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Abstract 
 

Empirical study of firms’ growth and fluctuation requires the understanding of the dynamics of 
labor and productivity among firms by using large-scale data including that of small and 
medium-sized enterprises (SMEs). Specifically, the key to such understanding is the findings in 
statistical properties in equilibrium distributions of output, labor, and productivity. 
We uncover a set of scaling laws of conditional probability distributions, which are sufficient 

for characterizing joint distributions by employing an updated database covering one million 
firms including domestic SMEs. These scaling laws show the existence of lognormal joint 
distributions for sales and labor, and the existence of a scaling law for labor productivity, both 
of which are confirmed empirically. This framework offers characterization of equilibrium 
distributions with a small number of scaling indices, which determine macroscopic quantities, 
thus opening a new perspective of bridging microeconomics and macroeconomics. 
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I. Introduction

Labor and productivity play central roles at the core of economic growth in any developed country.
Policy making necessarily involves utilization of bounded labor forces and maintaining productivity
at a certain level and even higher. Empirical analysis of labor allocation among different productivity
levels is required to understand how workers are allocated and reallocated to industrial sectors with
varying levels of productivity.

The dynamical processes of allocation of labor across firms of differing productivity are essen-
tially of stochastic nature. The large body of literature in labor economics is consistent with this
viewpoint. Notably, Mortensen (2003) concluded as saying that the problem of wage dispersion,
namely why are similar workers paid differently, reflects differences in employer productivity. The
factors of exogenous labor turnover, job destruction and search friction prevent the labor market
from converging into a state of equilibrium in which all workers are employed by the firms of highest
productivity. Instead of such a static equilibrium, a steady-state allocation of labor across firms of
differing productivity is generated stochastically by a process of reallocation of workers from less to
more productive firms, including transitions to unemployment by job destruction and other reasons
for labor turnover. See also the literature on the analysis of job flow, e.g. Davis et al. (1996); Albaek
and Sorensen (1998).

In addition, because the productivity dispersion relates to the notion of equilibrium in economics,
it concerns the foundation of economic theory as pointed out lucidly in the works (Yoshikawa,
2000a,b; Aoki and Yoshikawa, 2007). Although there exists a mainstream approach (Kydland and
Prescott, 1982; Gaĺı, 2008), its internal coherence and ability in explaining empirical evidences are
increasingly questioned (Yoshikawa, 2000a,b; Delli Gatti et al., 2008; Aoki and Yoshikawa, 2007;
Aoyama et al., 2010b). Indeed, in many economic models, an equilibrium is described as a state in
which labor productivity is merely an equilibrium point, not a distribution. Empirical studies have
shown that productivity has dispersion among firms and sectors. See, for example, Shinohara (1955);
Salter (1960); Yoshikawa (2000a). The notion of statistical equilibrium, in which the aggregate
equilibrium is compatible with stochastic behavior of the constituents, is outside the box of tools
of mainstream economists. Statistical physics teaches us that the equilibrium of a system does
not require that every single element be in equilibrium by itself, but rather that the statistical
distributions describing macroscopic aggregate phenomena be stable. See also Foley (1994); Blume
and Durlauf, eds (2006).

In this paper we will show that a system populated by many heterogeneous interacting agents
generates equilibrium distribution in the form of scaling laws. In particular, we have shown with our
collaborators the existence of large and persistent differences in labour productivity across industries
and countries Aoyama et al. (2010a); Ikeda and Souma (2009); Aoyama et al. (2009). Productivity
is often measured in terms of the ratio between firms’ revenues and the number of employees. It
can be expected to be a unique value only within a very straightjacket hypothesis, such as the
Representative Agent. If agents are heterogeneous and interacting, then scaling laws emerge, and
dispersion is nothing but a consequence of it. Using Japanese data we empirically demonstrate
it. To be specific, the existence of a scaling law is demonstrated empirically for the output and
labor of a million Japanese firms. Theoretical study of the scaling laws suggests lognormal joint
distributions, and a scaling law for labor productivity, both of which are confirmed empirically.

