industry and all others. Hence, in this case,
it is appropriate to separate pavement-materials from the rest of the category, as is done
in Table 6. Both subcategories are now seen to exhibit higher TFP in clusters. Part of the
reason for this shift is that TFP for the pavment-materials industry is uniformly higher
than the rest of the category. So its larger contribution to non-clustered establishments
acts to reduce the TFP gap between clustered and non-clustered establishments for the
category as a whole.

[Table 6]

Next observe that for all results based on OLS estimates of TFP, it is implicitly assumed
that there are no correlations between the explanatory variables (factors of production) and
the residuals (productivity). But as is well known, there may often be interdependencies
(endogeneities) between productivity and factor usage. Thus, to assess the robustness of
these results, we have applied two alternative methods to estimate TFP, as proposed by
Olley and Pakes (OP) [20] and by Levinsohn and Petrin (LP) [13] . Both methods utilize
lagged instrumental variables (“investment” in the case of OP and “material inputs” in
LP) to account for possible endogeneities between productivity and factor inputs.47 To
construct these lagged variables, we use panel data from 1995 to 2000 to estimate TFP of
establishments in 2000.48,49

Columns (4) through (6) and (7) through (9) in Table 6 summarize results based,
respectively, on the OP and LP estimates of TFP for establishments. Note first that all
results for both OP and LP are essentially identical. More importantly, these results are also
comparable with those of OLS. The only two exceptions are “petroleum and coal products”

instance where the average productivity of non-cluster establishments is significantly higher than that of
cluster establishments.

47In addition, OP takes into account possible selection bias resulting from certain establishments exiting
during the sample period.

48Value added and capital inputs are converted to the real terms as of 2000. Investment in year t used
under OP is defined as It = Kt/Kt−1, instead of more standard, It = Kt − Kt−1, since more than half of the
observations would need to be dropped in the latter case to ensure positivity of investments (as pointed out
by Levinsohn and Petrin [13]). The material input used as an instrument for endogeneity correction in LP is
defined to be the sum of costs for fuels, electricity costs and other miscellaneous intermediate inputs. The
estimation of TFP was conducted using Stata routines, opreg and levpet for OP and LP, respectively.

49We chose not use data more recent than 2000, since such data no longer includes capital inputs for small
establishments.
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(JSIC21), mentioned for OLS above, and “pulp, paper and paper products” (JSIC18). These
two industry categories exhibit rather striking differences, and require further discussion.

For “petroleum and coal products”, the explanation in the case of OLS above still
applies, and the results appear to be fairly comparable with OLS, once the pavement-
material industry is separated from this category. In particular the median TFP ratio for
this industry is comparable among all three methods. However, for the rest of the caterory,
these ratios are distinctively higher under OP and LP (2.98 and 2.77, respectively) than
OLS (1.10). Here factor inputs and productivity are highly correlated (between 0.6 and 0.8
for both factors), suggesting that endogeneities are the problem for OLS in this case.

As for “pulp, paper and paper products” (JSIC18), the difference in TFP levels between
inside and outside clusters is insignificant under OP and LP, while it is weakly significant
under OLS. But since endogeneities are again evident in this case (with all correlations
above 0.5), it would appear that the test results under OP and LP are more reliable. Indeed,
there appear to be good reasons why TFP is higher for non-clustered establishments in
this category. Since pulp and paper products are bulk/weight loosing in nature, they tend
to be attracted to material-input sites (i.e., woodlands). On the other hand, their markets
are concentrated in population centers, where the majority of clusters in this category are
found. Hence, assuming that establishments in these clusters are more market oriented, it
is not surprising that productivity is higher outside clusters in this case.50

So aside from these exceptions, our results above do indeed suggest that establishments
in clusters tend to exhibit higher levels of productivity than those not in clusters.

