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1 Introduction

When the economic performance of an industry is poor, it is often said that

the �rms should raise their productivity. The main reason may indeed be bad

productivity, but it could also be decreased demand perhaps due to recession.

While it may be true that raising productivity will help the industry or �rms

regardless of the underlying cause, policy implications will be di�erent. If de-

creased demand is the cause, the government should run a policy stimulating

demand, but if reduced productivity is the cause, subsidies or tax bene�ts for

R&D may be a suitable policy. In this sense, determining the main driving force

of the poor performance of an industry/�rms is important.

Total factor productivity (TFP) is the most commonly used productivity

measure in the literature, especially in macroeconomics. However, it is often

computed as a residual from production function estimation. It is virtually im-

possible to decompose it into demand and supply factors. There has been some

research attempting such decomposition, for example, Levinsohn and Petrin

(1999, 2003) and Ichimura, Konishi, and Nishiyama (2011). This paper is one

such attempt. We use plants' production capacity and realized production data

available in the Current Survey of Production (CSP) dataset.

The production technology of a �rm or an economy is characterized by its

production function. A common speci�cation is the Cobb-Douglas production

function:

Yit = ALβl

itK
βk

it , (1)

where Yit, Lit, and Kit indicate the output level, labor input, and capital input,

respectively, of �rm (or any production unit, such as a plant) i at time t. βl,

βk, and A, are unknown constants. Obviously, �rms with a large A can produce

more, and thus, they are said to possess high productivity. TFP for a Cobb-

Douglas technology is de�ned by logA, and it has been empirically measured

by its estimate since the pioneering work of Solow (1957). Taking the logarithm

of (1) and adding a disturbance term uit, we obtain the log-linear form of the
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Cobb-Douglas production function:

yit = β0 + βllit + βkkit + uit, (2)

where lit = logLit, kit = logKit, and β0 = logA. Christensen, Jorgenson, and

Lau (1973) generalized it to the following more �exible functional form, called

the translog production function:

yit = β0 + βllit + βkkit + βlll
2
it + βlklitkit + βkkk

2
it + uit. (3)

These two functional forms are widely used in theoretical and empirical economic

research, and in the context of productivity analysis.

Production functions given by (2) or (3) are often estimated by the ordinary

least squares (OLS) method regarding β̂0 + ûit is regarded as an estimate of

TFP, where β̂0 and ûit are the estimate of β0 and the regression residual, re-

spectively. However, as discussed in Marschak and Andrews (1944) and many

other subsequent papers, there can exist an endogeneity problem caused by the

correlation between disturbance uit and the regressors. The source of the cor-

relation is that a �rm may determine its factor input levels depending on its

productivity, namely β0+uit, if this can be observed before making the decision.

Several methods have been proposed to handle this endogeneity problem,

such as Olley and Pakes (1996), Levinsohn and Petrin (1999, 2003), and Ichimura,

Konishi, and Nishiyama (2011). These methods construct a model splitting er-

ror term uit into two components as follows:

yit = β0 + βllit + βkkit + ωit + ϵit.

Here, ωit is considered as the �rm-speci�c productivity or technological shock,

which �rms can, but econometricians cannot, observe. Thus, it is possibly

correlated with factor inputs. ϵit denotes the ordinary error term independent

of the system. The above methods assumed a correlation between ωit and lit

considering kit to be exogenous, and proposed consistent estimators.
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The purpose of this paper is, as stated, to decompose TFP-type quantity

into demand, supply, and other shocks. For this purpose, we use the estimation

method in Ichimura, Konishi, and Nishiyama (2011), which we henceforth refer

to as the IKN estimation method, and OLS estimates for parameter estimation.

The parameters to be estimated are the constant, capital, and labor coe�cients,

and the rate of operation for capital. We apply this method to two industries,

die-cast and machinery. In the empirical study, the proposed estimation proce-

dure provides reasonable estimates of βl and βk. In the die-cast industry, we

found from the Hausman test that there is no bias in OLS, implying that there

is no endogeneity. We computed the productivity shock and demand shock for

each plant and year, and constructed industry-level counterparts. In general,

we found no negative productivity shocks but severe demand shocks during the

Lehman shock period.

