

RIETI Discussion Paper Series 11-E-049

Size Matters: Multi-plant operation and the separation of corporate headquarters

OKUBO Toshihiro Keio University

TOMIURA Eiichi RIETI

The Research Institute of Economy, Trade and Industry http://www.rieti.go.jp/en/

Size Matters: Multi-plant operation and the separation of corporate headquarters

OKUBO Toshihiro^{*}

Keio University

TOMIURA Eiichi**

Research Institute of Economy, Trade and Industry and Yokohama National University

Abstract

This paper addresses two questions: i) under what circumstances corporate headquarters are separated from production plants, and ii) what types of plants are operated by multi-plant firms. We examine these issues using plant-level manufacturing census data. This paper has two main findings. Firstly, when a plant is large, productive, or intensive in labor or material use, then the plant tends to be managed by a corporate headquarters that is geographically separated from the plant, and the plant is also more likely to be a part of multi-plant operation. Secondly, there is a substantially greater marginal effect from a change in plant size on the probability of multi-plant operation when plants have around two hundred workers than at the mean.

Keywords: corporate headquarters, multi-plant, and plant-level data. *JEL Classifications*: L22; D23; R32

RIETI Discussion Papers Series aims at widely disseminating research results in the form of professional papers, thereby stimulating lively discussion. The views expressed in the papers are solely those of the author(s), and do not represent those of the Research Institute of Economy, Trade and Industry.

^{*} E-mail: okubo@econ.keio.ac.jp

^{**} Corresponding author: Department of Economics, Yokohama National University, 79-4 Tokiwa-dai, Hodogaya-ku, Yokohama City, 240-8501, Japan. Phone: +81-(0)45-339-3563. Fax: +81-(0)45-339-3574, E-mail: tomiura@ynu.ac.jp.

The authors appreciate the various support received from the institute and the METI statistics department. The authors are also grateful for helpful comments by Ryuhei Wakasugi and seminar participants at RIETI.

1. Introduction

Plants vary widely in size and in many other dimensions. Corporate headquarters (HQ) of firms need to manage various production plants. According to our daily observations, as a firm expands, a single-plant firm whose HQ is collocated with the production plant is supposed to separate its HQ from production sites and also to split its production into multiple plants. This raises empirical questions. When do corporate headquarters become physically separated from production plants? Which types of plants are operated by multi-plant firms or single-plant firms? This paper empirically investigates these issues by using comprehensive plant-level data derived from Japan's *Census of Manufacturers*. Our plant-level empirical analyses of these decisions will reveal the important but unexplored roles of corporate headquarters and plant size in production activities.

As a theoretical framework, the simple theory of international fragmentation by Jones and Kierzkowski (2001) is useful to understand our viewpoint clearly. In their paper, they combine constant marginal costs of production with fixed costs for coordinating multiple production processes. These assumptions were motivated by the stylized fact that increasing returns tend to be stronger for service activities than production activities. If applied to our context, their model predicts that when a firm grows above the threshold size it chooses multi-plant operation or separated headquarters; this is due to fixed costs of linking multiple plants and of operating separated headquarters. In the terminology of Baldwin (2008), larger-sized firms are more likely to "unbundle" production processes and corporate functions.

Turning to economic geography literature, the standard models in New Economic Geography (NEG) mostly consider the location of single-plant firms. In the two-region setting, Ekholm and Forslid (2001) analyze firms producing in both regions ("horizontal multi-region firms") and firms producing in low-wage regions distanced from HQ ("vertical multi-region

firms"). The former corresponds to the multi-plant operation decision and the latter to the HQ separation decision in our case. The NEG model by Fujita and Thisse (2006) examines the HQ separation decision, while Fujita and Gokan (2005) analyze it in the case of multi-plant firms. These models have focused on the same topic that ours have, however they have approached the topic from a different angle: the impacts of trade costs and communication costs on these decisions.¹

As an empirical exploration into this issue, our plant-level estimation complements previous firm-level contributions. From U.S. micro data, Hortaçsu and Syverson (2009) find that transactions of goods between upstream and downstream plants within the firm boundary are extremely inactive, but that plant/firm size is the strongest determinant for the vertical ownership. They propose that the provision of corporate intangible inputs from HQ, rather than intra-firm trade in goods, determines which plants are owned by vertically linked firms. On the other hand, Aarland, Henderson and Ono (2007) investigate the HQ separation decision in U.S. firms and find that firms with separated HQ tend to be larger or diversified. Based on the same U.S. firm-level data, Henderson and Ono (2008) report that those firms whose HQ is separated tend to have their HQ located close to production plants. These results indicate that these decisions cannot be analyzed without plant characteristics.²

This paper investigates how plant characteristics are related with these decisions departing from previous literature which approached this issue from the firm or HQ side rather than plant side. Even if we expand our scope to traditional industrial organization literature, Scherer et al. (1975) is the only book, as far as the authors know, dedicated to the analysis of

¹ Our analysis also differs from recently developed theory of multinationals and offshoring (e.g.

Antràs and Helpman, 2004) since they focus on the boundary of the firm under incomplete contract. ² The location patterns of headquarters in the U.S. have been recently also analyzed at the firm level by Davis and Henderson (2008) and Strauss-Kahn and Vives (2009), however the relation with plant characteristics was not addressed.

multi-plant operation, however they depend on summary statistics from leading firms in each selected industry. The investigation of plant characteristics is important as plants vary considerably in size, productivity, and factor intensity even for plants owned within the same firm. Some plants, for example those with more workers, are supposed to be harder to manage with a separated HQ than plants with fewer workers. Among many plant-level factors, this paper pays special attentions to the plant size and tries to derive implications for economies of scale.

The rest of this paper is organized as follows. Section 2 describes our plant-level data. Section 3 explains the empirical specifications for our analyses and report estimation results. Section 4 concludes.

2. Description of plant-level data

This section describes the data used in our study. We derive plant-level data from Japan's *Census of Manufacturers*. Although the annual survey covers only plants above the given size threshold, during "census years" (year with 0, 3, 5, or 8 as its last digit) small-sized plants are also included. We concentrate on the census years to avoid truncations due to the sampling of plants. Our sample excludes plants with less than five employees, as original plant-level micro-data files of the central government are maintained only for those plants with no less than five employees (even for the most recent census),.

Basic plant characteristics, such as output (sales), employment (number of employees), expenditures on materials, are available for all plants in the census. The valuable information concerning whether or not each plant is a part of a multi-plant firm is directly captured by the census. There is no firm identifier available for linking plants under the same ownership,

4

subsequently the aggregation of our plant-level data to the firm level is impossible.³ The census also contains a question on the HQ separation. While the address of separated HQ is not identified, the census asks each plant whether or not its HQ is collocated with or physically separated from the plant.⁴ This paper exploits this unusually rich plant-level data to explore relevant plant characteristics behind the decisions of HQ separation and of multi-plant operation.⁵

This paper investigates the plant-level data derived from the six consecutive waves of Japan's *Census of Manufacturers* (1978, 80, 83, 85, 88, and 1990) in a repeated cross-section format, as no plant identifier tracing plants over years is available in the census. Due to this data constraint, one cannot discuss entry/exit dynamics or causality direction. Our focus on early period until 1990 helps us avoid possible contaminations due to the large number of relocations across national borders after this period. Many Japanese multinationals actively relocated their production plants to neighboring low-wage Asian developing countries in the 1990s, accelerated by the appreciation of the yen. Manufacturing census data does not cover plants domiciled overseas, even if they are owned by Japanese firms. By concentrating on plants within Japan, we can assume away institutional or technological differences across plants. We will, however, later control for labor market variations across regions or industries to take account of labor immobility within the country.

³ As a result, we have no information how many plants each firm operates or which plants are operated by the same firm. Transactions between plants operated by the same firm are not distinguished either. This paper focuses on the relations with plant characteristics.

⁴ Offices not involved in production are not captured by Manufacturing Census. Aarland et al. (2007) and Henderson and Ono (2008) use the U.S. data on "auxiliary establishments," which are non-production offices providing services to other plants/offices of the firm.

⁵ In the original questionnaire of the census, each plant is asked to choose from the following three options: (1) single plant collocated with HQ, (2) single plant separated from HQ, and (3) one of the multiple plants. The economics guides us to investigate the HQ separation choice ((1) vs. (2)) and the multi- or single-plant choice ((1) combined with (2) vs. (3)), instead of a multinomial choice among these three options.

This sample period 1978-90 is also characterized by relatively high communication costs, since the widespread use of Internet and e-mail had not yet occurred. These new forms of communication drastically reduced intra-firm costs for information sharing and communications between distant locations, within and across borders, and thus assisted firms in "unbundling" production processes and corporate functions on the global scale, as described by Baldwin (2008). Consequently, during this earlier period, the physical separation of HQ and the physical split of production processes into multiple plants (probably located in different sites) should have been a critical corporate decision due to the high communication costs. In this sense, our choice of this sample period provides us with a good opportunity to investigate infrequent and critical organizational change of firms.

Before explaining our estimation framework, a brief report of summary statistics from the plant-level data in Table 1 is informative. Within our sample period, the composition of plants has slightly changed (declining share of single plants with collocated HQ), but the size of average plant in each category remains virtually unchanged; the plants operated as a part of multi-plant operation are on average larger than single plants with separated HQ, which are in turn larger than single plants with collocated HQ. This ordering appears consistent with our perception regarding the growth process of the firm.

3. Estimation results

3.1. Empirical specifications

This section estimates whether or not plant-level characteristics are related with the HQ separation decision or with the multi-plant operation decision, and, if so, how they are related. We consider the following binary response model:

$$P(y_i = 1 | x_i) = P(y_i^* > 0 | x_i) = G(x_i \beta)$$

$$\tag{1}$$

where the plant is indexed by the suffix *i*. The model is in a repeated cross-section format as there is no record of plant identifier tracing plants over time in our data. The vector of plant characteristics is summarized by *x*, while β is the vector of parameters to be estimated. The binary variable *y* takes the value one (HQ located separated from the plant)⁶ if the latent variable *y**, given below in (2), is positive.

$$y_i^* = x_i \beta + e_i \tag{2}$$

G in (1) is a cumulative distribution function of *e* in (2), where *e* is a continuously distributed variable independent of *x*. This paper reports the estimation results from logit and probit cases, given the functional form of *G*. We concentrate on single-plant firms, since the HQ separation decision of multi-plant firms is inevitably affected by other plants under the same ownership, which we cannot trace in our plant-level data.⁷ By limiting our attention to single-plant firms, we can identify how the HQ decision is related with the characteristics of the plant. We will include multi-plant firms into our sample when we examine the multi-plant operation decision.

Included on the right-hand side of (2) within the vector of plant-level characteristics, x, are the following: (1) plant size *SIZE* (the number of workers),⁸ (2) the labor intensity *LABOR* (total wage payment divided by the value of shipment), (3) the material use intensity *MAT* (expenditures on materials⁹ divided by the value of shipment), and (4) the productivity *PROD* (per-worker value-added).¹⁰ All these variables take logarithmic form. We cannot calculate the capital-labor ratio, as the data on capital (tangible fixed assets) is unavailable for a large number

⁶ Aarland et al. (2007) analyze the firm's decision of having independent central administrative offices and the decision of locating them in the same county as the firm's production plants, by estimating two probit models separately.

⁷ Aarland et al. (2007) exclude single-plant firms in their analysis of HQ collocation. Henderson and Ono (2008) concentrate on "the event where firms establish a single stand-alone HQ for the first time" (p.437) in their sample of multi-plant firms.

⁸ This paper counts the number of workers as being the number regular employees.

⁹ This includes expenditures on materials, fuels, and electricity.

¹⁰ The value-added is measured by the value of shipment minus expenditures on materials.

of smaller plants. Since our plant-level data is in a repeated cross-section format, it is practically impossible to estimate plant-level total factor productivity. We must also note that this reduced-form specification (2) does not imply the direction of causality.

Our focus on plant characteristics is motivated by the accumulated firm-level work on this topic. As a previous study complementary with ours, Henderson and Ono (2008) empirically examine the location of the HQ when the HQ is separated from production activities. They find that the "proximity to production plants is an overwhelmingly important attribute" (p.443).¹¹ As a related finding, Hortaçsu and Syverson (2009) conclude that vertically-linked plants are characterized not by ownership but by plant/firm size. As no firm identifier is available in our data set, we cannot link plants which are in the multiple-plant network operated by the same firm.

We next investigate how plant-level characteristics are related with the choice of multiple-plant operation by considering the following reduced-form:

$$z_i^* = \delta_0 + \delta_1 SIZE_i + \delta_2 LABOR_i + \delta_3 MAT_i + \delta_4 PROD_i + \varepsilon_i.$$
(3)

On the left-hand side of (3) is the latent variable z^* underlying the choice of multi-plant operation. The binary variable z takes the value one (the plant operated as a part of multiple-plant operation) if z^* is positive, and zero (operated as the single plant) otherwise. The variable ε is assumed to either have a standard logistic or normal distribution. The explanatory variables are the same as those in (2). The plant is again identified by the suffix i and the parameters to be estimated are expressed by δ . All plants (those operated by single-plant firms and multi-plant firms) are included in the estimation of (3).

As a noteworthy contribution, Scherer et al. (1975) is a rare book entirely focused on multi-plant operation. However, the main variable in their empirical study (which is framed by

¹¹ Aarland et al. (2007) also confirm that most firms locate their HQ near their production plants.

Structure-Conduct-Performance paradigm in traditional industrial organization) is not the decision of multi-plant operation *per-se*, but the number of plants or the average plant size operated only by leading firms, thus neglecting plants/firms without dominant market shares. In comparison, our plant-level data set covers all plants with five or more workers.

3.2. Estimation results

This section reports estimation results and discusses their implications. The logit/probit estimation results are shown in Tables 2 and 3. The decision of HQ separation (separated from versus collocated with the production plant) is examined in the upper panel, while the decision of multiple-plant (multi- versus single plant) is examined in the lower panel. Italic figures are z-values. The results are virtually unaltered between the logit and probit estimations. The notable findings from these tables are as follows.