6 Concluding Remarks

The main objective of this paper has been to develop a spatial approach to identifying
possible local determinants of industrial agglomeration. A two-stage approach was de-
veloped in which spatially explicit cluster patterns were identified for each industry, and
then used to construct a regression framework for identifying and comparing possible
determinants of agglomeration across industries. In this final section, we touch on several
questions raised in the text.

A key question relates to how one might improve the model in order to capture more
of the unexplained variation in cluster employment levels. Aside from the need to obtain
additional data on potentially relevant regional variables at the municipality level, there are
a number of other possibilities that are worth exploring. The first relates to the inclusion of
industry attributes themselves. In the present model we distinguish industries only in terms
of fixed effects. But there are a host of industry attributes that are potentially relevant here.

50It should also be noted that land inputs are less costly outside population centers, which in turn increases
value added for the non-cluster establishments.
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For example one might include measures of weight/bulk increasing versus decreasing
industries, as discussed for specific industries in the illustrations above. A variety of other
potentially relevant industry measures appear in Rosenthal and Strange [21, 22]. But while
such measures might well provide interesting interpretations in themselves, it is doubtful
that they can account for much unexplained variation in the present framework, at least in
terms of adjusted R2.51

However, there are a number of other interesting possibilities that are worth exploring.
One relates to our implicit assumption that the relevant “accessibility” scale is the same
for all industries, as characterized by the common choice of distance decay value, τ = 0.10.
But while population access may be relevant for both “bakeries”and “steel products”, it is
doubtful that such distance sensitivities are the same for both. Hence by estimating such
decay parameters, τi, for each industry, i ∈ I, (say in terms of the distance distributions of
their output deliveries), it might be possible to capture more of this unexplained variation
between industries.52

Another possible extension focuses on changes in cluster patterns over time, which
can often be substantial. For example, changes in the number of clusters for three-digit
manufacturing industries in Japan between 1981 and 2001 ranged from -63.4% to 114.3%.53

As suggested by Duranton and Overman [6], locations of new entrants are often influenced
by those of the existing establishments. In addition, they may be influenced by the spatial
pattern of input-output transactions accessibilities for the industry. Such transactions
accessibilities may change in response to changes in production technologies for the
industry. Even when production technologies remain the same, transaction accessibilities
may change due to relocations of transactions partners. More generally, it is of interest to
identify those factors shaping the evolution of spatial cluster patterns for each industry.

One final direction for extending the present framework has implications for both
the substantive and statistical properties of our two-stage approach. Recall from the
“newspaper” example in Figure 12(b) that set of contiguous clusters in the enlarged Tokyo
area exhibits a characteristic of “central peak” structure, in which a central cluster of
larger establishments is surrounded by clusters of smaller establishments. In addition,
our negative autocorrelation results suggest that this pattern is not uncommon among
sets of contiguous clusters. Even more generally, there appears to be a strong relationship

51The reason here is simply that unadjusted R2 is necessarily maximized by fixed effects, which effectively
add a new parameter for each industry. Moreover, the present large sample size, n = 12, 350, already far
exceeds the number of parameters, k = 153 + 4 = 157, in our fixed-effects model. Hence the adjusted R2

penalty factor, (n− 1)/(n− k− 1) = 1.029, is so close to one that it leaves little room for improvement.
52For the two-digit industrial categories in Japan, relevant establishment-level shipment data is available

from the Net Freight Flow Census by the Ministry of Land, Infrastructure, Transport and Tourism (MLIT),
where information is drawn from stratified random samples of actual shipments. It may be possible to use
this data to approximate shipment-distance distributions.

53Here, the industrial classification is based on that in 1981, and includes 146 industries (with non-spurious
clusters) rather than 154 in 2001. See Mori and Smith [18] for the detail.
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between cluster size and average size of establishments across industries.54 This finding is
consistent with observations made by others that larger firms in manufacturing industries
tend to concentrate together (see, e.g., Holmes and Stevens [8]). But our present results
reveal a more explicit spatial pattern in which such concentrations of large firms are
typically surrounded by significant clusters of smaller firms. These results suggest that
such sets of contiguous clusters are best interpreted as single units. In a previous paper
(Mori and Smith[17]) we proposed that all maximal sets of contiguous clusters be combined
as single agglomerations. This not only provides a more meaningful interpretation of such
clusters, but may indeed help to account for some of the unexplained variation in cluster
employment levels. Finally, as an added bonus, this grouping of clusters should help
to mitigate the remaining spatial autocorrelation (both positive and negative) that was
observed in the cluster-level residuals above.