The following section reviews some of the previous research that solved the

endogeneity problem in productivity analysis. The idea of TFP decomposition

is also presented. Section 3 describes the data. Section 4 shows the estimation

results. The concluding remarks and future research are in Section 5.

2 Decomposition of demand and supply shocks

We discuss how we can decompose demand and supply shocks when the data of

production capacity and realized production are available. Production capacity

is the possible production level given the present input amounts, and thus is

a�ected by the supply shock, but not by the (short-term) demand shock. This

is the key idea for identi�cation of supply shock. On the other hand, realized

production level must depend on all shocks (the supply shock, demand shock

and other idiosyncratic shocks), the di�erence between the two production levels

re�ects the demand shock and the other idiosyncratic shocks. Firms will reduce

labor/capital inputs (if possible), when they observe a negative demand shock.

As it is perhaps impossible to change labor/capital in short term, this shock

will be adjusted by reducing the rate of operation. Thus it should re�ect the
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demand shock. This will provide us the demand shock and the remainder will

be the idiosyncratic shock.

2.1 Model of production capacity and realized production

We start with simple models of production capacity and realized production

under a Cobb-Douglas technology. Suppose that a plant of a certain product

has a Cobb-Douglas production function:

Yit = AitK
βk

it Lβl

it .

Remember that given product price p and inputs price (r, w) (for capital and

labor, respectively), the optimal inputs from pro�t maximization are

K∗
it =

[
r

pAitβk
(
rβl

wβk
)βl

] 1
βk+βl−1

, (4)

L∗
it =

[
w

pAitβl
(
wβk

rβl
)βk

] 1
βk+βl−1

. (5)

Given production level Y and input prices (r, w), the optimal inputs from cost

minimization are

K+
it =

[
Y

Ait
(
wβk

rβl
)βl

] 1
βk+βl

, (6)

L+
it =

[
Y

Ait
(
rβl

wβk
)βk

] 1
βk+βl

. (7)

Log-production capacity ȳit is determined using technology and present log-

inputs k̄it, l̄it as follows:

ȳit = α+ βkk̄it + βl l̄it + ωit. (8)

Here, we suppose that Ait = exp(α + ωit), and ωit indicates the productivity

shock as in Olley and Pakes (1995), Levinsohn and Petrin (1999, 2003), and

Ichimura, Konishi, and Nishiyama (2011). These papers estimate the production
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function parameters taking into account the possibility of endogeneity from

productivity shock ωit. If �rms can observe ωit and optimize the capital and

labor input levels simultaneously, k̄it and l̄it should be correlated with ωit, and

thus, the OLS estimates of (8) should be biased. This is, however, an empirical

issue and observing that the operation rate of labor and capital is not 100%

in many cases, it may be more natural to consider that �rms cannot adjust

labor and capital inputs simultaneously at least in part. (Note that inputs such

as materials and energy must be simultaneously adjusted and thus the rate of

operation should always be 100%.) An extreme situation is the no-adjustment

case when ωit is independent of k̄it, l̄it, or �rms cannot adjust the labor and

capital input levels at all after observing ωit. A more likely situation is that

they adjust the levels only in part, which yields present level k̄it, l̄it. Practically,

some parts of labor or capital are relatively easy to change, but others are not.

Next, we consider how much �rms produce in fact, given this production

capacity. Firms decide their production amounts (say, monthly) looking at

the inventory and the economic situation or demand. If the economy is in a

recession and producing the maximum amount ȳit is considered inadequate,

they will produce only yit < ȳit without using all the present inputs. Suppose

they use only 100∆it% ∈ (0, 100) of labor input and 100∆ν
it% of capital input;

namely, (∆ν
itKit,∆itLit). Here, ν is introduced to allow for di�erent rates of

operation for capital and labor. It may be natural to assume that the rates of

operation are the same for both labor and capital because the optimal rate of

inputs is constant under a Cobb-Douglas technology in view of the �rst-order

condition
βk

βl
=

rK

wL
,

where r and w are the factor prices of capital and labor. If this assumption is

indeed correct, ν = 1 holds. In this analysis, we estimate ν as well, and test if

ν = 1 or not. We note that δit could be positive when the economy is good.
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Then, the realized production level would be

yit = α+ βk(ν log∆it + k̄it) + βl(log∆it + l̄it) + ωit + ϵit (9)

= α+ (νβk + βl)δit + βkk̄it + βl l̄it + ωit + ϵit, (10)

where δit = log∆it and ϵit are idiosyncratic errors independent of the inputs

and ωit. Given observations (ȳit, yit, δit, k̄it, l̄it), we can estimate both equations

(8) and (9).