Firstly, the plant size is strongly related with the HQ separation and the multi-plant operation decisions. Firms tend to split HQ from the production plant and to operate the plant as a part of multi-plant operation when the plant is large in size. This finding is congruent with the existence of certain forms of decreasing returns to scale in plant operation, for instance management overloads are supposed to rise with the number of workers. As discussed in the empirical analysis of HQ location by Strauss-Kahn and Vives (2009), HQ's are more likely to be separated from production plants to give more autonomy to managers of plants, especially plants employing larger numbers of workers. One might argue that each plant in multi-plant operation should be smaller than a single plant because the production is divided into multiple plants. However, our finding is plausible since single-plant firms are often smaller than multi-plant firms. This result is robust across all years in our sample, all prefectures, and most of the sectors. Our finding regarding the positive effect of plant size is in line with the previously established result from U.S. firms.¹²

Secondly, the productivity is also an important determinant of HQ location and multi-plant operation. The plants with higher productivity are significantly more likely to have their HQ separated from the production plants and to be operated by multi-plant firms. While we cannot control for possible differences in human skills across plants, this finding of higher productivity of multiple plants suggests that inputs from corporate headquarters (often invisible and intangible, such as brand name recognition or R&D) contribute to plant-level productivity as multi-plant firms tend to be large in size and to have large headquarters.¹³ As a result related with corporate intangibles, Hortaçsu and Syverson (2009) argue that intangible inputs provided from HQ should be important based on their finding that the transactions of goods within vertically linked firms (in the U.S.) is extremely inactive. In other words, strong corporate headquarters are necessary for the effective management of production plants in geographically separated locations. We should not interpret the results of this estimation as any indication that the direction of causality runs from plant characteristics to headquarters locations. We also confirm that this relation is robust across all years, as well as across almost all the prefectures and sectors.

HQ services provided to separated plants have also been formalized theoretically (Ekholm and Forslid, 2001; Fujita and Gokan, 2005; Fujita and Thisse, 2006). While these models focus on the effect of communication costs, our finding of a significant relationship with the productivity suggests that productive firms are likely to be skillful in transforming information

¹² Aarland et al. (2007) report that firms with separated HQ are substantially bigger than those without. Strauss-Kahn and Vives (2009) argue that "small headquarters may locate close to their plants" (p.178) in discussing their finding that larger headquarters are more likely to relocate. Hortacsu and Syverson (2009) also find that firm size is strongly related with the firm's choice of owning vertically linked multiple plants.

¹³ High labor productivity could be due to high capital-labor ratio, but we find that these plants are labor-intensive. High labor productivity may also reflect rich human skills, but no employment data disaggregated by educational attainment or occupations/skills are available within our plant-level data and we have controlled for plant size, which tends to be correlated with human skills.

into codes suitable for distant communications and/or to effectively monitor efforts of plant managers from distance. Thus, our result is in line with their theoretical prediction if one interprets it as implying that plant-specific communication costs are relatively low in productive plants.

Finally, the labor intensity and the intensity of material use are also related with these decisions to have a separate HQ or multiple plants. The plants that are intensive in labor or material use tend to have their HQ separated from them and to be operated as a part of multi-plant operation. In line with the first finding reported above, this result is consistent with the view that management overloads are likely to increase with expenditures on labor or material inputs. As the values at stake become higher, corporate headquarters are required to become more independent or strong, allowing them to negotiate and conclude contracts more effectively or to improve the monitoring of performance or implementation. Although it is not as robust as the relation with plant size or with productivity, this relation with labor or material use intensity is observed across many years, prefectures, and sectors.

In sum, large-sized, productive plants intensive in labor and material use tend to have corporate headquarters separated from the production plant and to be a part of multi-plant operation. While we have established the sign of the effects of these plant characteristics, we will evaluate the magnitudes of these effects in the next section.

In addition to plant characteristics, this paper also includes industry- or region-level wage and employment to control for variations across labor markets. The estimation results in Table 4 show that a higher average wage or a limited number of workers in the region/industry is correlated with there being a separated HQ or a multi-plant operation. These observations are consistent with the interpretation that a HQ is separated from the production plant or the production is split into multiple plants in order to avoid higher wages or a scarce labor endowment. In the case where the firm has a multi-plant operation and a separated HQ, other plants or the separated corporate HQ are supposed to be located in other regions with lower wages or more abundant labor endowment.

While the overall results discussed above reveal notable regularities, the disaggregated results are also informative. The estimation results for each prefecture are shown in Table 5, and those for each industry are presented in Table 6. The codes for prefecture and industry are listed in Appendix Tables A and B. First, the estimates differ across regions. The estimated coefficient on plant size in the multi-plant decision tends to be larger especially in core regions (Tokyo, Osaka, and their surrounding prefectures). Other variables are also generally significant in core regions. This contrast between core and periphery might be due to differences in production costs, though the superior overall fit is partly dictated by the law of large numbers. Higher wages and higher land prices in the core regions are supposed to induce larger firms to split their production across multiple plants, some of which are likely to be located in low-cost periphery. The geographic concentration of HQ in the core might also affect this result. The investigation of the HQ proximity and of inter-plant linkages is, however, beyond our scope of plant-level study and is left for future work.

Some of the cross-industry variations are also worth noting. For example, our model performs poorly in the furniture manufacturing and petroleum/coal products sectors. These "poor" results are to be expected since multi-plant operation is exceptional in the former and normal in the latter sector.

3.3. Evaluations of marginal effects

While the logit/probit estimates reported in the previous sub-section showed that the coefficient on plant size is significantly positive for both the multi-plant decision and the HQ separation decision, the mere report of coefficient estimates is insufficient for the evaluation of marginal effect in these non-linear models. From (1), the marginal effect of a variable in the vector x, say x_{j} , on the probability of multi-plant operation or of HQ separation depends on the level of x as follows:

$$\frac{\partial P}{\partial x_j} = g(x\beta)\beta_j \qquad \text{where} \quad g(u) \equiv dG(u)/du \quad . \tag{4}$$

Thus, the same magnitude of plant size change should result in non-negligibly different responses depending on the initial plant sizes. Among the variables included in our regressions, the impact of plant size is particularly critical for evaluating the degree of decreasing returns to scale. For this purpose, we calculate the marginal effects of plant size on the headquarters decision or on the multi-plant decision at various plant sizes, keeping all other variables at the mean. The results based on the baseline specification for 1978 are shown in Figure 1. On the horizontal axis, we measure the plant size as the deviation from the mean. The marginal effect of plant size change, measured on the vertical axis, shows substantial variation over plant size; the same magnitude of plant size change results in four time larger marginal effect at the peak compared with that at the mean in the multi-plant decision case. Notable findings are as follows.

Firstly, the marginal effect of plant size change on the multi-plant decision monotonically increases up to the value of around three. As the logarithm plant size (the number of workers) is measured as the deviation from the mean, this threshold value corresponds to around two hundred workers.¹⁴ Consequently, while larger plants are significantly more likely to be operated by multi-plant firms, whether or not a plant is operated as a part of multi-plant operation is especially sensitive to a marginal change in size when the plant employs at around two hundred workers.

In other words, for firms with less than two hundred workers, the impact of a given

¹⁴ The mean plant size is reported in Table 1 for different groups of plants.

change in its size on the multi-plant decision becomes monotonically stronger as the firm expands in size. On the other hands, the decision to fragment its production process into multiple plants may also be influenced by such other factors as product differentiations within a firm. As plant-level economies of scale are normally product-specific, a multi-variety firm may split its production into multiple plants by assigning each variety to each plant, while a single-variety firm with the same total production scale may keep its production at the single plant. As a result, some large firms, especially single-variety firms, employing more than two hundred workers may keep single-plant production. The extent of product differentiation, which is beyond our scope of this paper, is thus likely to affect the threshold plant size of the multi-plant operation. As a related finding, Aarland et al. (2007) report that the probability of multi-plant operation increases as the firm is industrially diversified.

Secondly, the marginal effect of a change in plant size on the decision of HQ separation gradually increases up to the value around five in logarithm deviation from the mean, which is approximate equal to one-thousand-three-hundred workers. As this peak value roughly corresponds to the plant size of upper ten percent of the sample, and as the curve shown in Figure 1 appears obviously less steep in the HQ separation than that in multi-plant operation,¹⁵ we should interpret this result as suggesting that a given plant size increase tends to have a stronger impact on HQ separation as the plant becomes larger over a relevant range of plant sizes. In other words, as long as we exclude extremely large-sized single-plant firms, larger-sized plants are monotonically more likely to be operated by multi-plant firms.

We also note that HQ separation decision, compared with multi-plant operation decision, tends to be less sensitive to plant size changes. This finding of a weaker relation with plant size is in line with our report in previous tables (the size coefficient estimated to be smaller in HQ

¹⁵ As we concentrate on single-plant firms in the analysis of HQ separation, these two peak values should not be directly compared.

separation than in multi-plant). Whilst we cannot pin down the exact cause within our plant-level data, our finding that HQ separation is less sensitive than multi-plant operations with respect to plant size could be explained by the HQ separation decision, compared with the multi-plant decision, strongly influenced by HQ-side factors omitted in our plant-level analysis, such as management overload or the capacity of managers in HQ.

4. Concluding remarks

This paper has empirically investigated how plant characteristics, especially plant size, are related with the HQ separation decision and with the multiple-plant operation decision. Our estimations have demonstrated that large-sized, productive plants which are intensive in labor or material use tend to be operated as a part of multi-plant operation with separated HQ, suggesting non-negligible decreasing returns to scale in plant operation. Our plant-level findings are also consistent and complementary with previous firm-level results. Our estimation of marginal effects of plant size changes suggests that a firm tends to split its production into multiple plants as the firm grows, particularly when it reaches the size of around two hundred workers. These findings, if combined with other evidence, will have important implications to various economic policies, such as policies for small- and medium-sized enterprises.

While we have detected previously unexplored relationships with plant characteristics, there remain several issues left for the future. For example, one fruitful research avenue will be found by linking similar plant-level or firm-level data with recent outsourcing literature and new economic geography models. Scherer et al. (1975) emphasized the roles of market size and transport costs within their traditional Structure-Conduct-Performance framework. Revisiting this issue with new approaches will be informative.

Acknowledgement

This research is partly financed by Grant-in-Aid for Scientific Research and Japan's Research Institute of Economy, Trade, and Industry (RIETI). The access to official micro-data was arranged by RIETI.

Reference

- Aarland, K., Davis, J., Henderson, J.V., and Ono, Y. (2007) "Spatial organization of firms: the decision to split production and administration," *RAND Journal of Economics* 38, 480-494.
- Antràs, P., and Helpman, E. (2004) "Global sourcing," Journal of Political Economy 112, 552-580.
- Baldwin, R. (2008) "Managing the noodle bowl: The fragility of East Asian regionalism," *Singapore Economic Review* 53, 449-478.
- Davis, J., and Henderson, J.V. (2008) "The agglomeration of headquarters," *Regional Science* and Urban Economics 38, 445-460.
- Ekholm, K., and Forslid, R. (2001) "Trade and location with horizontal and vertical multi-region firms," *Scandinavian Journal of Economics* 103, 101-118.
- Fujita, M., and Gokan, T. (2005) "On the evolution of the spatial economy with multi-unit multi-plant firms: the impact of IT development," *Portuguese Economic Journal* 4, 73-105.
- Fujita, M., and Thisse, J. (2006) "Globalization and the evolution of the supply chain: who gains and who loses?" *International Economic Review* 47, 811-836.

Henderson, J.V., and Ono, Y. (2008) "Where do manufacturing firms locate their headquarters?"

Journal of Urban Economics 63, 431-450.

- Hortaçsu, A., and Syverson, C. (2009) "Why do firms own production chains?" http://home.uchicago.edu/~syverson/viplantevidence.pdf.
- Jones, R., and Kierzkowski, H, (2001) Fragmentation: New Production Patterns in the World Economy, Oxford University Press, U.K.
- Scherer, F.M., Beckenstein, A., Kaufer, E., and Murphy, R.D. (1975) *The Economics of Multi-Plant Operations*, Harvard University Press, Cambridge, MA, U.S.A.
- Strauss-Kahn, V., and Vives, X. (2009) "Why and where do headquarters move?" *Regional Science and Urban Economics* 39, 168-186.