54In fact, with respect to the industrial clusters we have identified, the simple correlation between the logs
of cluster employment size and the average size of cluster establishments across industries is 0.64 (with 25%
of industries exhibiting correlations above 0.80).
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ln E ln AP ln FT ln F J ln FH ln FU ln AC ln APcp ln ASun ln ATemp

ln E 1.0000 0.4030 0.2061 -0.3067 -0.0956 0.3293 0.2542 0.1362 0.0854 0.1715

ln AP 1.0000 0.0832 -0.8365 -0.2639 0.8309 0.2886 0.2938 0.2166 0.4065

ln FT 1.0000 -0.0878 0.0213 0.0901 -0.0088 0.0646 0.0487 0.0156

ln F J 1.0000 0.1753 -0.9233 -0.2136 -0.3097 -0.1830 -0.3323

ln FH 1.0000 -0.3325 -0.0678 -0.0249 -0.0002 -0.1992

ln FU 1.0000 0.1783 0.2023 0.2595 0.3914

ln AC 1.0000 0.0223 -0.1444 0.4292

ln APcp 1.0000 0.0569 -0.1362

ln ASun 1.0000 0.2037

ln ATemp 1.0000

Table 1: Correlations among regional attributes and sizes of clusters under τ = 0.10

R2 = 0.3855, Adjusted R2 = 0.3447

Number of observations : 12350

Variables # Parameters F values p values

δ 153 8.8434 < .0001

ln AP 1 909.5989 < .0001

ln FT 1 305.1541 < .0001

ln FH 1 0.0159 0.8996

ln AC 1 447.6792 < .0001

δ× ln AP 153 2.9873 < .0001

δ× ln FT 153 2.2103 < .0001

δ× ln FH 153 1.9255 < .0001

δ× ln AC 153 1.7443 < .0001

Table 2: Summary of cluster-level regression with τ = 0.10
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Industry name (JSIC) D index ln AP ln FT ln FH ln AC

Average of all industries — 0.4577
(30.16)

∗∗ 0.7070
(17.47)

∗∗ −0.0262
(−0.13)

0.0952
(0.0045)

∗∗

12. Food products

Seafood products (122) 1.6464 0.2674
(3.98)

∗∗
– – −0.2958

(−1.13)
– – 1.4585

(1.38)
0.2274
(4.66)

∗∗
++

Canned fruit & vegetable products (123) 1.0782 0.5100
(3.87)

∗∗ −0.1409
(−0.31)

4.6383
(2.29)

∗
+ 0.0781

(1.91)
∗

Seasonings (124) 1.0851 0.8176
(4.79)

∗∗
+ 0.0450

(0.11)
0.3346
(0.15)

0.0644
(1.5)

Sugar processing (125) 3.2437 0.5599
(3.44)

∗∗ 0.6958
(1.22)

−6.8223
(−2.24)

∗
– 0.0843

(1.47)

Flour & grain mill products (126) 1.5142 1.2274
(6.32)

∗∗
++ 0.0497

(0.1)
0.1464
(0.06)

−0.0070
(−0.14)

–

Bakery & confectionery products (127) 1.0314 1.0639
(10.96)

∗∗
++ −0.1163

(−0.37)
– – −0.3041

(−0.21)
0.0818
(2.43)

∗∗

Animal & vegetable oils & fats (128) 2.8061 0.6748
(4.51)

∗∗ −0.4251
(−1.16)

– – −0.8643
(−0.39)

0.1730
(3.71)