We can view the above model in a di�erent way. Suppose that �rm i origi-

nally planned to produce up to capacity ȳit, but observes a demand decline and

decides to reduce log-production by ξit. It would then act as a cost minimizer

to determine input levels by minimizing the cost given the �xed log-production

level of ȳit− ξit. Then, from (6), log-inputs should be reduced simply by ξit
βk+βl

,

and thus, the inputs will change to

k̄it −
ξit

βk + βl
, l̄it −

ξit
βk + βl

.

Imposing the theoretical restriction of ν = 1, and comparing them with (9), we

have

δit = − ξit
βk + βl

.

Then, yit in (9) indeed is reduced by ξit. This gives us the relationship between

demand shock ξit and rate of operation δit.

2.2 IKN estimator

We brie�y review the semiparametric IV estimator by Ichimura, Konishi, and

Nishiyama (2011) under endogeneity caused by productivity shocks. We adopt

the lag variables of labor and capital as instruments for the endogenous inputs.

Ichimura, Konishi, and Nishiyama (2011) assume that only the realized pro-

duction data exist. Further, they do not explicitly consider the operation rate.
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Their estimated model is

yit = α+ βkkit + βllit + ωit + ϵit,

where yit, kit, lit are log production, log labor input, and log capital, respectively.

ωit is a technological shock observable for the �rm, and ϵit is an idiosyncratic

shock.

yit = α+ βllit + βkkit + E(ωit|ki,t−1, li,t−1) + ξit + ϵit

= α+ βllit + βkkit + g(ki,t−1, li,t−1) + ξit + ϵit, (11)

where g(ki,t−1, li,t−1) = E(ωit|ki,t−1, li,t−1) and ξit = ωit − E(ωit|ki,t−1, li,t−1).

Then, we have the following moment condition:

E(ξit + ϵit|ki,t−1, li,t−1) = 0 (12)

for the estimation of parameters. Under the Markovness assumption of ωit, we

also have the following moment condition:

E(ξit + ϵit|ki,t−2, li,t−2) = 0. (13)

Since g(·, ·) is unknown, they propose to approximate it by a linear combination

of series functions. Letting ϕp(u), p = 1, 2, 3, · · · be basis functions of a suitable

L2 space, Ichimura, Konishi, and Nishiyama (2011) write

g(ki,t−1, li,t−1) ≈
Jn∑
p=0

Jn∑
q=0

cpqϕp(ki,t−1)ϕq(li,t−1) (14)

for some Jn → ∞ as n → ∞ more slowly than n. Substituting (14) into (11),

they obtain the �nal form of the equation as

yit = α+ βllit + βkkit +

Jn∑
p=0

Jn∑
q=0

cpqϕp(ki,t−1)ϕq(li,t−1) + ξit + ηit. (15)
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With this expression, obviously, only α + c00 is identi�ed. Letting c00 be

absorbed in α, unknown parameters α, βk, βl, cpq are estimated by the GMM

method using moment conditions (12) and (13).

Ichimura, Konishi, and Nishiyama (2011) encounter a di�culty in decom-

posing ωit and ϵit. They make use of the fact that ωit is correlated with the

inputs to obtain the estimate of ωit, but this captures only some part of ωit.

In this paper, we also employ this to estimate the model. However, we use an

additional dataset of CSP that provides us with production capacity and the

operational rate of labor input. We exploit this information to better decompose

ωit and ϵit.

2.3 Identi�cation and estimation of demand, supply, and

idiosyncratic shocks

In view of the above model (8), it is possible to estimate production function

parameters α, βk, βl by IKN estimators, using the lagged inputs as instruments.

Note that we need not include idiosyncratic errors in this model because the

dependent variable is production capacity. We may need to use the IKN, and

not the OLS, estimates because present input levels k̄it, l̄it should be determined

given technological shock ωit. These are thus likely to be correlated with ωit.