year	Table 1: Basic Statistic type 1 (Single plants collocated with HQ) n mean sd min p10 median p90 max	type 2 (Single plants with separated HQ) n mean sd min p10 median p90 max	type 3 (multi-plant) n mean sd min p10 median p90 max	All n mean sd min p10 median p90 max
1978 Size Labor Mat Prod Town Wage Sector Wagy Town Emp Sector Emp	ge 3E+05 5.009 0.258 4.135 4.634 5.028 5.318 6.113 3E+05 9.103 1.443 1.386 6.963 9.444 10.72 11.45	34376 2.707 0.979 1.386 1.609 2.565 4.043 9.002 34376 0.292 0.36 0 0.083 0.238 0.561 31.76 34376 0.477 0.275 0 0.125 0.491 0.778 22.21 34376 5.812 0.963 0 4.866 5.877 6.788 10.14 34178 5.067 0.246 2.735 4.729 5.099 5.34 6.108 34376 5.092 0.246 4.135 4.737 5.117 5.393 6.033 34178 8.951 1.48 1.792 6.807 9.272 10.59 11.45 34376 10.51 1.215 4.06 8.88 10.56 12.1 12.9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1980 Size Labor Mat Prod Town Wage Sector Wage Town Emp Sector Emp	ge 3E+05 5.15 0.257 4.253 4.767 5.173 5.461 6.724 3E+05 9.088 1.426 1.386 6.98 9.423 10.68 11.39	34444 2.724 0.984 1.386 1.609 2.565 4.078 8.408 34443 0.28 0.452 0 0.078 0.224 0.542 65.22 34443 0.487 0.25 0 0.131 0.5 0.794 7.333 34444 5.96 1.003 0 4.989 6.033 6.96 10.26 34444 5.207 0.248 3.148 4.868 5.237 5.513 6.132 34444 5.23 0.249 4.253 4.878 5.266 5.517 6.385 34444 5.23 0.249 4.253 4.878 5.266 5.517 6.385 34444 5.23 0.494 4.253 4.878 5.266 5.517 6.385 34444 1.52 1.426 1.386 6.836 9.264 10.59 11.39 34444 10.52 1.225 3.989 8.85 10.67 12.14 12.99	48559 3.31 1.273 1.386 1.792 3.135 5.037 9.796 48559 0.271 0.279 0 0.066 0.205 0.565 1.791 48559 0.571 0.279 0 0.133 0.527 0.813 19.62 48559 5.98 1.116 0 4.887 6.063 7.133 10.82 48559 5.177 0.258 3.159 4.832 5.198 5.481 5.827 48559 5.221 0.269 4.253 4.841 5.241 5.532 6.724 48559 8.924 1.506 1.386 6.704 9.255 10.68 11.39 48559 10.59 1.225 4.127 8.997 10.69 12.2 12.99	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1983 Size Labor Mat Prod Town Wage Sector Wag Town Emp Sector Emp	ge 4E+05 5.299 0.265 4.347 4.922 5.327 5.632 6.616 4E+05 9.103 1.406 1.386 7.044 9.434 10.63 11.37	37841 2.665 0.959 1.386 1.609 2.485 3.989 7.982 37841 0.299 0.439 0 0.085 0.244 0.568 58.18 37841 0.473 0.249 0 0.125 0.436 0.778 7.527 37841 6.049 0.992 0 5.089 6.12 7.044 10.84 37565 5.356 0.247 3.02 5.019 5.389 5.63 6.555 37840 5.378 0.256 4.347 5.012 5.397 5.684 6.241 37655 8.971 1.452 2.565 6.894 9.318 10.63 11.37 37840 10.57 1.235 1.609 8.885 10.65 11.9 13.03	53655 3.276 1.265 1.386 1.792 3.091 4.984 10.05 53655 0.291 0.382 0 0.072 0.22 0.594 44.31 53655 0.491 0.271 0 0.123 0.51 0.798 1.752 53655 6.052 1.13 0 4.952 6.14 7.221 11.67 536417 5.321 0.258 3.312 4.969 5.34 5.63 5.88 53648 5.36 0.277 4.347 4.971 5.379 5.69 6.243 53417 8.96 1.488 1.609 6.792 9.299 10.64 1.37 53648 10.66 1.234 3.401 8.989 10.76 12.33 13.03	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1985 Size Labor Mat Prod Town Wage Sector Wage Town Emp Sector Emp	ge 3E+05 5.388 0.277 4.426 4.989 5.409 5.725 6.41 3E+05 9.101 1.398 1.386 7.058 9.407 10.63 11.38	40762 2.646 0.954 1.386 1.609 2.485 3.951 7.877 40762 0.574 38.61 0 0.091 0.251 0.565 7445 40762 0.469 0.247 0 0.125 0.478 0.77 12 40762 6.116 1.005 0 5.175 6.194 7.088 10.85 40470 5.449 0.246 3.126 5.118 5.478 5.719 6.379 40762 5.465 0.269 4.448 5.067 5.493 5.793 6.41 40470 9.013 1.426 2.398 6.959 9.335 10.62 11.38 40762 10.52 1.273 3.664 8.759 10.55 11.87 13.14	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1988 Size Labor Mat Prod Town Wage Sector Wage Town Emp Sector Emp	ge 3E+05 5.487 0.276 4.475 5.118 5.513 5.822 6.494 3E+05 9.083 1.373 1.386 7.07 9.343 10.59 11.37	42866 2.639 0.946 1.386 1.609 2.485 3.932 8.174 42866 0.384 12.16 0 0.096 0.255 0.565 2314 42866 0.449 0.237 0 0.117 0.454 0.745 7.031 42866 6.222 0.973 0 5.271 6.299 7.174 13.64 42400 5.544 0.237 3.583 5.225 5.57 5.811 6.43 42866 5.561 0.267 4.563 5.164 5.64 6.407 42866 0.561 0.267 4.563 5.164 5.657 5.811 6.43 42866 0.561 0.267 4.563 5.164 5.659 6.407 42400 9.005 1.408 2.079 6.961 9.296 10.59 11.37 42866 10.57 1.273 4.564 8.875 10.61 11.95 13.12	61726 3.03 1.231 1.386 1.792 3.135 4.963 9.923 61726 0.466 23.33 0 0.079 0.227 0.588 4439 61726 1.859 344.6 0 0.117 0.484 0.776 85623 61726 6.237 1.125 0 5.137 6.325 7.396 11.8 61234 5.511 0.249 2.485 5.168 5.535 5.805 6.224 61264 5.538 0.229 4.563 5.118 5.579 5.896 6.494 61234 8.962 1.444 1.386 6.862 9.237 10.61 1.37 61726 10.68 1.3 4.564 8.944 10.7 12.3 13.12	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1990 Size Labor Mat Prod Town Wage Sector Wage Town Emp Sector Emp	ge 3E+05 5.603 0.284 4.754 5.204 5.648 5.946 6.556 3E+05 9.078 1.367 1.386 7.084 9.34 10.6 11.4	45217 2.634 0.948 1.386 1.609 2.485 3.932 8.221 45217 0.321 2.377 0 0.096 0.254 0.569 500 45217 0.442 0.276 0 0.101 0.443 0.745 17.92 45217 6.323 1.023 0 5.331 6.42 7.315 13.88 4486 5.656 0.244 3.97 5.226 5.679 5.928 6.56 45217 5.672 0.2724 4.754 5.272 5.726 5.983 6.55 44486 8.998 1.402 1.609 6.984 9.268 10.57 11.4 45217 10.63 1.284 3.714 8.907 10.64 12.02 13.21	66093 3.3 1.22 1.386 1.792 3.135 4.942 9.943 66093 0.373 13 0 0.078 0.221 0.571 2751 66093 0.467 0.349 0 0.108 0.478 0.773 45.19 66093 6.447 1.155 0 5.251 6.448 7.507 12.44 65187 5.646 0.252 3.97 5.278 5.645 5.924 6.313 66093 5.647 0.293 4.754 5.21 5.698 6 6.79 65187 8.961 1.433 1.609 6.866 9.208 10.61 11.4 66093 10.73 1.304 4.369 8.963 10.72 12.3 13.21	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Regression 1: HQ se	-					
year	1978	1980	1983	1985	1988	1990
/ariables						
Size	0.497	0.483	0.445	0.421	0.413	0.414
	77.053 ***	7 <i>4.382 ***</i>	71.273 ***	71.043 ***	71.071 ***	72.986 ***
_abor	-0.071	0.487	0.006	0.337	0	0.001
	<i>-21.833 ***</i>	<i>13.959 ***</i>	2.372 **	<i>12.367 ***</i>	1.153	1.095
Vat	0.755	0.995	0.775	0.936	0.786	0.731
	28.655 ***	31.005 ***	29.689 ***	33.661 ***	32.331 ***	30.805 ***
Prod	0.39	0.439	0.403	0.441	0.416	0.351
	<i>45.809 ***</i>	<i>44.793 ***</i>	49.96 ***	53.013 ***	56.228 ***	50.605 ***
N	383061	380774	393287	380576	375848	369904
		4 405 05		-1.20E+05		-1.30E+05
	-1.00E+05	-1.10E+05	-1.10E+05	-1.20E+03	-1.20E+05	-1.30E+05
Regression 2: Multi-r	plant decision					
Regression 2: Multi− r year		-1.10E+05 1980	-1.10E+05	-1.20E+03	-1.20E+05	<u>-1.30E+05</u> 1990
Regression 2: Multi−r year √ariables	plant decision					
Regression 2: Multi−r year ∕ariables	olant decision 1978	1980	1983	1985	1988	1990
Regression 2: Multi−r year ∕ariables Size	olant decision 1978 0.86	1980 0.846	1983 0.838	1985 0.899	1988 0.888	1990 0.889
Regression 2: Multi−r year √ariables Size	olant decision 1978 0.86 163.288 ***	1980 0.846 160.104 ***	1983 0.838 166.005 ***	1985 0.899 186.799 ***	1988 0.888 1<i>88.36 ***</i>	1990 0.889 191.909 ***
Regression 2: Multi−r year Variables Size _abor	0.86 0.86 163.288 *** 0.501	1980 0.846 160.104 *** 0.299	1983 0.838 166.005 *** 0.006	1985 0.899 186.799 *** 0	1988 0.888 188.36 *** 0	1990 0.889 <i>191.909 ****</i> 0.001
Regression 2: Multi−r year Variables Size _abor	0.86 0.86 163.288 *** 0.501 16.642 ***	1980 0.846 160.104 *** 0.299 10.182 ***	0.838 166.005 *** 0.006 2.142 **	1985 0.899 <i>186.799 ***</i> 0 <i>-0.517</i>	1988 0.888 188.36 *** 0 0.433	1990 0.889 191.909 *** 0.001 2.192 **
Regression 2: Multi-r yyear Variables Size Labor Mat	0.86 0.86 163.288 *** 0.501 16.642 *** 0.794	1980 0.846 160.104 *** 0.299 10.182 *** 0.678	0.838 166.005 *** 0.006 2.142 ** 0.514	1985 0.899 186.799 *** 0 -0.517 0.354	1988 0.888 188.36 *** 0 0.433 0.437	0.889 191.909 *** 0.001 2.192 ** 0.426
Regression 2: Multi-r yyear Variables Size Labor Mat	0lant decision 1978 0.86 163.288 *** 0.501 16.642 *** 0.794 27.838 ***	1980 0.846 160.104 *** 0.299 10.182 *** 0.678 24.231 ***	1983 0.838 166.005 *** 0.006 2.142 ** 0.514 22.669 ***	1985 0.899 1 <i>86.799 ***</i> 0 <i>-0.517</i> 0.354 16.851 ***	1988 0.888 188.36 *** 0 0.433 0.437 20.922 ***	1990 0.889 191.909 *** 0.001 2.192 ** 0.426 20.877 ***
<u>Loglikelihood</u> Regression 2: Multi-r year Variables Size Labor Mat Prod	0.86 1978 1978 163.288 *** 0.501 16.642 *** 0.794 27.838 *** 0.315	1980 0.846 160.104 *** 0.299 10.182 *** 0.678 24.231 *** 0.25	1983 0.838 166.005 *** 0.006 2.142 ** 0.514 22.669 *** 0.212	1985 0.899 1 86.799 *** 0 -0.517 0.354 16.851 *** 0.186	1988 0.888 188.36 *** 0 0.433 0.437 20.922 *** 0.182	1990 0.889 191.909 *** 0.001 2.192 ** 0.426 20.877 *** 0.16

Table 2: Basic Results (Logit)

bold italic figures are z-values

*** statistically significant at 1 %, ** statistically significant at 5% and * statistically significant at 10%.

Prefecture dummies and 2-digit sector dummies are omitted.

Regression 1: HQ		1980	1983	1985	1988	1990
year /ariablaa	r 1976	1980	1900	1900	1900	1990
/ariables						
Size	0.28	0.275	0.254	0.251	0.24	0.243
	80.274 ***	79.26 ***	75.001 ***	78.221 ***	<i>74.989 ***</i>	77.431 ***
_abor	-0.035	0.133	0.004	0.039	0	0
	<i>-20.757 ***</i>	12.871 ***	3.038 ***	<i>7.205 ***</i>	1.135	0.822
/ at	0.379	0.437	0.39	0.334	0.405	0.346
	<i>29.158 ***</i>	32.639 ****	30.652 ***	44.095 ***	34.513 ***	34.156 ***
Prod	0.18	0.188	0.185	0.187	0.197	0.166
	<i>45.082 ***</i>	<i>45.559 ***</i>	49.116 ***	<i>52.471 ***</i>	<i>55.693 ***</i>	50.087 ***
١	383061	380774	393287	380576	375848	369904
191 191 1	4 005 05	-1.10E+05	-1.10E+05	-1.20E+05	-1.20E+05	-1.30E+05
Loglikelihood	-1.00E+05	-1.102+03	1.102+03		1.202 .05	
	Iti-plant decision	1980	1983	1985	1988	1990
Regression 2: Mu year	Iti-plant decision					
Regression 2: Mu year /ariables	Iti-plant decision					
Regression 2: Mu year /ariables	l ti−plant decision r 1978	1980	1983	1985	1988	1990
Regression 2: Mu year /ariables Size	l lti–plant decision r 1978 0.487	1980 0.477	1983 0.472	1985 0.513	1988 0.508	1990 0.513
Regression 2: Mu year /ariables Size	l lti−plant decision r 1978 0.487 <i>172.022 ***</i>	1980 0.477 167.675 *** 0.077 9.329 ***	1983 0.472 171.971 *** 0.004 2.692 ***	1985 0.513 198.636 *** 0 -0.524	1988 0.508 196.983 *** 0 0.631	1990 0.513 203.048 *** 0.001 2.725 ***
Regression 2: Mu year /ariables Size .abor	l iti-plant decision r 1978 0.487 172.022 *** -0.023 - 14.291 *** 0.257	1980 0.477 167.675 *** 0.077 9.329 *** 0.294	1983 0.472 171.971 *** 0.004 2.692 *** 0.262	1985 0.513 198.636 *** 0 -0.524 0.134	1988 0.508 196.983 *** 0 0.631 0.226	1990 0.513 203.048 *** 0.001 2.725 *** 0.187
Regression 2: Mu year /ariables Size _abor Mat	Ilti-plant decision r 1978 0.487 <i>172.022 ***</i> -0.023 -14.291 *** 0.257 <i>22.153 ***</i>	1980 0.477 167.675 *** 0.077 9.329 *** 0.294 24.033 ***	1983 0.472 <i>171.971 ***</i> 0.004 <i>2.692 ***</i> 0.262 <i>22.712 ***</i>	1985 0.513 198.636 *** 0 -0.524 0.134 18.423 ***	1988 0.508 196.983 *** 0 0.631 0.226 21.397 ***	1990 0.513 203.048 *** 0.001 2.725 *** 0.187 20.704 ** *
Regression 2: Mu year /ariables Size _abor Mat	Ilti-plant decision r 1978 <i>172.022 ***</i> -0.023 - <i>14.291 ***</i> 0.257 <i>22.153 ***</i> 0.124	1980 0.477 167.675 *** 0.077 9.329 *** 0.294 24.033 *** 0.115	1983 0.472 171.971 *** 0.004 2.692 *** 0.262 22.712 *** 0.108	1985 0.513 198.636 *** 0 -0.524 0.134 18.423 *** 0.097	1988 0.508 196.983 *** 0 0.631 0.226 21.397 *** 0.097	1990 0.513 203.048 *** 0.001 2.725 *** 0.187 20.704 *** 0.085
Regression 2: Mu year Variables Size Labor Mat Prod	Ilti-plant decision r 1978 0.487 <i>172.022 ***</i> -0.023 - <i>14.291 ***</i> 0.257 <i>22.153 ***</i> 0.124 <i>36.251 ***</i>	1980 0.477 167.675 *** 0.077 9.329 *** 0.294 24.033 *** 0.115 33.458 ***	1983 0.472 <i>171.971 ***</i> 0.004 <i>2.692 ***</i> 0.262 <i>22.712 ***</i> 0.108 <i>34.519 ***</i>	1985 0.513 198.636 *** 0 -0.524 0.134 18.423 *** 0.097 33.314 ***	1988 0.508 196.983 *** 0 0.631 0.226 21.397 *** 0.097 33.834 ***	1990 0.513 203.048 *** 0.001 2.725 *** 0.187 20.704 *** 0.085 31.397 ***
Regression 2: Mu	Ilti-plant decision r 1978 <i>172.022 ***</i> -0.023 - <i>14.291 ***</i> 0.257 <i>22.153 ***</i> 0.124	1980 0.477 167.675 *** 0.077 9.329 *** 0.294 24.033 *** 0.115	1983 0.472 171.971 *** 0.004 2.692 *** 0.262 22.712 *** 0.108	1985 0.513 198.636 *** 0 -0.524 0.134 18.423 *** 0.097	1988 0.508 196.983 *** 0 0.631 0.226 21.397 *** 0.097	1990 0.513 203.048 *** 0.001 2.725 *** 0.187 20.704 *** 0.085

Table 3: Basic Results (Probit)

bold italic figures are z-values

*** statistically significant at 1 %, ** statistically significant at 5% and * statistically significant at 10%.

Prefecture dummies and 2-digit sector dummies are omitted.