∗∗

Misc. food products (129) 0.7289 0.9862
(9.96)

∗∗
++ −0.3355

(−1.33)
– – 1.9728

(1.47)
0.0575
(2.03)

∗

13. Beverages &and feed

Soft drinks (131) 1.9478 0.8245
(5.48)

∗∗
+ 1.0525

(1.55)
−0.9963

(−0.52)
−0.0152

(−0.3)
-

Tea & coffee (133) 2.5988 0.4539
(3.36)

∗∗ −0.1402
(−0.41)

– −2.2464
(−1.02)

0.0759
(1.35)

14. Textile mill products

Silk reeling plants (141) 4.7109 0.2714
(1.4)

−0.3226
(−1.31)

– – −0.5084
(−0.16)

−0.0079
(−0.14)

Spinning mills (142) 3.5945 0.1980
(1.39)

0.2044
(0.81)

- 1.0094
(0.41)

0.2007
(3.81)

∗∗
+

Knit fabrics mills (145) 3.2003 0.7052
(5.84)

∗∗
+ 1.0402

(4.68)
∗∗ −0.6081

(−0.28)
0.0207
(0.48)

Dyed & finished textiles (146) 3.3886 0.6014
(4.4)

∗∗ 1.3333
(7.8)

∗∗
++ 0.9776

(0.54)
0.0296
(0.81)

Rope & netting (147) 3.2230 0.1932
(1.27)

0.6360
(1.18)

−0.8011
(−0.37)

0.2980
(4.4)

∗∗
++

15. Apparel & fabrics products

Textile outer garments & shirts (151) 1.6112 0.2591
(3.13)

∗∗
– 0.1803

(1.03)
– – 6.9999

(4.88)
∗∗
++ 0.1415

(4.63)
∗∗

Knitted garments & shirts (152) 2.4498 0.2098
(2.24)

∗
– – 0.1842

(0.72)
– 2.5142

(1.5)
0.0526
(1.38)

Underwear (153) 2.1776 0.0838
(0.83)

– – 0.3853
(1.53)

3.4678
(1.92)

∗ 0.1321
(3.05)

∗∗

Japanese style apparel (155) 3.0356 0.8007
(6.71)

∗∗
++ 0.5144

(2.94)
∗∗ 0.0069

(0.0)
0.0630
(1.38)

16. lumber & wood products

Misc. wood products (169) 1.8541 0.4712
(4.06)

∗∗ 0.9601
(2.52)

∗∗ −1.6069
(−0.92)

−0.0146
(−0.43)

– –

17. Funiture & fixtures

Furniture (171) 1.5232 0.6952
(5.07)

∗∗ 1.5403
(2.85)

∗∗ 4.1513
(2.42)

∗∗
+ 0.0795

(2.2)
∗

Furniture for religious purposes (172) 2.7187 0.5990
(3.87)

∗∗ 0.9271
(3.23)

∗∗ −2.3112
(−0.97)

0.0087
(0.2)

–

Sliding doors & screens (173) 0.7600 0.9023
(9.14)

∗∗
++ 0.0846

(0.35)
– – 3.4740

(2.33)
∗∗
+ 0.0599

(2.07)
∗

Misc. furniture & fixtures (179) 2.2103 0.5240
(3.02)

∗∗ 1.0596
(1.39)

−4.6141
(−2.1)

∗
– 0.0196

(0.39)

18. Pulp & paper products

Pulp (181) 3.7495 0.2193
(0.95)

0.5943
(2.2)

∗ 3.6382
(1.27)

−0.0471
(−0.76)

–

Paper (182) 3.2083 0.6668
(4.15)

∗∗ 0.8878
(2.83)

∗∗ 7.1977
(2.86)

∗∗
++ 0.1289

(1.93)
∗

Paper containers (185) 1.8217 0.7313
(5.46)

∗∗
+ 0.2219

(0.45)
3.8618
(2.19)