This causes the endogeneity bias discussed in the literature. See, for example,

Olley and Pakes (1995), Levinsohn and Petrin (1999, 2003), Ichimura, Konishi,

and Nishiyama (2011), and the references therein. However, as discussed in the

previous section, the existence of such an endogeneity is an empirical issue in

reality, and thus, we test if k̄it, l̄it are indeed endogenous in terms of ωit. We

can easily test this using the Hausman test which compares the IKN and OLS

estimates.

In the production function estimation, it may be common to include inputs

other than capital and labor, such as materials and energy consumption. When

the dependent variable is sales, and not the amount of production, expendi-

ture on such inputs should be considered. However, if the dependent variable
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is production quantity, then the inputs that determine capacity are not �exi-

ble. In this paper, we only use the production amount, and hence, we do not

need to include such inputs, especially when these additional inputs are easily

adjustable.

Given the estimates of α, βk, βl, it is convenient, unlike in IKN, in that we

can estimate ωit directly by

ω̂it = ȳit − α̂− β̂kk̄it − β̂l l̄it

because (8) does not include the idiosyncratic error. IKN attempts to extract

ωit from the residual using a second-step regression on k̄it, l̄it and other macroe-

conomic variables.

We use (9) in the next step to identify and estimate the idiosyncratic shock.

Subtracting (9) from (8), we have

yit − ȳit = (νβk + βl)δit + ϵit.

We have the estimates of βk, βl and the data on δit, the operation rate of labor

input. Then, we can estimate ν simply using OLS without constant because ϵit

is the idiosyncratic error from the regression:

yit − ȳit − β̂lδit = ν(β̂kδit) + ϵit. (16)

We can also estimate the two equations simultaneously by GMM, which should

increase the e�ciency of estimation. In the following empirical section, we only

report the results of the two stage estimation for simplicity suppressing the

simultaneous estimation. In testing ν = 1, we use the t value, but we cannot

use the standard normal table to construct the critical values. This is because

regressor β̂kδit includes estimate β̂k, and the standard error of ν̂ is a�ected by

its variance. The asymptotic variance is shown in the Appendix. Given these
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estimates, we can estimate ϵit by the residual:

ϵ̂it = yit − ȳit − β̂lδit − ν̂β̂kδit.

Therefore, we can compute all the shocks from this model using the parameter

estimates.

Finally, given all these estimates, we can compute the demand shock as

ξ̂it = (ν̂β̂k + β̂l)δit

or

ξ̂it = (β̂k + β̂l)δit

under the ν = 1 constraint.

3 Data

We use the CSP data collected by METI. The objective of CSP is to understand

the monthly trends in the manufacturing and mining industries in Japan, and

to make direct inferences for Japanese industrial policies. The survey targets

establishments or �rms that produce manufacturing or mineral goods. CSP

comprises of four parts: product; raw material, fuel, and electricity; labor; and

production capacity. The �rst part includes the monthly production, shipment,

sales, and inventory for each product produced by the establishment/�rm. The

second part covers the monthly consumption and inventory for each raw mate-

rial, and the monthly fuel and electricity consumption. The third part comprises

the number of workers at the end of each month. The fourth part�production

capacity�is the most noteworthy aspect of CSP. Production capacity is a key

feature of this paper, and is de�ned as the possible production level given the

present input amounts. According to CSP, production capacity is the maxi-

mum amount of production when the plant can use their standard amount of

production facilities and labor. Production facilities, we call kit , are existence
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machines and equipment without the stopping facilities. Labor (lit) are stan-

dard number of employees that engage in the facilities of each plant. We can

know the gap between the actual amount of production and the production ca-

pacity using CSP; this enables us to decompose the supply and demand shocks

in the production function.

In our empirical application, we estimate (8) and (9), with the dependent

variables being log-production capacity ȳit and realized production yit. We ob-

tain both variables from CSP. The explanatory variables are present log-inputs

k̄it, l̄it: while we obtain lit from CSP, kit is unavailable in CSP. Further, we

sometimes use the lag of raw material and/or electricity consumption as instru-

mental variables in IKN estimation. Although CSP collects these items, the

data are available for only a few industries. Thus, we need to �nd kit and inter-

mediate goods from other items. The Census of Manufacturing (CM) conducted

by METI is the most adequate survey for our purpose. CM is an annual survey

and covers all establishments that produce manufacturing goods. It includes

inputs and intermediate goods. We link CSP's establishments to CM's via a

common code and name-based aggregation: the matching rate is about 88%.