Table 4: Additional Results

Regression 1: HQ separation

	year	1978	1980	1983	1985	1988	1990
Variables	method	Logit	Logit	Logit	Logit	Logit	Logit
Size		0.481	0.471	0.435	0.42	0.413	0.415
		73.816 ***	72.07 ***	69.001 ***	70.141 ***	70.367 ***	<i>72.237 ***</i>
Labor		-0.071	0.401	0.006	0.232	0	0
		-21.736 ***	11.178 ***	2.353 **	9.034 ***	0.889	0.713
Mat		0.743	0.934	0.749	0.87	0.761	0.697
		28.053 ***	28.759 ***	28.459 ***	31.555 ***	31.029 ***	29.157 ***
Prod		0.352	0.389	0.361	0.358	0.34	0.281
		40.446 ***	38.604 ***	43.591 ***	41.17 ***	43.465 ***	38.284 ***
Town Wage		1.443	1.496	1.34	1.142	1.07	1.107
-		31.361 ***	31.972 ***	30.206 ***	27.948 ***	25.838 ***	27.056 ***
Sector Wage		0.636	0.634	0.662	0.437	0.442	0.417
		<i>16.57 ***</i>	16.333 ***	17.825 ***	<i>19.347 ***</i>	19.897 ***	<i>19.439 ***</i>
Town Employment		-0.247	-0.249	-0.236	-0.207	-0.187	-0.186
-		-43.576 ***	-43.811 ***	-42.426 ***	<i>-38.545 ***</i>	-35.433 ***	<i>-35.79 ***</i>
Sector Employment		-0.044	-0.042	-0.036	-0.079	-0.073	-0.06
· -		-7.681 ***	-7.439 ***	-6.616 ***	-17.695 ***	-16.819 ***	-14.109 ***
N		380757	380774	392055	379226	373545	364978
Loglikelihood		-1.00E+05	-1.00E+05	-1.10E+05	-1.20E+05	-1.20E+05	-1.30E+05

Regression 2: Multi-plant decision

	year	1978	1980	1983	1985	1988	1990
Variables	method	Logit	Logit	Logit	Logit	Logit	Logit
Size		0.86	0.838	0.831	0.899	0.889	0.888
		<i>162.325 ***</i>	157.916 ***	163.94 ***	185.812 ***	187.47 ***	190.154 ***
Labor		-0.048	0.28	0.006	0	0	0.001
		-15.827 ***	9.47 ***	2.202 **	-0.563	0.365	2.171 **
Mat		0.521	0.66	0.512	0.346	0.43	0.424
		22.391 ***	23.438 ***	22.445 ***	16.365 ***	20.439 ***	20.57 ***
Prod		0.241	0.24	0.211	0.18	0.177	0.163
		33.88 ***	30.176 ***	32.587 ***	29.515 ***	<i>29.575 ***</i>	28.726 ***
Town Wage		0.412	0.453	0.192	0.256	0.276	0.3
-		10.4 ***	11.314 ***	5.031 ***	7.306 ***	7.67 ***	8.481 ***
Sector Wage		0.405	0.389	0.286	0.12	0.058	0.006
		12.217 ***	11.61 ***	8.956 ***	6.1 ***	2.992 ***	0.345
Town Employment		-0.135	-0.14	-0.109	-0.114	-0.102	-0.098
		-26.246 ***	-27.468 ***	-21.794 ***	<i>-23.769 ***</i>	-21.77 ***	-21.276 ***
Sector Employment		-0.007	-0.004	0.003	-0.022	-0.022	-0.014
		-1.38	-0.78	0.701	-5.561 ***	-5.635 ***	-3.814 ***
Ν		428433	429333	445465	436900	434779	430165
Log Likelihood		-1.20E+05	-1.30E+05	-1.40E+05	-1.40E+05	-1.50E+05	-1.50E+05

Italic figures are z-values. *** statistically significant at 1 %, ** statistically significant at 5% and * statistically significant at 10%.

Table 5: Prefecture Results (logit regression in 1980)