∗
+ 0.1074

(2.87)
∗∗

Table 3: Coefficient estimates for selected industries under τ = 0.10
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Industry D index ln AP ln FT ln FH ln AC

19. Publishing & allied industries

Newspaper industries (191) 3.0838 0.9697
(6.8)

∗∗
++ −0.2786

(−0.79)
– – 2.8796

(1.5)
0.0424
(0.98)

Publishing industries (192) 4.2724 0.8423
(3.86)

∗∗ 0.6381
(1.67)

∗ −2.6726
(−1.24)

−0.0153
(−0.34)

–

Printing (193) 1.8879 0.9015
(8.06)

∗∗
++ −0.2350

(−0.67)
– – 2.0926

(1.59)
0.0349
(1.3)

–

Bookbinding & printed matter (195) 3.6825 0.8222
(3.45)

∗∗ −0.2098
(−0.52)

– −3.9392
(−1.77)

∗ 0.0141
(0.32)

Pringing-related services (199) 4.4519 1.0860
(3.95)

∗∗
+ −0.0585

(−0.11)
−1.3907

(−0.41)
−0.0219

(−0.29)

20. Chemical & allied products

Industrial inorganic chemicals (202) 2.0096 0.4749
(3.48)

∗∗ 1.6844
(4.28)

∗∗
+ −1.7109

(−0.98)
0.0425
(0.93)

Industrial organic chemicals (203) 2.1858 0.5702
(2.87)

∗∗ 2.3160
(4.03)

∗∗
++ 1.9311

(0.72)
0.2038
(3.37)

∗∗

Chemical fibres (204) 3.3159 0.5155
(2.43)

∗∗ 0.1932
(0.55)

9.5643
(2.78)

∗∗
++ 0.1726

(2.16)
∗

Oil & fat products (205) 2.2388 1.0451
(5.01)

∗∗
++ 1.0040

(1.4)
−4.4943

(−1.56)
0.1003
(1.06)

21. Petroleum & coal products

Petroleum refining (211) 3.8309 0.1534
(0.77)

2.0670
(4.39)

∗∗
++ −5.1775

(−1.97)
∗
– 0.4317

(4.39)
∗∗
++

22. Plastic products

Compounding plastic materials (225) 2.0558 1.0477
(4.03)

∗∗
+ −0.1809

(−0.3)
−0.9833

(−0.23)
0.0493
(0.88)

24. Leather products & fur skins

Leather tanning & finishing (241) 5.2908 0.2933
(1.37)

1.3962
(3.57)

∗∗ −3.8433
(−1.19)

−0.0823
(−1.22)

– –

Cut stock & findings for shoes (243) 5.2811 0.1256
(1.12)

– – 0.8720
(6.14)

∗∗ −1.1032
(−0.56)

0.0815
(1.76)

∗

Leather footwear (244) 4.2347 0.2036
(1.59)

– 0.5964
(2.88)

∗∗ 4.3619
(1.71)

∗ 0.0752
(1.15)

25. Ceramic

Pottery & related products (254) 3.8360 0.8272
(5.11)

∗∗
+ 1.0054

(3.38)
∗∗ 2.4085

(1.08)
0.0533
(1.2)

Clay refractories (255) 3.8428 0.2871
(1.44)

2.0683
(4.87)

∗∗
++ −6.7383

(−2.8)
∗∗
– – 0.0977

(1.83)
∗

Carbon & graphite products (256) 3.2076 −0.1951
(−1.07)

– – 0.7602
(1.94)

∗ −0.6141
(−0.24)

0.1882
(3.71)

∗∗

Abrasive products (257) 2.7666 0.5096
(3.49)

∗∗ −0.1589
(−0.28)

−4.0174
(−1.92)

∗ 0.0029
(0.07)

–

26. Iron & steel products

Iron industries, with blast furnaces (261) 4.9551 −1.5425
(−2.74)