In Section II, we employ the Credit Risk Database (CRD) as the largest database, which covers
small and medium firms in Japan, in order to analyze the distributions of labor input L, total output
Y , their joint and conditional distributions. We find a significant property in the distributions, what
we call double scaling law in Section III. Specifically, in Section III.A, we formulate scaling relations
in terms of conditional distributions for L and Y . Then, in Section III.B we show mathematical
consequences of the scaling relations for joint and marginal distributions of L and Y , and also their
consequence for labor productivity in Section III.C. We check the validity of these results in the
CRD data. Section IV gives the summary.
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Figure 1: Scatter plot for (L, Y ) (gray dots). The curve with error bars is the nonpara-
metric estimation for E(y|`) := E(ln Y |L), while the thin straight line is the
linear regression (both axes are in units of ln 10.)

II. Data and Analysis

For the purpose to study properties in probability distributions, it is essential to observe a large
portion of the entire population of firms and workers. A database of only listed firms, for example,
is insufficient to analyze properties of distributions. We employ the largest database of Credit Risk
Database (CRD) in Japan (years 1995 to 2009), which includes a million firms and fifteen million
workers in the year 2006, covering the large portion of the whole domestic population. Below we
give our analysis for the year 2006, but note that the qualitative results are valid for other years as
well.

We measure the value added Y and the labor L of each firm to have the information of output
and input in the production at the individual level. We use simply the business sales/profits as a
proximity to the value added, and the end-of-year number of workers (excluding managers) as the
labor in order to calculate distributions for Y and L and to uncover their properties.

To understand how workers are distributed among different levels of output and productivity, we
shall study the distributions of Y and L using the following probability density functions (PDFs).
The joint PDF, PYL, the conditional PDFs, PY |L and PL|Y , and the marginal PDFs, PL and PY ,
are defined by

PYL(Y, L) = PY |L(Y |L)PL(L) = PL|Y (L|Y )PY (Y ). (1)

The conditional average of f(Y ) is defined by

E(f(Y )|L) :=

Z ∞

0

f(Y )PY |L(Y |L)dY, (2)

for an arbitrary function f(·), and similarly for E(f(L)|Y ).
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Figure 2: (a) The conditional PDF PY |L(Y |L) for L ∈ [5, 200], where the conditioning
values of L are chosen at a logarithmically equal interval. (b) The scaled
conditional PDF ΦY (Yscaled) defined by Eq. (6). Dots are the scaled data
points and the curve is the lognormal function given by Eq. (16).

As we shall see, since the PDFs are heavy-tailed for Y and L, it is convenient for the purpose
of statistical analysis to take the logarithms of variables:

y := ln
Y

Y0
, ` := ln

L

L0
, (3)

where Y0 and L0 are arbitrary scales.
Fig. 1 shows the scatter plot for (`, y). To reveal statistical structure in data, which can be easily

missed by parametric methods, we employ a kernel-based nonparametric methods Li and Racine
(2007). Fig. 1 depicts a nonparametric regression curve with error bars (95% significance level) for
E(y|`) = E(ln Y |L). We can observe that there exists a range 100.7 < L < 102.5 for which the
relation:

E(y|`) = α` + const., (4)

holds where α is a constant. In fact, the goodness of fit for nonparametric regression (R2 = 44.04%;
see Hayfield and Racine (2008) for the definition) has a same level as that for linear regression
(R2 = 44.03%) for the range, the estimation of which gives the estimation, α = 1.037(±0.003)
(shown by a straight line in Fig. 1).

Similarly, for the range of 104.5 < Y < 107.0, we have another relation, namely

E(`|y) = β y + const., (5)

with a constant β. The validity for this relation is checked by the nonparametric (R2 = 47.18%)
and linear (R2 = 47.09%) regressions, the latter of which gives the estimation, β = 0.655(±0.002).

III. Double Scaling Law

A. Scaling Relations

We find that these relations are simple consequences from two scaling relations for the conditional
PDFs, PY |L(Y |L) and PL|Y (L|Y ). Fig. 2 (a) depicts the conditional PDF, PY |L(Y |L), with the
conditioning values of L are chosen at a logarithmically equal interval corresponding to the range
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Figure 3: The scaled conditional PDF ΦL(Lscaled) defined by Eq. (7). The curve is the
lognormal function given by Eq. (18).

100.7 < L < 102.0 in terms of histograms. By using the values of α estimated above, we find that
the conditional PDF obeys a scaling relation:

PY |L(Y |L) =

„
L

L0

«−α

ΦY (Yscaled) , (6)

where Yscaled := (L/L0)
−αY and ΦY (·) is a scaling function, as shown by the fact that the PDFs

PY |L(Y |L) for different values of L fall onto a curve depicted in Fig. 2 (b). It is straightforward to
show that Eq. (4) follows from Eq. (6).