Regression 1: HQ separation

	1	2	3	4	5	6	7	8	9	10	11	12
e	0.383	0.409	0.557	0.456	0.478	0.555	0.549	0.624	0.655	0.48	0.524	0.63
	8.96 ***	4.519 ***	7.984 ***	7.621 ***	5.685 ***	8.235 ***	10.527 ***	14.695 ***	14.755 ***	10.973 ***	22.065 ***	16.943 ***
bor	0.352	0.397	-0.521	0.502	-0.047	1.361	1.347	1.27	0.3	0.88	1.159	1.152
	1.734 *	1.294	-0.897	1.163	-0.08	3.237 ***	3.898 ***	4.406 ***	2.027 **	3.434 ***	7.133 ***	3.708 ***
at	1.237	1.301	-0.109	0.73	-0.093	0.601	1.45	1.522	1.04	0.855	1.756	1.824
	6.197 ***	3.246 ***	-0.259	2.173 **	-0.188	1.88 *	5.019 ***	6.843 ***	5.317 ***	3.96 ***	13.423 ***	8.101 **
rod	0.406	0.209	0.237	0.304	0.151	0.464	0.635	0.693	0.245	0.672	0.844	0.659
	7.921 ***	2.371 **	2.271 **	3.349 ***	1.126	3.913 ***	6.54 ***	9.638 ***	4.258 ***	9.507 ***	20.605 ***	10.907 **
	9145	2192	2644	4102	2741	4043	5958	7341	7228	8532	18343	7753
oglikelihood	-2737	-556.3	-885.8	-1239	-681.1	-956.3	-1556	-2487	-2157	-2431	-7632	-3036
ariables	13	14	15	16	17	18	19	20	21	22	23	24
ize	0.367	0.3	0.497	0.238	0.565	0.561	0.689	0.539	0.564	0.555	0.394	0.592
	16.72 ***	11.352 ***	10.194 ***	3.407 ***	8.998 ***	8.256 ***	<i>9,143 ***</i>	12.814 ***	13.106 ***	16.355 ***	16.699 ***	10.306 **
abor	0.145	0.431	0.826	1.987	1.634	1.7	1.233	0.419	0.496	0.274	0.909	0.599
	3.229 ***	2.525 **	3.164 ***	4.167 ***	4.942 ***	3.818 ***	2.426 **	2.117 **	3.021 ***	2.159 **	6.222 ***	1.573
lat	1.202	1.351	0.735	2.734	1.157	1.211	1.489	0.42	0.477	0.697	1.409	0.423
	12.944 ***	9.347 ***	3.048 ***	7.041 ***	4.038 ***	3.345 ***	3.637 ***	1.96 *	3.078 ***	4.46 ***	12.11 ***	1.603
rod	0.396	0.41	0.222	0.673	0.677	0.381	0.484	0.338	0.696	0.284	0.627	0.35
	12.904 ***	9.622 ***	2.86 ***	5.526 ***	7.043 ***	3.445 ***	4.093 ***	5.072 ***	10.93 ***	6.078 ***	16.53 ***	4.324 **
	47599	13571	9634	4065	6720	4631	3250	8964	11915	16290	30819	6285
glikelihood	-11796	-5581	-1931	-933.5	-1383	-1034	-805.4	-2229	-2493	-3810	-8385	-1468
ariables	25	26	27	28	29	30	31	32	33	34	35	36
	0.556	0.432	0.262	0.454	0.791	0.753	0.289	0.346	0.487	0.461	0.542	0.747
ze	0.556 <i>9.425 ***</i>	0.432 10.301 ***	0.262 11.387 ***	0.454 <i>13.897 ***</i>	0.791 <i>9.574 ***</i>	0.753 <i>8.245 ***</i>	0.289 <i>2.82 ***</i>	0.346 <i>3.487 ***</i>	0.487 <i>9.508 ***</i>	0.461 <i>10.044 ***</i>	0.542 <i>7.064 ***</i>	0.747 <i>8.85 **</i>
ze	0.556 <i>9.425 ***</i> 0.651	0.432 <i>10.301 ***</i> 0.32	0.262 <i>11.387 ***</i> 0.643	0.454 <i>13.897 ***</i> 0.462	0.791 <i>9.574 ***</i> 0.731	0.753 <i>8.245 ***</i> 0.583	0.289 <i>2.82 ***</i> -0.072	0.346 <i>3.487 ***</i> 1.754	0.487 <i>9.508 ***</i> 1.018	0.461 <i>10.044 ***</i> 0.513	0.542 <i>7.064 ***</i> -1.342	0.747 <i>8.85 **</i> -0.417
ze abor	0.556 <i>9.425 ***</i> 0.651 <i>2.992 ***</i>	0.432 <i>10.301 ***</i> 0.32 <i>2.394 **</i>	0.262 <i>11.387 ***</i> 0.643 <i>6.421 ***</i>	0.454 <i>13.897 ***</i> 0.462 <i>3.272 ***</i>	0.791 <i>9.574 ***</i> 0.731 <i>2.403 **</i>	0.753 <i>8.245 ***</i> 0.583 <i>2.369 **</i>	0.289 <i>2.82 ***</i> -0.072 - <i>0.092</i>	0.346 <i>3.487 ***</i> 1.754 <i>3.518 ***</i>	0.487 <i>9.508 ***</i> 1.018 <i>3.145 ***</i>	0.461 <i>10.044 ***</i> 0.513 <i>1.478</i>	0.542 <i>7.064 ***</i> -1.342 <i>-2.038 **</i>	0.747 <i>8.85 **</i> -0.417 <i>-0.662</i>
ize abor	0.556 <i>9.425 ***</i> 0.651 <i>2.992 ***</i> 0.977	0.432 10.301 **** 0.32 2.394 ** 0.842	0.262 11.387 *** 0.643 6.421 *** 1.499	0.454 1 <i>3.897 ***</i> 0.462 <i>3.272 ***</i> 0.848	0.791 <i>9.574 ***</i> 0.731 <i>2.403 **</i> 0.985	0.753 <i>8.245 ***</i> 0.583 <i>2.369 **</i> 0.31	0.289 <i>2.82 ***</i> -0.072 - <i>0.092</i> 0.746	0.346 <i>3.487 ****</i> 1.754 <i>3.518 ***</i> 2.248	0.487 <i>9.508 ***</i> 1.018 <i>3.145 ***</i> 0.652	0.461 <i>10.044 ***</i> 0.513 <i>1.478</i> 0.787	0.542 <i>7.064 ****</i> -1.342 <i>-2.038 ***</i> -0.095	0.747 <i>8.85 **</i> -0.417 <i>-0.662</i> 0.456
ize abor lat	0.556 9.425 *** 0.651 2.992 *** 0.977 3.762 ***	0.432 10.301 *** 0.32 2.394 ** 0.842 4.846 ***	0.262 11.387 *** 0.643 6.421 *** 1.499 14.779 ***	0.454 13.897 *** 0.462 3.272 *** 0.848 5.843 ***	0.791 9.574 *** 0.731 2.403 ** 0.985 2.703 ***	0.753 <i>8.245 ***</i> 0.583 <i>2.369 **</i> 0.31 <i>0.815</i>	0.289 2.82 *** -0.072 -0.092 0.746 1.213	0.346 3.487 *** 1.754 3.518 *** 2.248 4.177 ***	0.487 9.508 *** 1.018 3.145 *** 0.652 2.504 **	0.461 10.044 *** 0.513 1.478 0.787 3.015 ***	0.542 7.064 *** -1.342 -2.038 ** -0.095 -0.187	0.747 <i>8.85 **</i> -0.417 <i>-0.662</i> 0.456 <i>0.932</i>
ize abor at	0.556 9.425 *** 0.651 2.992 *** 0.977 3.762 *** 0.589	0.432 10.301 **** 0.32 2.394 ** 0.842 4.846 *** 0.363	0.262 11.387 **** 0.643 6.421 **** 1.499 14.779 *** 0.552	0.454 13.897 *** 0.462 3.272 *** 0.848 5.843 *** 0.325	0.791 9.574 *** 0.731 2.403 ** 0.985 2.703 *** 0.565	0.753 <i>8.245 ***</i> 0.583 <i>2.369 **</i> 0.31 <i>0.815</i> 0.364	0.289 2.82 *** -0.072 -0.092 0.746 1.213 0.202	0.346 3.487 *** 1.754 3.518 *** 2.248 4.177 *** 0.707	0.487 9.508 *** 1.018 3.145 *** 0.652 2.504 ** 0.409	0.461 10.044 *** 0.513 1.478 0.787 3.015 *** 0.205	0.542 7.064 *** -1.342 -2.038 ** -0.095 -0.187 0.027	0.747 <i>8.85 **</i> -0.417 <i>-0.662</i> 0.456 <i>0.932</i> 0.144
ize abor lat rod	0.556 9.425 *** 0.651 2.992 *** 0.977 3.762 *** 0.589 7.276 ***	0.432 10.301 *** 0.32 2.394 ** 0.842 4.846 *** 0.363 7.094 ***	0.262 11.387 *** 0.643 6.421 *** 1.499 14.779 *** 0.552 16.993 ***	0.454 13.897 *** 0.462 3.272 *** 0.848 5.843 *** 0.325 7.531 ***	0.791 9.574 *** 0.731 2.403 ** 0.985 2.703 *** 0.565 5.254 ***	0.753 8.245 *** 0.583 2.369 ** 0.31 0.815 0.364 3.242 ***	0.289 2.82 **** -0.072 -0.092 0.746 1.213 0.202 1.311	0.346 3.487 *** 1.754 3.518 *** 2.248 4.177 *** 0.707 4.125 ***	0.487 9.508 *** 1.018 3.145 *** 0.652 2.504 ** 0.409 5.204 ***	0.461 10.044 *** 0.513 1.478 0.787 3.015 *** 0.205 3.032 ***	0.542 7.064 *** -1.342 -2.038 ** -0.095 -0.187 0.027 0.237	0.747 8.85 ** -0.417 -0.662 0.456 0.932 0.144 1.262
ize abor at rod	0.556 9.425 *** 0.651 2.992 *** 0.977 3.762 *** 0.589 7.276 *** 3.752	0.432 10.301 *** 0.32 2.394 ** 0.842 4.846 *** 0.363 7.094 *** 9909	0.262 11.387 *** 0.643 6.421 *** 1.499 14.779 *** 0.552 16.993 *** 39944	0.454 13.897 *** 0.462 3.272 *** 0.848 5.843 *** 0.325 7.531 *** 16278	0.791 9.574 *** 0.731 2.403 ** 0.985 2.703 *** 0.565 5.254 *** 3993	0.753 8.245 *** 0.583 2.369 ** 0.31 0.815 0.364 3.242 *** 3815	0.289 2.82 *** -0.072 -0.092 0.746 1.213 0.202 1.311 1526	0.346 3.487 *** 1.754 3.518 *** 2.248 4.177 *** 0.707 4.125 *** 2012	0.487 9.508 *** 1.018 3.145 *** 0.652 2.504 ** 0.409 5.204 *** 6017	0.461 10.044 *** 0.513 1.478 0.787 3.015 *** 0.205 3.032 *** 7796	0.542 7.064 *** -1.342 -2.038 ** -0.095 -0.187 0.027 0.237 2907	0.747 <i>8.85 ***</i> -0.417 -0.662 0.456 <i>0.932</i> 0.144 <i>1.262</i> 2643
Yariables Bize Jabor Mat Prod J Joglikelihood	0.556 9.425 *** 0.651 2.992 *** 0.977 3.762 *** 0.589 7.276 ***	0.432 10.301 *** 0.32 2.394 ** 0.842 4.846 *** 0.363 7.094 ***	0.262 11.387 *** 0.643 6.421 *** 1.499 14.779 *** 0.552 16.993 ***	0.454 13.897 *** 0.462 3.272 *** 0.848 5.843 *** 0.325 7.531 ***	0.791 9.574 *** 0.731 2.403 ** 0.985 2.703 *** 0.565 5.254 ***	0.753 8.245 *** 0.583 2.369 ** 0.31 0.815 0.364 3.242 ***	0.289 2.82 **** -0.072 -0.092 0.746 1.213 0.202 1.311	0.346 3.487 *** 1.754 3.518 *** 2.248 4.177 *** 0.707 4.125 ***	0.487 9.508 *** 1.018 3.145 *** 0.652 2.504 ** 0.409 5.204 ***	0.461 10.044 *** 0.513 1.478 0.787 3.015 *** 0.205 3.032 ***	0.542 7.064 *** -1.342 -2.038 ** -0.095 -0.187 0.027 0.237	0.747 <i>8.85 ***</i> -0.417 <i>-0.662</i> 0.456 <i>0.932</i> 0.144 <i>1.262</i>
ize abor lat rod	0.556 9.425 *** 0.651 2.992 *** 0.977 3.762 *** 0.589 7.276 *** 3.752	0.432 10.301 *** 0.32 2.394 ** 0.842 4.846 *** 0.363 7.094 *** 9909	0.262 11.387 *** 0.643 6.421 *** 1.499 14.779 *** 0.552 16.993 *** 39944	0.454 13.897 *** 0.462 3.272 *** 0.848 5.843 *** 0.325 7.531 *** 16278	0.791 9.574 *** 0.731 2.403 ** 0.985 2.703 *** 0.565 5.254 *** 3993	0.753 8.245 *** 0.583 2.369 ** 0.31 0.815 0.364 3.242 *** 3815	0.289 2.82 *** -0.072 -0.092 0.746 1.213 0.202 1.311 1526	0.346 3.487 *** 1.754 3.518 *** 2.248 4.177 *** 0.707 4.125 *** 2012	0.487 9.508 *** 1.018 3.145 *** 0.652 2.504 ** 0.409 5.204 *** 6017	0.461 10.044 *** 0.513 1.478 0.787 3.015 *** 0.205 3.032 *** 7796	0.542 7.064 *** -1.342 -2.038 ** -0.095 -0.187 0.027 0.237 2907	0.747 <i>8.85</i> ** -0.417 - <i>0.662</i> 0.456 <i>0.932</i> 0.144 <i>1.262</i> 2643
ize abor lat rod oglikelihood ariables	0.556 9.425 *** 0.651 2.992 *** 0.977 3.762 *** 0.589 7.276 *** 3.752 -1232	0.432 10.301 *** 0.32 2.394 ** 0.842 4.846 *** 0.363 7.094 *** 9909 -2847	0.262 11.387 *** 0.643 6.421 *** 1.499 14.779 *** 0.552 16.993 *** 39944 -10031	0.454 13.897 *** 0.462 3.272 *** 0.848 5.843 *** 0.325 7.531 *** 16278 -4260 40	0.791 <i>9.574 ***</i> 0.731 <i>2.403 **</i> 0.985 <i>2.703 ***</i> 0.565 <i>5.254 ***</i> 3993 -739	0.753 <i>8.245 ***</i> 0.583 <i>2.369 **</i> 0.31 <i>0.815</i> 0.364 <i>3.242 ***</i> 3.815 -673.1	0.289 2.82 *** -0.072 -0.092 0.746 1.213 0.202 1.311 1526 -430.8	0.346 <i>3.487</i> *** 1.754 <i>3.518</i> *** 2.248 4.177 *** 0.707 <u>4.125</u> *** 2012 -490.5	0.487 <i>9.508</i> *** 1.018 <i>3.145</i> *** 0.652 <i>2.504</i> ** 0.409 <i>5.204</i> *** 6017 -1712	0.461 10.044 *** 0.513 1.478 0.787 3.015 *** 0.205 3.032 *** 7796 -2080	0.542 7.064 *** -1.342 -2.038 ** -0.095 -0.187 0.027 0.027 0.027 -672.8	0.747 <i>8.85</i> ** -0.417 - <i>0.662</i> 0.456 <i>0.932</i> 0.144 <i>1.262</i> 2643