∗∗
– – −1.3124

(−1.41)
– −12.2945

(−2.39)
∗∗
– 0.8512

(5.74)
∗∗
++

Iron smelting, without blast furnaces (262) 4.2366 0.1963
(0.84)

−0.5631
(−1.53)

– – 7.7245
(1.78)

∗ 0.4986
(4.29)

∗∗
++

Steel, with rolling facilities (263) 3.0002 1.0619
(4.98)

∗∗
++ 0.7948

(2.61)
∗∗ 5.7294

(2.06)
∗
+ 0.1029

(2.25)
∗

27. Non-ferrous metals & products

Electric wire & cable (274) 2.1996 0.9740
(4.92)

∗∗
++ 1.0198

(2.03)
∗ 2.4224

(0.96)
0.0123
(0.25)

Non-ferrous metal machine parts (275) 2.1235 −0.0469
(−0.26)

– – 1.8947
(3.73)

∗∗
+ −0.9107

(−0.36)
0.1214
(2.89)

∗∗

Misc. non-ferrous metal products (279) 2.8747 0.0227
(0.14)

– – 0.9688
(2.12)

∗ −1.8696
(−0.85)

0.1504
(3.63)

∗∗

28. Fabricated metal products

Fabricated constructional metal products (284) 1.1529 0.8955
(8.43)

∗∗
++ 0.0771

(0.22)
4.2234
(3.11)

∗∗
++ 0.1271

(3.77)
∗∗

Metal machine parts (285) 2.1985 0.1566
(0.82)

2.0197
(3.6)

∗∗
+ 1.0673

(0.39)
0.1360
(3.49)

∗∗

Table 3: Coefficient estimates for selected industries under τ = 0.10 (continued)
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Industry D index ln AP ln FT ln FH ln AC

29. General machinery

Boilers, engines & turbines (291) 3.0425 0.6411
(3.72)

∗∗ 1.7289
(4.47)

∗∗
++ −7.7648

(−3.94)
∗∗
– – −0.0100

(−0.19)
–

Office & household machines (298) 1.8137 0.4938
(2.8)

∗∗ 1.8651
(3.16)

∗∗
+ 0.0948

(0.04)
0.0684
(1.75)

∗

30. Electrical machineries & equipments

Communication equipments (304) 1.7555 0.4553
(2.86)

∗∗ 1.8487
(4.3)

∗∗
++ −0.6690

(−0.35)
0.1056
(2.25)

∗

Electronic parts & devices (308) 1.2092 0.5877
(4.64)

∗∗ 0.3556
(1.45)

4.3088
(2.9)

∗∗
++ 0.0867

(2.56)
∗∗

Misc. electrical machineries (309) 2.1762 0.0381
(0.2)

– 0.4346
(1.13)

5.1789
(1.85)

∗ 0.1801
(3.92)

∗∗

31. Transportation equipment

Shipbuilding & repairing (314) 2.1348 0.4658
(4.7)

∗∗ 0.0594
(0.29)

– – 1.3998
(1.17)

0.1961
(3.78)

∗∗

Misc. transportation equipment (319) 2.3215 0.7989
(4.97)

∗∗
+ 1.8287

(4.52)
∗∗
++ −6.3046

(−3.42)
∗∗
– – 0.0899

(2.11)
∗

32. Precision instruments & machineries

Physical & chemical instruments (324) 3.5657 −0.2882
(−1.04)

– – 1.3633
(1.77)

∗ −8.9366
(−2.39)

∗∗
– 0.1185

(2.19)
∗

Optical instruments & lenses (325) 2.4246 0.4541
(2.36)

∗∗ 0.5900
(1.2)

1.5676
(0.62)

0.0013
(0.03)

–

Watches & clocks (327) 2.6747 0.0578
(0.37)

– – 0.8854
(2.32)

∗ −0.1951
(−0.09)

−0.0128
(−0.28)

–

34. Misc. manufacturing industries

Precious metal products (341) 3.4635 0.3087
(1.82)

∗ −0.0074
(−0.02)