While CM provides data for each establishment, CSP reports product-based

data. As such, we adjust CM's kit and intermediate goods to product-based

data using the product-establishment ratio: the ratio of the number of workers

who produce the goods to the total number of workers in the establishments.

Moreover, we examine yearly ȳit, yit and lit for use with CM data. In order to

identify demand shock ξit, we need to input labor operation ratio δit = log∆it

in (9), which is the ratio of the number of workers present at the end of a month

to the total number of workers employed in that month.

The CSP dataset includes 111 industries, and we focus on industries with

variable production capacity. In all, we cover 72 industries, after considering

production capacity and labor for industries with a large enough sample size

and with similar listed goods. In this study, we apply our method to the metal

cutting machine tools industry (# 2110) and the die-cast industry (# 2560) for

the period from 2005 to 2009.

12



4 Empirical application

The purpose of this paper is, as stated, to decompose the TFP-type quantity

into demand, supply, and other shocks. For this purpose, we use the IKN and

OLS estimation methods for (8) using CSP and CM data:

yit = α+ βkk̄it + βl l̄it + ωit.

The parameters to be estimated are constant α, and the capital and labor

coe�cients βk and βl, respectively. We also obtain productivity shock ωit as

the estimation residual. Table 1 shows the OLS estimation results for the metal

cutting machine tools industry and the die-cast industry, with the data pooled

from 2005 to 2009 for each establishment. For our pooled dataset, we compute

the standard error considering autocorrelation for the t-test statistics. To con-

sider the time trend or changes in economy and/or technology, we add the year

dummy in (8). Both industries have signi�cantly positive estimators for βl and

βk, and βl is larger than βk. In the OLS estimation, we assume that the �rms do

not adjust the input levels while observing their productivity; however, if �rms

can observe ωit and optimize the capital and labor input levels simultaneously,

k̄it and l̄it should be correlated with ωit, and thus, the OLS estimates of (8)

should be biased. To solve this problem, we also estimate (8) using the IKN

estimates. In Table 2, the estimators of βk and βl are signi�cantly positive and

βk+βl are less than one in both industries. In this sense, we can obtain reason-

able estimates of βl and βk. As compared to the OLS results, β̂k are smaller for

both industries. While for the metal cutting machine tools industry, β̂l under

OLS is almost double that under IKN, for the die-cast industry, β̂l is almost the

same under both. There exist blank cells for which variables are omitted in the

estimation due to multicollinearity.

We can summarize brie�y that the IKN and OLS estimation results are

di�erent for the metal cutting machine tools industry and similar for the die-

cast industry.
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<Insert Tables 1 and 2 here>

To verify this intuition, we use the Hausman test which compares the IKN

and OLS estimates. The results of the Hausman test are given in Table 3; these

results yield that we should use IKN estimates for the metal cutting machine

tools industry and OLS estimates for the die-cast industry. Further, for the

die-cast industry, we found that the Hausman test yields no bias under OLS

estimates, which implies that there is no endogeneity among productivity and

inputs.

<Insert Table 3 here>

Using the IKN estimates for the metal cutting machine tools industry and

OLS estimates for the die-cast industry in (9), we implement the OLS estimation

for the equation as follows:

yit − ȳit − β̂lδit = νt(β̂kδit) + ϵit.

Table 4 shows the estimation results of ν, the di�erence in the operation

rates of k̄it and l̄it for each year. We show the derivation of the asymptotic

variance of ν̂ in the Appendix. However, all estimators of ν seem to be far from

the theoretical assumption ν = 1, and hence, we test ν = 1 using the asymptotic

variance of ν̂. Consequently, ν = 1 is not rejected in each estimation. Table

5 provides us the descriptive statistics for the operation rate of l̄it with actual

CSP data. The average is about 0.95 and it is less than one. This indicates that

establishments cannot adjust the labor input level in short term. We need to

know the operation rate of k̄it for computing ∆
ν̂jt

it , where ∆it is the operation

rate of l̄it and ν̂jt is the estimator of j industry's ν at year t. For example, if we

adopt ν = 1 for the metal cutting machine tools industry in 2006, the operation

rates for both inputs are 0.980. In contrast, if we adopt di�erent operation

rates for k̄it and l̄it, the average of ∆it = 0.980, and then ∆
ν̂jt

it = 0.914. Given

these estimations, we get the parameters and operation rates of the two inputs,

productivity ωit, and idiosyncratic shock εit.