ize abor lat rod oglikelihood	0.556 9.425 *** 0.651 2.992 *** 0.977 3.762 *** 0.589 7.276 *** 3752 -1232 37 0.559	0.432 10.301 *** 0.32 2.394 ** 0.842 4.846 *** 0.363 7.094 *** 9909 -2847 38 0.718	0.262 11.387 *** 0.643 6.421 *** 1.499 14.779 *** 0.552 16.993 *** 39944 -10031	0.454 13.897 *** 0.462 3.272 *** 0.848 5.843 *** 0.325 7.531 *** 16278 -4260 40 0.506	0.791 <i>9.574 ***</i> 0.731 <i>2.403 **</i> 0.985 <i>2.703 ***</i> 0.565 <u>5.254 ***</u> 3993 -739 <u>41</u> 0.474	0.753 8.245 *** 0.583 2.369 ** 0.31 0.815 0.364 <u>3.242</u> *** 3815 -673.1 42 0.335	0.289 2.82 **** -0.072 -0.092 0.746 1.213 0.202 1.311 1526 -430.8 43 0.424	0.346 3.487 *** 1.754 3.578 *** 2.248 4.177 *** 0.707 4.125 *** 2012 -490.5 44 0.677	0.487 9.508 *** 1.018 3.145 *** 0.652 2.504 ** 0.409 5.204 *** 6017 -1712 45 0.324	0.461 10.044 *** 0.513 1.478 0.787 3.015 *** 0.205 3.032 *** 7796 -2080	0.542 7.064 *** -1.342 -2.038 ** -0.095 -0.187 0.027 0.237 2907 -672.8 47 0.436	0.747 <i>8.85</i> ** -0.417 -0.662 0.456 0.932 0.144 1.262 2643
ize abor at oglikelihood ariables	0.556 9.425 *** 0.651 2.992 *** 0.977 3.762 *** 0.589 7.276 *** 3752 -1232 37 0.559 8.032 ***	0.432 10.301 *** 0.32 2.394 ** 0.842 4.846 *** 0.363 7.094 *** 9909 -2847 38 0.718 10.2 ***	0.262 11.387 *** 0.643 6.421 *** 1.499 14.779 *** 0.552 16.993 *** 39944 -10031 39 0.544 5.008 ***	0.454 13.897 *** 0.462 3.272 *** 0.848 5.843 *** 0.325 7.531 *** 16278 -4260 40 0.506 11.228 ***	0.791 <i>9.574 ***</i> 0.731 <i>2.403 **</i> 0.985 <i>2.703 ***</i> 0.565 <u>5.254 ***</u> 3993 -739 <u>41</u> 0.474 5.029 ***	0.753 8.245 *** 0.583 2.369 ** 0.31 0.815 0.364 <u>3.242</u> *** 3815 -673.1 42 0.335 3.813 ***	0.289 2.82 *** -0.072 -0.092 0.746 1.213 0.202 1.311 1526 -430.8 43 0.424 5.928 ***	0.346 3.487 *** 1.754 3.518 *** 2.248 4.177 *** 0.707 4.125 *** 2012 -490.5 44 0.677 7.189 ***	0.487 9.508 *** 1.018 3.145 **** 0.652 2.504 ** 0.409 <u>5.204</u> *** 6017 -1712 45 0.324 3.679 ***	0.461 10.044 *** 0.513 1.478 0.787 3.015 *** 0.205 3.032 *** 7796 -2080 46 0.626 9.05 ***	0.542 7.064 *** -1.342 -2.038 ** -0.095 * -0.187 0.027 0.237 2907 -672.8 47 0.436 3.479 ***	0.747 <i>8.85</i> ** -0.417 - <i>0.662</i> 0.456 <i>0.932</i> 0.144 <i>1.262</i> 2643
ize abor at rod oglikelihood ariables ize	0.556 9.425 *** 0.651 2.992 *** 0.977 3.762 *** 0.589 7.276 *** 3752 -1232 37 0.559 8.032 *** 0.032	0.432 10.301 *** 0.32 2.394 ** 0.842 4.846 *** 0.363 7.094 *** 9909 -2847 38 0.718 10.2 *** 0.383	0.262 11.387 *** 0.643 6.421 *** 1.499 14.779 *** 0.552 16.993 *** 39944 -10031 39 0.544 5.008 *** 0.482	0.454 13.897 *** 0.462 3.272 *** 0.848 5.843 *** 0.325 7.531 *** 16278 -4260 40 0.506	0.791 9.574 *** 0.731 2.403 ** 0.985 2.703 *** 0.565 <u>5.254</u> *** 3993 -739 41 0.474 5.029 *** -0.28	0.753 8.245 *** 0.583 2.369 ** 0.31 0.815 0.364 <u>3.242</u> *** 3815 -673.1 42 0.335	0.289 2.82 **** -0.072 -0.092 0.746 1.213 0.202 1.311 1526 -430.8 43 0.424	0.346 <i>3.487</i> *** 1.754 <i>3.518</i> *** 2.248 <i>4.177</i> *** 0.707 <i>4.125</i> *** 2012 -490.5 44 0.677 <i>7.189</i> *** -1.015	0.487 9.508 *** 1.018 3.145 **** 0.652 2.504 ** 0.409 <u>5.204</u> *** 6017 -1712 45 0.324 3.679 *** 1.152	0.461 10.044 *** 0.513 1.478 0.787 3.015 *** 0.205 3.032 *** 7796 -2080 46 0.626	0.542 7.064 *** -1.342 -2.038 ** -0.095 -0.187 0.027 0.237 2907 -672.8 47 0.436 3.479 *** 0.174	0.747 <i>8.85</i> ** -0.417 - <i>0.662</i> 0.456 <i>0.932</i> 0.144 <i>1.262</i> 2643
ize abor rod oglikelihood ariables ize ize	0.556 9.425 *** 0.651 2.992 *** 0.977 3.762 *** 0.589 7.276 *** 3752 -1232 37 0.559 8.032 ***	0.432 10.301 *** 0.32 2.394 ** 0.842 4.846 *** 0.363 7.094 *** 9909 -2847 38 0.718 10.2 ***	0.262 11.387 *** 0.643 6.421 *** 1.499 14.779 *** 0.552 16.993 *** 39944 -10031 39 0.544 5.008 ***	0.454 13.897 *** 0.462 3.272 *** 0.848 5.843 *** 0.325 7.531 *** 16278 -4260 40 0.506 11.228 *** 1.058	0.791 <i>9.574 ***</i> 0.731 <i>2.403 **</i> 0.985 <i>2.703 ***</i> 0.565 <u>5.254 ***</u> 3993 -739 <u>41</u> 0.474 5.029 ***	0.753 8.245 *** 0.583 2.369 ** 0.31 0.815 0.364 <u>3.242</u> *** 3.815 -673.1 42 0.335 3.813 *** -0.465	0.289 2.82 *** -0.072 -0.092 0.746 1.213 0.202 1.311 1526 -430.8 43 0.424 5.928 *** 0.427	0.346 3.487 *** 1.754 3.518 *** 2.248 4.177 *** 0.707 4.125 *** 2012 -490.5 44 0.677 7.189 ***	0.487 9.508 *** 1.018 3.145 **** 0.652 2.504 ** 0.409 <u>5.204</u> *** 6017 -1712 45 0.324 3.679 ***	0.461 10.044 *** 0.513 1.478 0.787 3.015 *** 0.205 3.032 *** 7796 -2080 46 0.626 9.05 *** 0.444	0.542 7.064 *** -1.342 -2.038 ** -0.095 * -0.187 0.027 0.237 2907 -672.8 47 0.436 3.479 ***	0.747 <i>8.85</i> ** -0.417 - <i>0.662</i> 0.456 <i>0.932</i> 0.144 <i>1.262</i> 2643
ize abor lat rod oglikelihood ariables	0.556 9.425 *** 0.651 2.992 *** 0.977 3.762 *** 0.589 7.276 *** 3752 -1232 37 0.559 8.032 *** 0.032 0.385	0.432 10.301 *** 0.32 2.394 ** 0.842 4.846 *** 0.363 7.094 *** 9909 -2847 38 0.718 10.2 *** 0.383 1.085	0.262 11.387 *** 0.643 6.421 *** 1.499 14.779 *** 0.552 16.993 *** 39944 -10031 39 0.544 5.008 *** 0.482 0.984	0.454 13.897 *** 0.462 3.272 *** 0.848 5.843 *** 0.325 7.531 *** 16278 -4260 40 0.506 11.228 *** 1.058 4.865 ***	0.791 9.574 *** 0.731 2.403 ** 0.985 2.703 *** 0.565 5.254 *** 3993 -739 41 0.474 5.029 *** -0.28 -1.631	0.753 8.245 *** 0.583 2.369 ** 0.31 0.815 0.364 <u>3.242</u> *** 3815 -673.1 42 0.335 <u>3.813</u> *** -0.465 -0.586	0.289 2.82 **** -0.072 -0.092 0.746 1.213 0.202 1.311 1526 -430.8 43 0.424 5.928 *** 0.427 1.015	0.346 3.487 *** 1.754 3.578 *** 2.248 4.177 *** 0.707 4.125 *** 2012 -490.5 44 0.677 7.189 *** -1.015 -1.388	0.487 9.508 *** 1.018 3.145 *** 0.652 2.504 ** 0.409 5.204 **** 6017 -1712 45 0.324 3.679 *** 1.152 1.858 *	0.461 10.044 *** 0.513 1.478 0.787 3.015 *** 0.205 3.032 *** 7796 -2080 46 0.626 9.05 *** 0.444 2.439 **	0.542 7.064 *** -1.342 -2.038 ** -0.095 -0.187 0.027 0.237 2907 -672.8 47 0.436 3.479 *** 0.174 0.358	0.747 <i>8.85</i> ** -0.417 -0.662 0.456 0.932 0.144 <u>1.262</u> 2643
ize abor rod oglikelihood ariables ize ize	0.556 9.425 *** 0.651 2.992 *** 0.977 3.762 *** 0.589 7.276 *** 3752 -1232 37 0.559 8.032 *** 0.032 0.385 0.294	0.432 10.301 *** 0.32 2.394 ** 0.842 4.846 *** 0.363 7.094 *** 9909 -2847 38 0.718 10.2 *** 0.383 1.085 -0.103	0.262 11.387 *** 0.643 6.421 *** 1.499 14.779 *** 0.552 16.993 *** 39944 -10031 39 0.544 5.008 *** 0.482 0.984 0.313	0.454 13.897 *** 0.462 3.272 *** 0.848 5.843 *** 0.325 7.531 *** 16278 -4260 40 0.506 11.228 *** 1.058 4.865 *** 0.789	0.791 9.574 *** 0.731 2.403 ** 0.985 2.703 *** 0.565 5.254 *** 3993 -739 41 0.474 5.029 *** -0.28 -1.631 0.892	0.753 8.245 *** 0.583 2.369 ** 0.31 0.815 0.364 3.242 *** 3815 -673.1 42 0.335 3.813 *** -0.465 -0.586 1.116	0.289 2.82 *** -0.072 -0.092 0.746 1.213 0.202 1.311 1526 -430.8 43 0.424 5.928 *** 0.427 1.015 1.191	0.346 3.487 *** 1.754 3.518 *** 2.248 4.177 *** 0.107 4.125 *** 2012 -490.5 44 0.677 7.189 *** -1.015 -1.388 0.213	0.487 9.508 *** 1.018 3.145 **** 0.652 2.504 ** 0.409 <u>5.204</u> *** 6017 -1712 45 0.324 3.679 *** 1.152 1.858 * 0.802	0.461 10.044 *** 0.513 1.478 0.787 3.015 *** 0.205 3.032 *** 7796 -2080 46 0.626 9.05 *** 0.444 2.439 ** 1.099	0.542 7.064 *** -1.342 -2.038 ** -0.095 -0.187 0.027 0.237 2907 -672.8 47 0.436 3.479 *** 0.174 0.358 1.435	0.747 <i>8.85</i> ** -0.417 - <i>0.662</i> 0.456 <i>0.932</i> 0.144 <i>1.262</i> 2643
ize abor rod oglikelihood ariables ize iage iat	0.556 9.425 *** 0.651 2.992 *** 0.977 3.762 *** 0.589 7.276 *** 3752 -1232 37 0.559 8.032 *** 0.032 0.385 0.294 0.959	0.432 10.301 *** 0.32 2.394 ** 0.842 4.946 *** 0.363 7.094 *** 9909 -2847 38 0.718 1.02 *** 0.383 1.085 -0.103 -0.288	0.262 1.337 *** 0.643 6.421 *** 1.499 14.779 *** 0.552 16.993 *** 39944 -10031 39 0.544 5.008 *** 0.482 0.984 0.313 0.715	0.454 13.897 *** 0.462 3.272 *** 0.848 5.843 *** 0.325 7.531 *** 16278 -4260 40 0.506 11.228 *** 1.058 4.865 *** 0.789 3.366 ***	0.791 9.574 *** 0.731 2.403 ** 0.985 2.703 *** 0.565 5.254 *** 3993 -739 41 0.474 5.029 *** -0.28 -1.631 0.892 2.22 **	0.753 8.245 *** 0.583 2.369 ** 0.31 0.815 0.364 3.242 *** 3815 -673.1 42 0.335 3.813 *** -0.465 -0.586 1.116 2.073 **	0.289 2.82 **** -0.072 -0.092 0.746 1.213 0.202 1.311 1526 -430.8 43 0.424 5.928 *** 0.427 1.015 1.191 3.08 ****	0.346 3.487 *** 1.754 3.518 *** 2.248 4.177 *** 0.707 4.125 *** 2012 -490.5 44 0.677 7.189 *** -1.015 -1.388 0.213 0.413	0.487 9.508 *** 1.018 3.145 *** 0.652 2.504 ** 0.409 5.204 *** 6017 -1712 45 0.324 3.679 *** 1.152 1.858 * 0.802 1.607	0.461 10.044 *** 0.513 1.478 0.787 3.015 *** 0.205 3.032 *** 7796 -2080 46 0.626 9.05 *** 0.444 2.439 ** 1.099 3.924 ***	0.542 7.064 *** -1.342 -2.038 ** -0.095 -0.187 0.027 0.237 2907 -672.8 47 0.436 3.479 *** 0.174 0.358 1.435 2.26 **	0.747 <i>8.85</i> ** -0.417 - <i>0.662</i> 0.456 <i>0.932</i> 0.144 <i>1.262</i> 2643
ze abor at od glikelihood ariables ze age age	0.556 9.425 *** 0.651 2.992 *** 0.977 3.762 *** 0.589 7.276 *** 3752 -1232 37 0.559 8.032 *** 0.032 *** 0.032 *** 0.032 *** 0.035 0.294 0.959 0.301	0.432 10.301 *** 0.32 2.394 ** 0.842 4.846 *** 0.363 7.094 *** 9909 -2847 38 0.718 10.2 *** 0.383 1.085 -0.103 -0.288 0.207	0.262 11.387 *** 0.643 6.421 *** 1.499 14.779 *** 0.552 16.993 *** 39944 -10031 39 0.544 5.008 *** 0.482 0.984 0.313 0.313 0.715 0.013	0.454 13.897 *** 0.462 3.272 *** 0.848 5.843 *** 0.325 7.531 *** 16278 -4260 40 0.506 11.228 *** 1.058 4.865 *** 0.789 3.366 *** 0.565	0.791 9.574 *** 0.731 2.403 ** 0.985 2.703 *** 0.565 5.254 *** 3993 -739 41 0.474 5.029 *** -0.28 -1.631 0.892 2.22 ** 0.585	0.753 8.245 *** 0.583 2.369 ** 0.31 0.815 0.364 <u>3.242</u> *** 3815 -673.1 42 0.335 3.813 *** -0.465 1.116 2.073 ** 0.75	0.289 2.82 **** -0.072 -0.092 0.746 1.213 0.202 1.311 1526 -430.8 43 0.424 5.928 *** 0.427 1.015 1.191 3.08 **** 0.436	0.346 3.487 *** 1.754 3.578 *** 2.248 4.177 *** 0.707 4.125 *** 2012 -490.5 44 0.677 7.189 *** -1.015 -1.388 0.213 0.413 0.062	0.487 9.508 *** 1.018 3.145 *** 0.652 2.504 ** 0.409 5.204 *** 6017 -1712 45 0.324 3.679 *** 1.152 1.858 * 0.802 1.607 0.504	0.461 10.044 *** 0.513 1.478 0.787 3.015 *** 0.205 3.032 *** 7796 -2080 46 0.626 9.05 *** 0.444 2.439 ** 1.099 3.924 *** 0.307	0.542 7.064 *** -1.342 -2.038 ** -0.095 -0.187 0.027 0.237 2907 -672.8 47 0.436 3.479 *** 0.174 0.358 1.435 2.26 ** 0.068	0.747 <i>8.85</i> ** -0.417 - <i>0.662</i> 0.456 <i>0.932</i> 0.144 <i>1.262</i> 2643