Similarly, we have another scaling relation for

PL|Y (L|Y ) =

„
Y

Y0

«−β

ΦL(Lscaled) , (7)

where Lscaled := (Y/Y0)
−βL and ΦL(·) is a scaling function, as shown by Fig. 3. And also Eq. (5)

immediately follows from Eq. (7).
The two scaling laws, Eqs. (6) and (7), which we collectively call the double scaling law have

strong consequences to the function form of the joint PDF. Let us briefly describe them in the
following.

B. Consequence for Joint and Marginal PDFs

Let us choose the reference scales Y0 and L0 to be within the region of the (Y, L)-plane where the
double scaling law is valid. Then by substituting Y = Y0, L = L0 into Eqs. (1), (6) and (7), We
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obtain the marginal PDFs, PY and PL in terms of the invariant functions, ΦY and ΦL:

PL(L) =

„
L

L0

«α
ΦL(L)

ΦL(L0)

ΦY (Y0)

ΦY ((L/L0)−αY0)
PL(L0), (8)

PY (Y ) =

„
Y

Y0

«β
ΦY (Y )

ΦY (Y0)

ΦL(L0)

ΦL ((Y/Y0)−βL0)
PY (Y0). (9)

From Eqs. (6) and (7) and the above, we arrive at the following equation for the Φs:

ΦL

`
(Y/Y0)

−βL
´

ΦL ((Y/Y0)−βL0)

ΦL(L0)

ΦL(L)
=

ΦY

`
(L/L0)

−αY
´

ΦY ((L/L0)−αY0)

ΦY (Y0)

ΦY (Y )
. (10)

This equation puts strong constraints the form of Φ’s. We have converted the above to differential
equations and have derived complete solutions of Eq. (10).1 Depending on whether αβ = 1 or not,
the solution is qualitatively different, which we shall explain below.

When αβ = 1, we find the following relation between Φ’s is necessary and sufficient for Eq. (10):

ΦL(L) = ΦY

`
(L/L0)

−αY0

´„ L

L0

«a
ΦL(L0)

ΦY (Y0)
. (11)

In other words, we have one arbitrary function in the solution. In this case, Eqs. (8) and (9) implies
that

PL(L) =

„
L

L0

«−µL−1

PL(L0), (12)

PY (Y ) =

„
Y

Y0

«−µY −1

PY (Y0), (13)

with

α =
µL

µY
, β =

µY

µL
, a = −µL + µY + µLµY

µY
. (14)

This result is straightforward to understand: Due to αβ = 1, we have

L−α
scaled ∝ Y L−α ∝ Yscaled. (15)

Therefore, an arbitrary function of Yscaled is a function of Lscaled as far as dependence on Y and L
is concerned. This is why an arbitrary function is left in the solution. Also the marginal PDFs in
Eqs. (12) and (13) results from the relation (1).

For αβ 6= 1, we obtain,

ΦY (Y ) = e−βpy2+qyΦY (Y0), (16)

ΦL(L) = e−αp`2+s`ΦL(L0), (17)

PL(L) = e−α(1−αβ)p`2+(s+(q+1)α)`PL(L0). (18)

PY (Y ) = e−β(1−αβ)py2+(q+(s+1)β)yPY (Y0). (19)

The joint PDF is given by the following:

PYL(Y, L) = e−αp`2+2αβp`y−βpy2+s`+qyPYL(Y0, L0). (20)

We find that in the limit αβ → 1 we obtain the power laws for PL(L) and PY (Y ), which is consistent
with the results (12) and (13) above.

1Since the proof is too lengthy for this letter, it will be published elsewhere in near future.
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The parameter of p is estimated in two ways: The best fit of the theoretical expression (16)
in Fig. 2 (b) yields p = 0.692(±0.027), while Eq. (16) in Fig. 3 yields p = 0.704(±0.016). These
measured values of p agree with each other very well, with combined value p = 0.698(±0.025),
assuming equal weight and no correlation. The marginal PDF PL(L) and PY (Y ) in Eqs. (18) and
(19) agrees with empirical data very well with these values of p. These analysis show that our
theoretical results above are in good agreement with data.