<Insert Tables 4 and 5 here>
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Finally, we use all the above estimation results and compute the demand

shock as

ξ̂it = (ν̂β̂k + β̂l)δit

or

ξ̂it = (β̂k + β̂l)δit

under the ν = 1 constraint.

Figures 1 and 2 show omega (ω̂it), demand shock (ξ̂it), and TFP (ω̂it+ξ̂it+εit

for each plant and year, with industry-level counterparts being aggregated using

the weighted average. In both industries, we do not observe a negative level of

productivity even though we have a very severe economy shock in the Lehman

crisis. At the same time, ordinal TFP decreases rapidly after the big shock.

Further, we could not �nd a positive demand shock in this period.

<Insert Figures 1 and 2 here>

5 Concluding remarks

We attempt to estimate the production functions for some particular products

and decompose the so-called TFP or the estimation residual into ξit, ωit, and

ϵit (namely demand, supply, and idiosyncratic shocks, respectively). After the

pioneering work of Marschak and Andrews (1944), this direction of research

has been pursued by many researchers including Olley and Pakes (1996) and

Levinsohn and Petrin (1999, 2003). Our approach is novel in that we use the

data of both production capacity and realized production. Because of this,

we believe that our decomposition should be more accurate than the others.

For example, the above two works treat TFP as an estimate of ωit. Ichimura,

Konishi, and Nishiyama (2011) regress TFP on the present input levels trying

to extract ωit, which is one way of decomposition, but this can only yield ωit

that can be explained by the inputs.

We applied our procedure to the metal cutting machinery and die-cast indus-

tries. We found that the decomposition seems to work rather well showing that
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productivity did not fall during the period of Lehman shock but the demand

shock was large.

6 Appendix

We show the asymptotic variance of the second step estimator of ν in (16).

Suppose that E(ϵi|xi) = 0, E(ϵ2i |xi) = σ2
ϵ , and

yi = νβxi + ϵi.

We want to estimate ν by OLS using a �rst step estimate of β, which is inde-

pendent of ϵi. Namely, the model to be estimated is

yi = νβ̂xi + ϵ̂i.

We assume that ϵi and β̂ are independent. The estimator can be written as

ν̂ = (
∑

β̂2x2
i )

−1
∑

β̂xiyi

= (
∑

β̂2x2
i )

−1
∑

β̂xi(νβxi + ϵi)

= νβ̂−1β + β̂−1(
∑

x2
i )

−1
∑

xiϵi,

and thus, we have

√
n(ν̂ − ν) = νβ̂−1

√
n(β − β̂) + β̂−1(

1

n

∑
x2
i )

−1 1√
n

∑
xiϵi.

Therefore, noting that ϵi and β̂ are independent, we get

Asy.V ar(
√
n(ν̂ − ν)|X) = ν2β−2AsyV ar(β̂) + β−2σ2

ϵ (
1

n

∑
x2
i )

−1.

This can be estimated by

ˆAsy.V ar(
√
n(ν̂ − ν)) = ν̂2β̂−2 ˆAsyV ar(β̂) + β̂−2σ̂2

ϵ (
1

n

∑
x2
i )

−1,
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where σ̂2
ϵ = 1

n

∑
(yi − ν̂β̂xi)

2.

β̂−2σ̂2
ϵ (

1
n

∑
x2
i )

−1 = σ̂2
ϵ { 1

n

∑
(β̂xi)