Italic figures are z-values *** statistically significant at 1 %, ** statistically significant at 5% and * statistically significant at 10%.

Sectoral dummies are omitted

Regression 2: Multi-plant de												
Prefecture		2	3	4	5	6	7	8	9	10	11	12
Size	0.774	0.705	0.745	0.819	0.643	0.647	0.635	0.815	0.811	0.914	0.854	0.802
	23.624 ***	10.573 ***	12.95 ***	16.503 ***	10.643 ***	13.118 ***	16.422 ***	22.683 ***	20.629 ***	24.038 ***	34.654 ***	24.14 ***
Wage	-0.394	-0.038	0.585	0.277	0.296	1.241	1.267	0.745	0.437	0.152	0.405	0.801
	-1.46 *	-0.086	1.965 **	0.768	0.74	3.791 ***	4.598 ***	2.678 ***	2.92 ***	0.535	1.861 *	2.473 **
Mat	1.29	0.812	0.459	0.803	0.602	0.436	0.616	1.205	0.922	0.532	1.31	1.338
	6.84 ***	2.349 **	1.561	2.76 ***	1.696 *	1.766 *	2.77 ***	5.679 ***	4.896 ***	2.427 **	7.831 ***	5.803 ***
Prod	0.337	0.297	0.232	0.286	0.122	0.479	0.559	0.332	0.395	0.108	0.481	0.377
	8.241 ***	3.889 ***	2.918 ***	3.834 ***	1.34	5.199 ***	7.671 ***	5.921 ***	6.858 ***	1.966 **	10.112 ***	7.042 ***
N	10751	2652	3178	4750	3202	4641	7047	8609	8148	9542	20476	9020
Log Likelihood	-3734	-878.1	-1188	-1492	-1130	-1526	-2508	-2879	-2266	-2675	-5448	-2938
	0707	070.1	1100	1432	1100	1520	2300	2073	2200	2073	0110	2300
Variables	13	14	15	16	17	18	19	20	21	22	23	24
Size	0.9	0.832	0.674	0.95	0.884	0.826	0.854	0.774	0.921	0.881	0.844	1.009
	54.388 ***	36.002 ***	19.685 ***	<i>15.792 ***</i>	16.186 ***	14.322 ***	13.622 ***	22.739 ***	25.535 ***	33.34 ***	44.385 ***	23.099 ***
Wage	0.223	0.29	0.842	1.601	1.695	0.442	-0.177	0.615	0.416	-0.08	0.577	1.327
-	3.141 ***	2.271 **	3.549 ***	3.899 ***	5.448 ***	0.935	-0.384	3.405 ***	2.828 ***	-0.41	4.52 ***	4.187 ***
Mat	0.861	1.07	1.026	0.818	1.54	1.133	-0.037	0.772	0.101	0.581	1.088	0.827
	10.115 ***	7.987 ***	5.223 ***	2.391 **	5.613 ***	3.308 ***	-0.106	4.271 ***	0.721	3.765 ***	10,196 ***	3.32 ***
Prod	0.251	0.251	0.395	0.358	0.477	0.241	0.101	0.271	0.329	0.127	0.317	0.28
i iou	9.767 ***	7.302 ***	6.552 ***	3.216 ***	5.473 ***	2.542 **	1.144	4.941 ***	5.81 ***	3.364 ***	10.5 ***	4.321 ***
N	53184	16058	10803	4451	7168	5009	3629	10036	12879	18189	34336	7107
N			10803	4451	/108							
				1007	1400	1105						
Loglikelihood	-15260	-5540	-3120	-1037	-1429	-1135	-1001	-2850	-2814	-4925	-9281	-2003
Loglikelihood Variables	-15260 25	-5540	-3120	28	29	30	31	32	33	34	35	36
Loglikelihood Variables	-15260 25 0.91	-5540 26 0.573	-3120 27 0.866	<u>28</u> 0.933	<u>29</u> 0.901	<u>30</u> 1.07	<u>31</u> 0.558	<u>32</u> 0.479	<u>33</u> 0.722	<u>34</u> 0.817	<u>35</u> 0.766	<u>36</u> 0.731
Loglikelihood Variables Size	-15260 25 0.91 <i>19.413 ***</i>	-5540 26 0.573 19.122 ***	-3120 27 0.866 47.818 ***	28 0.933 <i>36.263 ***</i>	29 0.901 1 <i>3.671 ***</i>	30 1.07 14.512 ***	31 0.558 <i>7.086 ***</i>	32 0.479 6.886 ***	33 0.722 18.665 ***	34 0.817 24.347 ***	35 0.766 14.423 ***	36 0.731 10.893 ***
Loglikelihood Variables Size	-15260 25 0.91 19.413 *** 0.422		-3120 27 0.866 <i>47.818 ***</i> 0.038	28 0.933 <i>36.263 ***</i> 0.247	29 0.901 <i>13.671 ***</i> 0.137	30 1.07 1 <i>4.512 ***</i> 0.232	31 0.558 <i>7.086 **</i> * 0.894	32 0.479 <i>6.886 ***</i> 1.032	33 0.722 18.665 *** 0.397	34 0.817 <i>24,347 ***</i> 0.776	35 0.766 <i>14.423 ***</i> 0.894	36 0.731 <i>10.893 ***</i> 0.238
Loglikelihood Variables Size Wage	-15260 25 0.91 19.413 *** 0.422 2.028 **	-5540 26 0.573 19.122 *** 0.595 5.372 ***	-3120 27 0.866 47.818 *** 0.038 1.049	28 0.933 <i>36.263 ***</i> * 0.247 2.711 ***	29 0.901 13.671 *** 0.137 0.385	30 1.07 14.512 *** 0.232 0.717	31 0.558 7.086 *** 0.894 1.958 *	32 0.479 6.886 *** 1.032 2.603 ***	33 0.722 18.665 *** 0.397 1.727 *	34 0.817 24.347 *** 0.776 3.365 ***	35 0.766 14.423 *** 0.894 2.663 ***	36 0.731 10.893 *** 0.238 0.673
Loglikelihood Variables Size Wage	-15260 25 0.91 19.413 *** 0.422 2.028 ** 0.664	-5540 26 0.573 19.122 *** 0.595 5.372 *** 0.474	-3120 27 0.866 47.818 *** 0.038 1.049 0.911	28 0.933 <i>36.263 ***</i> 0.247 2.711 *** 0.638	29 0.901 13.671 *** 0.137 0.385 0.578	30 1.07 14.512 *** 0.232 0.717 -0.306	31 0.558 7.086 *** 0.894 1.958 * 1.039	32 0.479 6.886 *** 1.032 2.603 *** 1.17	33 0.722 18.665 *** 0.397 1.727 * 0.409	34 0.817 24.347 *** 0.776 3.365 *** 0.55	35 0.766 14.423 *** 0.894 2.663 *** 1.478	<u>36</u> 0.731 10.893 *** 0.238 0.673 0.312
Loglikelihood Variables Size Wage Mat	-15260 25 0.91 19.413 *** 0.422 2.028 ** 0.664 2.888 ***	-5540 <u>26</u> 0.573 <i>19.122 ***</i> 0.595 <i>5.372 ***</i> 0.474 <i>3.623 ***</i>	-3120 0.866 <i>47.818</i> *** 0.038 1.049 0.911 10.546 ***	28 0.933 38263 *** 0.247 2.711 *** 0.638 5.433 ***	29 0.901 13.671 *** 0.137 0.385 0.578 1.777 *	30 1.07 14.512 *** 0.232 0.717 -0.306 -0.931	31 0.558 7.086 *** 0.894 1.958 * 1.039 2.376 **	32 0.479 6.886 *** 1.032 2.603 *** 1.17 3.055 ***	33 0.722 18.665 *** 0.397 1.727 * 0.409 2.038 **	34 0.817 24,347 *** 0.776 3,365 *** 0.55 2,926 ***	35 0.766 14.423 *** 0.894 2.663 *** 1.478 4.468 ***	36 0.731 10.893 *** 0.238 0.673 0.312 0.884
Loglikelihood Variables Size Wage Mat	-15260 0.91 19.413 *** 0.422 2.028 ** 0.664 2.888 *** 0.326	-5540 26 0.573 19.122 *** 0.595 5.372 *** 0.474 3.623 *** 0.207	-3120 27 0.866 <i>47.818 ***</i> 0.038 <i>1.049</i> 0.911 <i>10.546 ***</i> 0.307	28 0.933 36.263 *** 0.247 2.711 *** 0.638 5.433 *** 0.184	29 0.901 13.671 *** 0.137 0.385 0.578 1.777 * 0.186	30 1.07 14.512 *** 0.232 0.717 -0.306 -0.931 0.061	31 0.558 7.086 *** 0.894 1.958 * 1.039 2.376 ** 0.032	32 0.479 6.886 *** 1.032 2.603 *** 1.17 3.055 *** 0.53	33 0.722 18.665 *** 0.397 1.727 * 0.409 2.038 ** 0.115	34 0.817 24.347 *** 0.776 3.365 *** 0.55 2.926 *** 0.102	35 0.766 14.423 *** 0.894 2.663 *** 1.478 4.468 *** 0.312	36 0.731 10.893 *** 0.238 0.673 0.312 0.884 0.003
Loglikelihood Variables Size Wage Mat Prod	-15260 25 0.91 19.413 *** 0.422 2.028 ** 0.664 2.888 *** 0.326 5.244 ***	-5540 <u>26</u> 0.573 <i>19.122 ***</i> 0.595 <i>5.372 ***</i> 0.474 <i>3.623 ***</i>	-3120 27 0.866 47.818 *** 0.038 1.049 0.911 10.546 *** 0.307 12.561 ***	28 0.933 36.263 *** 0.247 2.711 *** 0.638 5.433 *** 0.184 5.894 ***	29 0.901 13.671 *** 0.137 0.385 0.578 1.777 * 0.186 2.245 **	30 1.07 14.512 *** 0.232 0.717 -0.306 -0.931 0.061 0.751	31 0.558 7.086 *** 0.894 1.958 * 1.039 2.376 ** 0.032 0.307	32 0.479 6.886 *** 1.032 2.603 *** 1.17 3.055 *** 0.53 4.347 ***	33 0.722 18.665 *** 0.397 1.727 * 0.409 2.038 ** 0.115 2.249 **	34 0.817 24,347 *** 0.776 3,365 *** 0.55 2,926 ***	35 0.766 14.423 *** 0.894 2.663 *** 1.478 4.468 *** 0.312 4.053 ***	36 0.731 10.893 *** 0.238 0.673 0.312 0.884 0.003 0.045
Loglikelihood Variables Size Wage Mat Prod	-15260 0.91 19.413 *** 0.422 2.028 ** 0.664 2.888 *** 0.326	-5540 26 0.573 19.122 *** 0.595 5.372 *** 0.474 3.623 *** 0.207	-3120 27 0.866 <i>47.818 ***</i> 0.038 <i>1.049</i> 0.911 <i>10.546 ***</i> 0.307	28 0.933 36.263 *** 0.247 2.711 *** 0.638 5.433 *** 0.184	29 0.901 13.671 *** 0.137 0.385 0.578 1.777 * 0.186	30 1.07 14.512 *** 0.232 0.717 -0.306 -0.931 0.061	31 0.558 7.086 *** 0.894 1.958 * 1.039 2.376 ** 0.032	32 0.479 6.886 *** 1.032 2.603 *** 1.17 3.055 *** 0.53	33 0.722 18.665 *** 0.397 1.727 * 0.409 2.038 ** 0.115	34 0.817 24.347 *** 0.776 3.365 *** 0.55 2.926 *** 0.102	35 0.766 14.423 *** 0.894 2.663 *** 1.478 4.468 *** 0.312	36 0.731 10.893 *** 0.238 0.673 0.312 0.884 0.003
	-15260 25 0.91 19.413 *** 0.422 2.028 ** 0.664 2.888 *** 0.326 5.244 ***	-5540 26 0.573 19.122 *** 0.595 5.372 *** 0.474 3.623 *** 0.207 5.595 ***	-3120 27 0.866 47.818 *** 0.038 1.049 0.911 10.546 *** 0.307 12.561 ***	28 0.933 36.263 *** 0.247 2.711 *** 0.638 5.433 *** 0.184 5.894 ***	29 0.901 13.671 *** 0.137 0.385 0.578 1.777 * 0.186 2.245 **	30 1.07 14.512 *** 0.232 0.717 -0.306 -0.931 0.061 0.751	31 0.558 7.086 *** 0.894 1.958 * 1.039 2.376 ** 0.032 0.307	32 0.479 6.886 *** 1.032 2.603 *** 1.17 3.055 *** 0.53 4.347 ***	33 0.722 18.665 *** 0.397 1.727 * 0.409 2.038 ** 0.115 2.249 **	34 0.817 24.347 *** 0.776 3.365 *** 0.55 2.926 *** 0.102 2.232 **	35 0.766 14.423 *** 0.894 2.663 *** 1.478 4.468 *** 0.312 4.053 ***	36 0.731 10.893 *** 0.238 0.673 0.312 0.884 0.003 0.045
Loglikelihood Variables Size Wage Mat Prod N Loglikelihood	-15260 25 0.91 19.413 *** 0.422 2.028 ** 0.664 2.888 *** 0.326 5.244 *** 4485 -1591	-5540 <u>26</u> 0.573 <i>19.122 ***</i> 0.595 <i>5.372 ***</i> 0.474 <i>3.623 ***</i> 0.207 <i>5.595 ***</i> 11640 -4565	-3120 27 0.866 <i>47.818</i> *** 0.038 1.049 0.911 10.546 *** 0.307 12.561 *** 43945 -11156	28 0.933 36.263 *** 0.247 2.711 *** 0.638 5.433 *** 0.184 5.894 *** 18460 -5402	29 0.901 13.671 *** 0.137 0.385 0.578 1.777 * 0.186 2.245 ** 4318 -966.4	30 1.07 14.512 *** 0.232 0.717 -0.306 -0.931 0.061 0.751 4073 -879.7	31 0.558 7.086 *** 0.894 1.958 * 1.039 2.376 ** 0.032 0.307 1791 -613.2	32 0.479 6.886 *** 1.032 2.603 *** 1.17 3.055 *** 0.53 4.347 *** 2437 -843.4	33 0.722 18.665 *** 0.397 1.727 * 0.409 2.038 ** 0.115 2.249 ** 7056 -2509	34 0.817 24.347 *** 0.776 3.365 *** 0.55 2.926 *** 0.102 2.232 ** 9127 -3188	35 0.766 14.423 *** 0.894 2.663 *** 1.478 4.468 *** 0.312 4.053 *** 3615 -1128	36 0.731 10.893 *** 0.238 0.673 0.312 0.884 0.003 0.045 2991
Loglikelihood Variables Size Wage Mat Prod Loglikelihood Variables	-15260 25 0.91 19.413 *** 0.422 2.028 ** 0.664 2.888 *** 0.326 5.244 *** 4485 -1591 37	-5540 <u>26</u> 0.573 19.122 *** 0.595 5.372 *** 0.474 3.623 *** 0.207 <u>5.595</u> *** 11640 -4565 38	-3120 27 0.866 47.818 *** 0.038 1.049 0.911 10.546 *** 0.307 12.561 *** 4.3945 -11156 39	28 0.933 36.263 *** 0.247 2.711 *** 0.638 5.433 *** 0.184 5.894 *** 18460 -5402 40	29 0.901 13.671 *** 0.137 0.385 0.578 1.777 * 0.186 <u>2.245</u> ** 4318 -966.4	30 1.07 14.512 *** 0.232 0.717 -0.306 -0.931 0.061 0.751 4073 -879.7 42	31 0.558 7.086 *** 0.894 1.039 2.376 ** 0.032 0.307 1791 -613.2	32 0.479 6.886 *** 1.032 2.603 *** 1.17 3.055 *** 0.53 4.347 *** 2437 -843.4	33 0.722 18.665 *** 0.397 1.727 * 0.409 2.038 ** 0.115 2.249 ** 7056 -2509 45	34 0.817 24.347 *** 0.776 3.365 *** 0.55 2.926 *** 0.102 2.232 ** 9127 -3188	35 0.766 14.423 *** 0.894 2.663 *** 1.478 4.468 *** 0.312 4.053 *** 3615 -1128	36 0.731 10.893 *** 0.238 0.673 0.312 0.884 0.003 0.045 2991
Loglikelihood Variables Size Wage Mat Prod N Loglikelihood	-15260 25 0.91 19.413 *** 0.422 2.028 ** 0.664 2.888 *** 0.326 5.244 *** 4485 -1591 37 0.859	-5540 26 0.573 19.122 *** 0.595 5.372 *** 0.474 3.623 *** 0.207 5.595 *** 11640 -4565 38 0.868	-3120 27 0.866 <i>47,818 ***</i> 0.038 <i>1.049</i> 0.911 <i>10.546 ***</i> 0.307 <i>12.561 ***</i> 43945 -11156 39 0.595	28 0.933 36263 *** 0.247 2.711 *** 0.638 5.433 *** 0.184 5.894 *** 18460 -5402 40 0.826	29 0.901 13.671 *** 0.137 0.385 0.578 1.777 * 0.186 2.245 ** 4318 -966.4 41 0.902	30 1.07 14.512 *** 0.232 0.717 -0.306 -0.931 0.061 0.751 4073 -879.7 42 0.73	31 0.558 7.086 *** 0.894 1.958 * 1.039 2.376 ** 0.032 0.307 1791 -613.2 43 0.774	32 0.479 6.886 *** 1.032 2.603 *** 1.17 3.055 *** 0.53 4.347 *** 2437 -843.4 44 0.849	33 0.722 18.665 *** 0.397 1.727 * 0.409 2.038 ** 0.115 2.249 ** 7056 -2509 45 0.583	34 0.817 24.347 *** 0.776 3.365 *** 0.55 2.926 *** 0.102 2.232 ** 9127 -3188 46 0.9	35 0.766 14.423 *** 0.894 2.663 *** 1.478 4.468 *** 0.312 4.053 *** 3.615 -1128 47 0.697	36 0.731 10.893 *** 0.238 0.673 0.312 0.884 0.003 0.045 2991