−6.3223
(−3.02)

∗∗
– – 0.0415

(0.86)

Musical instruments (342) 2.9529 0.1179
(0.48)

2.7968
(3.52)

∗∗
++ −4.9542

(−1.45)
0.1465
(2.47)

∗∗

Lacquer ware (346) 4.0946 0.1278
(0.85)

– 0.6477
(1.21)

2.7026
(1.39)

0.0331
(0.78)

Information recording materials (34C) 4.1611 0.0382
(0.16)

0.2836
(0.47)

−10.0208
(−3.57)

∗∗
– – 0.0158

(0.27)

Table 3: Coefficient estimates for selected industries under τ = 0.10 (continued)

Municipalities Clusters Prefectures

τ .01 level .05 level .01 level .05 level .01 level .05 level

0.05 0.6494 0.7597 0.0584 0.1234 0.0130 0.0455

0.10 0.6234 0.7273 0.0584 0.1494 0.0065 0.0390

0.20 0.5909 0.6753 0.0195 0.1364 0.0065 0.0195

Table 4: Share of industries with significant Moran’s I among regression residuals

Attributes Cluster Prefecture Intersection

δ× ln AP 33 22 2

δ× ln FL 28 34 13

δ× ln FH 20 10 2

δ× ln AC 18 21 6

Table 5: Number of industries with significant coefficients (at .05 level) under τ = 0.10
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Hokkaido

Honshu (main island)

Shikoku

Kyushu

Figure 1: Municipalities of Japan
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Figure 2: Frequency distribution of D values

45



(a) Bakeries and confectionery products (JSIC127)

(b) Sliding doors and screens (JSIC173)

TokyoNagoyaOsaka

TokyoNagoyaOsaka

Sapporo

Asahikawa

Figure 3: Ubiquitous industries

(a) Textile outer garments and shirts (JSIC151)

Tohoku region

San-in region

Kyushu
region

Shikoku region

(b) Seafood products (JSIC122)

Figure 4: Industries with low levels of D
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(d) Paper containers (JSIC185)

(c) Communication equipment (JSIC304)

TokyoOsaka-Kyoto Nagoya

TokyoNagoyaOsaka-Kyoto

Tohoku region

Figure 4: Industries with low levels of D (continued)

(a) Musical instruments (JSIC342)

TokyoHamamatsu

Nagano

Fukuyama

(b) Steel, with rolling facilities (JSIC263)

TokyoNagoyaOsaka

Morioka

Minamiaizu

Figure 5: Industries with intermediate levels of D
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(a) Printing industries (JSIC192)

(b) Iron smelting, without blast furnaces (JSIC262)

Tokyo

Fukuoka

NagoyaOsaka

TokyoOsaka

Figure 6: Industries with high levels of D
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Figure 7: Distance decay functions
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TokyoNagoya
Kobe, Osaka, Kyoto

Sendai

Sapporo

Fukuoka

OkayamaHiroshima

Niigata

Obihiro

Asahikawa

Akita Morioka

Figure 8: Population access of municipalities with τ = 0.10

(a) Industry accessibility

(b) Transaction accessibility

(c) Relative transaction accessibility

Nagano

Hamamatsu Tokyo

Figure 9: Total industry and transactions access levels of “musical instruments” (JSIC342)
with τ = 0.10
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(a) ln FJr

(b) ln FHr

(c) ln FUr

TokyoNagoya

Kobe, Osaka, Kyoto

SendaiFukuoka
Hiroshima

Supporo

Figure 10: Labor accessibilities with τ = 0.10

Figure 11: Prefectures of Japan
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(b) “Newspaper industries” (JSIC191)

(a) “Fabricated constructional and 
               architectural metal products” (JSIC284)

Chiyoda

Figure 12: Spatial autocorrelations for residuals under the cluster-level regression with
τ = 0.10

Hokkaido

Niigata

Figure 13: Employment of “bakeries” industry (JSIC127) at the prefecture level
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