2}−1 is the standard estimate of the asymp-

totic variance of ν̂ considering β̂ as if it were not an estimator, or the standard

software output of the variance of ν̂ when we regress yi on β̂xi.
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Table 1: Estimation results of OLS
Industry 2110 2560

covariates β̂ /[t-value] β̂/[t-value]
lnk 0.2481 0.1933

[4.59]*** [2.93]***
lnl 0.5037 0.5978

[6.63]*** [6.23]***
yeard2 -0.0694 -0.1661

[-0.48] [-2.08]**
yeard3 -0.0983 -0.1175

[-0.68] [-1.47]
yeard4 -0.0265 -0.1076

[-0.18] [-1.34]
Constant 0.5534 1.0529

[1.10] [3.96]***
Adj-R 0.4189 0.6822
Obs 524 583

*p < 0.1, **p < 0.05, ***p < 0.01

Table 2: Estimation results of IKN

Industry 2110 2560

covariates β̂ /[t-value] β̂/[t-value]

lnk 0.1755 0.1580

[3.79]*** [4.93]***

lnl 0.1856 0.6102

[2.65]** [14.38]***

sk1 48.4725 190.4169

[2.06]** [0.55]

sk2 30.4242

[2.08]**

sk3 5.5824 -1.9724

[1.64] [-0.54]

sl1 -59.5650

[-1.85]*

sl2 -10.6332 1037.6505
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[-2.69]*** [1.29]

sl3 -0.2555 648.6740

[-0.69] [1.07]

ck1 57.1532 -112.5223

[2.04]** [-0.15]

ck2 4.0173 -42.2204

[0.64] [-0.08]

ck3 -3.2482 -2.6126

[-1.85]* [-0.36]

cl1 30.5588

[2.13]**

cl2 -1.0882

[-0.27]

cl3 -0.2346 -101.3206

[-0.78] [-0.30]

sskl11 -65.4644

[-1.87]*

sskl12 -8.1035 35.0015

[-2.47]** [0.11]

sskl21 -26.6985 -26.7841

[-1.87]* [-0.09]

sckl11 32.0891

[1.75]*

sckl12 0.4909 -166.7044

[0.16] [-0.49]

sckl21 16.1274 -7.0317

[2.52]** [-0.29]

cckl11 29.4337

[2.56]**

cckl12 -1.6272 118.4183
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[-0.47] [0.15]

cckl21 -0.6360 -31.8980

[-0.16] [-0.06]

cskl11 -52.1345

[-1.72]*

cskl12 -9.5817 41.5889

[-3.14]*** [0.12]

cskl21 2.8464 20.2088

[0.55] [0.22]

yeard3 -0.0333 0.0184

[-0.27] [0.24]

yeard4 -0.0380 0.0550

[-0.31] [0.71]

yeard5 0.0259 0.1696

[0.21] [2.18]**

Constant 53.3320 -86.7034

[2.23]** [-0.25]

Adj-R 0.5906 0.7179

Obs 509 568

*p < 0.1, **p < 0.05, ***p < 0.01

Table 3: Hausman test results, IKN vs. OLS
Industry 2110 2560

χ2 value 311.44 2.79
p-value [0.00]*** [0.25]

***p < 0.01
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Table 4: Estimation of ν, 2110
Year 2006 2007 2008 2009

ν 4.466 7.740 7.922 18.881
t-value [0.12] [0.30] [0.26] [0.67]
Adj-R 0.0179 0.0985 0.0500 0.3365
Obs 143 145 144 130

The t-test is H0 : ν = 1, H1 : ν ̸= 1. The calculation of the asymptotic

variance of ν̂ is presented in the Appendix.

Table 5: Estimation of ν, 2560
Year 2006 2007 2008 2009

ν 4.2149 -1.8856 3.6049 5.7785
t-value [0.16] [-0.08] [0.13] [0.22]
Adj-R 0.0343 -0.0033 0.0250 0.0601
Obs 171 168 170 165

The t-test is H0 : ν = 1, H1 : ν ̸= 1. The calculation of the asymptotic

variance of ν̂ is presented in the Appendix.

Table 6: Summary statistics of the labor operation rate
Year Industry Mean Std. Dev. 5% 95% Obs.

2005 0.978 0.133 0.814 1.132 150
2006 0.980 0.165 0.835 1.154 150
2007 2110 0.980 0.173 0.792 1.135 151
2008 0.983 0.162 0.839 1.140 149
2009 0.870 0.214 0.531 1.047 139
2005 0.964 0.112 0.801 1.067 175
2006 0.963 0.139 0.800 1.080 172
2007 2560 0.980 0.090 0.865 1.103 168
2008 0.962 0.114 0.864 1.064 170
2009 0.906 0.119 0.696 1.046 165
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Figure 1: Product 2110

Figure 2: Product 2560
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