We stress that the above results are proved in the local region of the (Y, L)-plane where the
double scaling law is valid. On the other hand, if the lognormal PDF (20) is valid everywhere on the
(Y, L) plane, one may obtain the marginal PDFs and Φs as given in Eq. (17)–(19), as PL(L) can be
obtained by integrating Eq. (20) over Y ∈ [0,∞), and then obtain ΦL(L) in Eq. (17) from Eqs. (6)
and (7), and so forth, which constitute easy checks of the relation between various functions.

C. Consequence for Labor productivity

Let us now study the labor productivity C := Y/L in case of αβ 6= 1, as such is the reality as shown
empirically. The joint PDF of (C, L), PCL(C, L) is given by the following:

PCL(C, L) = LPYL(CL, L). (21)

Substituting the expression (20) into the above, we find that is express, we obtain that PCL(C, L)
too is of lognormal form like the r.h.s. of (20) with α, β, p replaced by

α̃ := α− 1, β̃ := β
α− 1

α + β − 2αβ
, (22)

p̃ :=
α + β − 2αβ

α− 1
p, (23)

respectively. By substituting empirical values found for α, β and p (the average of the two central
values of p found above), we find that they are α̃ = 0.037(±0.003), β̃ = 0.072(±0.007), p̃ =
6.353(±0.680). By comparing this with Eq. (19), we find the following marginal PDF for the
productivity C:

PC(C) ∝ e−γ1c2+γ2c, (24)

γ1 :=
αβ(1− αβ)

α + β − 2αβ
p, (25)

where c := ln(C/C0) with C0 := Y0/L0 and the measured values of α, β, p yield γ1 = 0.456(±0.017).
Also, the conditional PDF PL|C(C, L) satisfies the scaling law;

PL|C(C, L) =

„
C

C0

«−β̃

ΨL

 „
C

C0

«−β̃

L

!
, (26)

ΨL ∝ e−β̃p̃c2+q̃c, (27)

while the average of the labor L for a given productivity C is given by the following;

E[L|C] ∝
„

C

C0

«β̃

. (28)

Fig. 4 checks the result of Eq. (28) with the parameter β̃ estimated from the relation in Eq. (27),
where the thick straight line is the theoretical calculation. Fig. 5 depicts the scaling function Ψ(·),
where the curve is given by the fitting in Eq. (27). Both of these results confirm our results in the
region where the scaling relations are valid.
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Figure 4: Scatter plot for (C, L) (gray dots). The curve with error bars is the nonpara-
metric estimation for E(`|c) := E(ln L|C), while the thick straight line is the
theoretical prediction (28) with β̃ given by Eq. (23) (in units of ln 10).

Figure 5: The scaled conditional PDF ΨL(Lscaled) defined by Eq. (27). The curve is the
lognormal function given in the same equation.
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IV. Summary and Discussion

In this paper, we have shown that the Japanese data for some one million firms show that the firm
distribution in (Y, L) plane satisfy a double scaling law. We have shown that the double scaling
law leads to either power-law for the marginal PDF of Y and L, or the lognormal PDF for the
joint PDF of Y and L. Although we have concentrated on these specific two variables because of
their importance for the labour productivity, we believe that other financial quantities obey double
scaling law. Furthermore, joint PDF of more than two variables are expected to obey the similar
scaling laws, which yield extensions of the results explained above, including multi-variate lognormal
distributions, yielding simple relations such as Eq. (25) between scaling exponents.

Our empirical finding of the double scaling law can be considered as a generalization of pro-
duction function in the following sense. The concept of production function is a functional relation
between output Y , labor input L and capital input K, where one usually assumes homogeneous
production function, i.e. assumption of how output scales under a scaling of K and L. Our discov-
ery is a distributional generalization of production function, which takes into account conditional
distributions rather than conditional averages. This insight can potentially lead to a new perspective
to look at distributions of productivity, labor, capital and output.

In addition, our findings offer straightforward guidance to the method of aggregation: the macro-
scopic quantities are now expressed in terms of just a few parameters in the PDFs, conditioned by
double scaling law. Thus scaling laws and the resulting lognormal distributions should be the basic
ingredient of economics of heterogeneous interacting agents, which is an equivalence of the statistical
physics, bridging micro and macro economy in a new perspective.
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