Loglikelihood Variables Size Wage Mat Prod N Loglikelihood Variables Size	-15260 25 0.91 19.413 *** 0.422 2.028 ** 0.664 2.888 *** 0.326 5.244 *** 4485 -1591 37 0.859 15.14 ***	-5540 <u>26</u> 0.573 <i>19.122 ***</i> 0.595 <i>5.372 ***</i> 0.474 <i>3.623 ***</i> 0.207 <i>5.595 ***</i> 11640 -4565 <u>38</u> 0.868 <i>1.4221 ***</i>	-3120 27 0.866 47.818 *** 0.038 1.049 0.911 10.546 *** 0.307 12.561 *** 43945 -11156 39 0.595 6.894 ***	28 0.933 36.263 *** 0.247 2.711 *** 0.638 5.433 *** 0.184 5.894 *** 18460 -5402 40 0.826 23.565 ***	29 0.901 13.671 *** 0.137 0.385 0.578 1.777 * 0.186 2.245 ** 4318 -966.4 41 0.902 12.355 ***	30 1.07 14.512 *** 0.232 0.717 -0.306 -0.931 0.061 0.751 4073 -879.7 42 0.73 9.512 ***	31 0.558 7.086 *** 0.894 1.958 * 1.039 2.376 ** 0.032 0.307 1791 -613.2 43 0.774 12.565 ***	32 0.479 6.886 *** 1.032 2.603 *** 1.17 3.055 *** 0.53 4.347 *** 2437 -843.4 44 0.849 11.531 ***	33 0.722 18.665 *** 0.397 1.727 * 0.409 2.038 ** 0.115 2.249 ** 7056 -2509 45 0.583 7.471 ***	34 0.817 24.347 *** 0.776 3.365 *** 0.55 2.926 *** 0.102 2.232 ** 9127 -3188 46 0.9 16.292 ***	35 0.766 14.423 *** 0.894 2.663 *** 1.478 4.468 *** 0.312 4.053 *** 3615 -1128 47 0.697 5.203 ***	36 0.731 10.893 *** 0.238 0.673 0.312 0.884 0.003 0.045 2991
Loglikelihood Variables Size Wage Mat Prod N Loglikelihood Variables Size	-15260 25 0.91 19.413 *** 0.422 2.028 ** 0.664 2.888 *** 0.326 5.244 *** 4455 -1591 37 0.859 15.14 *** 0.031	-5540 26 0.573 19.122 *** 0.595 5.372 *** 0.474 3.823 *** 0.207 5.595 *** 11640 -4565 38 0.868 14.821 *** 0.641	-3120 27 0.866 47.818 *** 0.038 1.049 0.911 10.546 *** 0.307 12.561 *** 4.3945 -11156 39 0.595 6.894 *** 0.639	28 0.933 38263 *** 0.247 2.711 *** 0.638 5.433 *** 0.184 5.894 *** 18460 -5402 40 0.826 23.565 *** 0.885	29 0.901 13.671 *** 0.137 0.385 0.578 1.777 * 0.186 <u>2.245</u> ** 4318 -966.4 <u>41</u> 0.902 12.355 *** -0.372	30 1.07 14.512 *** 0.232 0.717 -0.306 -0.931 0.061 0.751 4073 -879.7 42 0.73 9.512 *** 1.999	31 0.558 7.086 *** 0.894 1.958 * 1.039 2.376 ** 0.032 0.307 1791 -613.2 43 0.774 12.565 *** 0.838	32 0.479 6.886 *** 1.032 2.603 *** 0.53 4.347 *** 2437 -843.4 44 0.849 11.531 *** -0.714	33 0.722 18.665 *** 0.397 1.727 * 0.409 2.038 ** 0.115 <u>2.249</u> ** 7056 -2509 <u>45</u> 0.583 7.471 *** 0.479	34 0.817 24.347 *** 0.776 3.365 *** 0.55 2.926 *** 0.102 <u>2.232</u> ** 9127 -3188 <u>46</u> 0.9 16.292 *** -0.075	35 0.766 14.423 *** 0.894 2.663 *** 1.478 4.468 *** 0.312 <u>4.053</u> *** 3.3615 -1128 47 0.697 5.203 *** 1.314	36 0.731 10.893 *** 0.238 0.673 0.312 0.884 0.003 0.045 2991
Loglikelihood Variables Size Wage Mat Prod N Loglikelihood Variables Size	-15260 25 0.91 19.413 *** 0.422 2.028 ** 0.664 2.888 *** 0.326 5.244 *** 4485 -1591 37 0.859 15.14 *** 0.031 0.536	-5540 26 0.573 19.122 *** 0.595 5.372 *** 0.474 3.623 *** 0.207 5.595 *** 11640 -4565 38 0.868 14.821 *** 0.641 2.756 ***	-3120 27 0.866 <i>47,818 ***</i> 0.038 <i>1.049</i> 0.911 <i>10.546 ***</i> 0.307 <i>12.561 ***</i> 43945 -11156 39 0.595 <i>6.894 ***</i> 0.639 <i>1.469</i>	28 0.933 36263 *** 0.247 2.711 *** 0.638 5.433 *** 0.184 5.894 *** 18460 -5402 40 0.826 23.565 *** 0.885 3.943 ***	29 0.901 13.671 *** 0.137 0.385 0.578 1.777 * 0.186 2.245 ** 4318 -966.4 41 0.902 12.355 *** -0.372 -2.771 ***	30 1.07 14.512 *** 0.232 0.717 -0.306 -0.931 0.061 0.751 4073 -879.7 4073 -879.7 4073 9.512 *** 1.999 2.602 ***	31 0.558 7.086 *** 0.894 1.958 * 1.039 2.376 ** 0.032 0.307 1791 -613.2 43 0.774 12.565 *** 0.838 2.774 ***	32 0.479 6.886 *** 1.032 2.603 *** 1.17 3.055 *** 0.53 4.347 *** 2437 -843.4 44 0.849 11.531 *** -0.714 -0.714 -1.182	33 0.722 18.665 *** 0.397 1.727 * 0.409 2.038 ** 0.115 2.249 ** 7056 -2509 45 0.583 7.471 *** 0.479 0.802	34 0.817 24.347 *** 0.776 3.365 *** 0.55 2.926 *** 0.102 2.232 ** 9127 -3188 46 0.9 16.292 *** -0.075 -0.319	35 0.766 14.423 *** 0.894 2.663 *** 1.478 4.468 *** 0.312 4.053 *** 3615 -1128 47 0.697 5.203 *** 1.314 2.427 **	36 0.731 10.893 *** 0.238 0.673 0.312 0.884 0.003 0.045 2991
Loglikelihood Variables Size Wage Mat Prod	-15260 25 0.91 19.413 *** 0.422 2.028 ** 0.664 2.888 *** 0.326 5.244 *** 4485 -1591 37 0.859 7.5.14 *** 0.031 0.536 -0.002	-5540 26 0.573 19.122 *** 0.595 5.372 *** 0.474 3.623 *** 0.207 5.595 *** 11640 -4565 38 0.868 1.4.821 *** 0.641 2.756 *** -0.369	-3120 27 0.866 47.818 *** 0.038 1.049 0.911 10.546 *** 0.307 12.561 *** 43945 -11156 39 0.595 6.894 *** 0.639 1.469 0.629	28 0.933 36.263 *** 0.247 2.711 *** 0.638 5.433 **** 0.184 5.894 *** 18460 -5402 40 0.826 23.565 *** 0.885 3.943 *** 1.298	29 0.901 13.671 *** 0.137 0.385 0.578 1.777 * 0.186 2.245 ** 4318 -966.4 41 0.902 12.355 *** -0.372 -2.771 *** 1.071	30 1.07 14.512 *** 0.232 0.717 -0.306 -0.931 0.061 0.751 4073 -879.7 4073 -879.7 42 0.73 <i>9.512</i> *** 1.999 2.602 *** 1.923	31 0.558 7.086 *** 0.894 1.958 * 1.039 2.376 ** 0.032 0.307 1791 -613.2 43 0.774 12.565 *** 0.838 2.774 *** 1.084	32 0.479 6.886 *** 1.032 2.603 *** 1.17 3.055 *** 0.53 4.347 *** 2437 -843.4 44 0.849 11.531 *** -0.714 -1.182 0.193	33 0.722 18.665 *** 0.397 1.727 * 0.409 2.038 ** 0.115 2.249 ** 7056 -2509 45 0.583 7.471 *** 0.479 0.802 1.096	34 0.817 24.347 *** 0.776 3.365 *** 0.55 2.926 *** 0.102 <u>2.232</u> ** 9127 -3188 46 0.9 16.292 *** -0.075 -0.319 0.952	35 0.766 14.423 *** 0.894 2.663 *** 1.478 4.468 *** 0.312 4.053 *** 3615 -1128 47 0.697 5.203 *** 1.314 2.427 ** 2.427	36 0.731 10.893 *** 0.238 0.673 0.312 0.884 0.003 0.045 2991
Loglikelihood Variables Size Wage Mat Prod N Loglikelihood Variables Size Nage Mat	-15260 25 0.91 19.413 *** 0.422 2.028 ** 0.664 2.888 *** 0.326 5.244 *** 4485 -1591 37 0.859 15.14 *** 0.031 0.536 -0.002 -0.007	-5540 26 0.573 19.122 *** 0.595 5.372 *** 0.474 3.823 *** 0.207 5.595 *** 0.207 5.595 *** 11640 -4565 38 0.868 14.821 *** 0.641 2.756 *** -0.369 -1.282	-3120 27 0.866 <i>47.818</i> *** 0.038 <i>1.049</i> 0.911 <i>10.546</i> *** 0.307 <i>12.561</i> *** 4.3945 -11156 39 0.595 <i>6.894</i> *** 0.639 <i>1.469</i> 0.629 <i>1.635</i>	28 0.933 38.263 *** 0.247 2.711 *** 0.638 5.433 *** 0.184 5.894 *** 18460 -5402 40 0.826 23.565 *** 0.885 3.943 *** 1.298 6.44 ***	29 0.901 13.671 *** 0.137 0.385 0.578 1.777 * 0.186 2.245 ** 4318 -966.4 41 0.902 12.355 *** -0.372 -2.771 *** 1.071 3.377 ***	30 1.07 14.512 *** 0.232 0.717 -0.306 -0.931 0.061 0.751 4073 -879.7 42 0.73 9.512 *** 1.999 2.602 *** 1.923 3.54 ***	31 0.558 7.086 *** 0.894 1.958 * 1.039 2.376 ** 0.032 0.307 1791 -613.2 43 0.774 12.565 *** 0.838 2.774 *** 1.084 3.341 ***	32 0.479 6.886 *** 1.032 2.603 *** 1.17 3.055 *** 0.53 4.347 *** 2437 -843.4 44 0.849 11.531 *** -0.714 -1.182 0.193 0.452	33 0.722 18.665 *** 0.397 1.727 * 0.409 2.038 ** 0.115 2.249 ** 7056 -2509 45 0.583 7.471 *** 0.479 0.802 1.096 2.318 **	34 0.817 24,347 *** 0.776 3.365 *** 0.55 2.926 *** 0.102 2.232 ** 912 -3188 46 0.9 16.292 *** -0.075 -0.319 0.952 3.864 ***	35 0.766 14.423 *** 0.894 2.663 *** 1.478 4.468 *** 0.312 4.053 *** 3.615 -1128 47 0.697 5.203 *** 1.314 2.427 ** 2.427 ** 2.427 **	36 0.731 10.893 *** 0.238 0.673 0.312 0.884 0.003 0.045 2991
Loglikelihood Variables Size Wage Mat Prod N Loglikelihood Variables Size	-15260 25 0.91 19.413 *** 0.422 2.028 ** 0.664 2.888 *** 0.326 5.244 *** 4485 -1591 37 0.859 15.14 *** 0.031 0.536 -0.002 -0.007 0.251	-5540 26 0.573 19.122 *** 0.595 5.372 *** 0.474 3.623 *** 0.207 5.595 *** 11640 -4565 38 0.868 14.821 *** 0.641 2.756 *** -0.369 -1.282 0.182	-3120 27 0.866 <i>47,818 ****</i> 0.038 <i>1.049</i> 0.911 <i>10,546 ****</i> 0.307 <i>12,561 ****</i> 43945 -11156 39 0.595 <i>6.894 ****</i> 0.639 <i>1.635</i> 0.363	28 0.933 36263 *** 0.247 2.711 *** 0.638 5.433 *** 0.184 5.894 *** 18460 -5402 40 0.826 23.565 *** 0.885 3.943 *** 1.298 6.44 *** 0.687	29 0.901 13.671 *** 0.137 0.385 0.578 1.777 * 0.186 2.245 ** 4318 -966.4 41 0.902 12.355 *** -0.372 -2.771 *** 1.071 3.377 *** 0.325	30 1.07 14.512 *** 0.232 0.717 -0.306 -0.931 0.061 0.751 4073 -879.7 4073 -879.7 4073 9.512 *** 1.999 2.602 *** 1.923 3.54 *** 1.286	31 0.558 7.086 *** 0.894 1.958 * 1.039 2.376 ** 0.032 0.307 1791 -613.2 43 0.774 12.565 *** 0.838 2.774 *** 1.084 3.341 *** 0.485	32 0.479 6.886 *** 1.032 2.603 *** 1.17 3.055 *** 0.53 4.347 *** 2437 -843.4 44 0.849 11.531 *** -0.714 -0.714 -1.182 0.193 0.452 0.168	33 0.722 18.665 *** 0.397 1.727 * 0.409 2.038 ** 0.115 2.249 ** 7056 -2509 45 0.583 7.471 *** 0.479 0.802 1.096 2.318 ** 0.257	34 0.817 24.347 *** 0.776 3.365 *** 0.55 2.926 *** 0.102 2.232 ** 9127 -3188 46 0.9 16.292 *** -0.075 -0.319 0.952 3.864 *** 0.161	35 0.766 14.423 *** 0.894 2.663 *** 1.478 4.468 *** 0.312 4.053 *** 3.615 -1128 47 0.697 5.203 *** 1.314 2.427 ** 2.427 ** 2.427 3.652 *** 0.649	36 0.731 10.893 *** 0.238 0.673 0.312 0.884 0.003 0.045 2991
Loglikelihood Variables Size Wage Mat Prod N Loglikelihood Variables Size Wage Mat Prod	-15260 25 0.91 19.413 *** 0.422 2.028 ** 0.664 2.888 *** 0.326 5.244 *** 4485 -1591 37 0.859 15.14 *** 0.031 0.536 -0.002 -0.002 -0.007 0.251 3.514 ***	-5540 26 0.573 19.122 *** 0.595 5.372 *** 0.474 3.623 *** 0.207 5.595 *** 11640 -4565 38 0.868 14.821 *** 0.641 2.756 *** -0.369 -1.282 0.182 2.239 **	-3120 27 0.866 47.818 *** 0.038 1.049 0.911 10.546 *** 0.307 12.561 *** 43945 -11156 39 0.595 6.894 *** 0.639 1.469 0.629 1.635 0.363 3.29 ***	28 0.933 36.263 *** 0.247 2.711 *** 0.638 5.433 *** 0.184 5.894 *** 18460 -5402 40 0.826 23.565 *** 0.885 3.943 *** 1.298 6.44 *** 0.687 11.078 ***	29 0.901 13.671 *** 0.137 0.385 0.578 1.777 * 0.186 2.245 ** 4318 -966.4 4318 -966.4 41 0.902 12.355 *** -0.372 -2.771 *** 1.071 3.377 *** 0.325 3.386 ***	30 1.07 14.512 *** 0.232 0.717 -0.306 -0.931 0.061 0.751 4073 -879.7 4073 -879.7 42 0.73 9.512 *** 1.999 2.602 *** 1.923 3.54 *** 1.286 8.229 ***	31 0.558 7.086 *** 0.894 1.958 * 1.039 2.376 ** 0.032 0.307 1791 -613.2 43 0.774 12.565 *** 0.838 2.774 *** 1.084 3.341 *** 0.485 4.975 ***	32 0.479 6.886 *** 1.032 2.603 *** 1.17 3.055 *** 0.53 4.347 *** 2437 -843.4 44 0.849 11.531 *** -0.714 -1.182 0.193 0.452 0.168 1.636	33 0.722 18.665 *** 0.397 1.727 * 0.409 2.038 ** 0.115 2.249 ** 7056 -2509 45 0.583 7.471 *** 0.479 0.802 1.096 2.318 ** 0.257 2.148 **	34 0.817 24.347 *** 0.776 3.365 *** 0.55 2.926 *** 0.102 2.232 ** 9127 -3188 46 0.9 16.292 *** -0.075 -0.319 0.952 3.864 *** 0.161 2.859 ***	35 0.766 14.423 *** 0.894 2.663 *** 1.478 4.468 *** 0.312 4.053 *** 3615 -1128 47 0.697 5.203 *** 1.314 2.427 ** 2.427 3.652 *** 0.649 3.495 ***	36 0.731 10.893 *** 0.238 0.673 0.312 0.884 0.003 0.045 2991
Loglikelihood Variables Size Wage Mat Prod N Loglikelihood Variables Size Wage Mat	-15260 25 0.91 19.413 *** 0.422 2.028 ** 0.664 2.888 *** 0.326 5.244 *** 4485 -1591 37 0.859 15.14 *** 0.031 0.536 -0.002 -0.007 0.251	-5540 26 0.573 19.122 *** 0.595 5.372 *** 0.474 3.623 *** 0.207 5.595 *** 11640 -4565 38 0.868 14.821 *** 0.641 2.756 *** -0.369 -1.282 0.182	-3120 27 0.866 <i>47,818 ****</i> 0.038 <i>1.049</i> 0.911 <i>10,546 ****</i> 0.307 <i>12,561 ****</i> 43945 -11156 39 0.595 <i>6.894 ****</i> 0.639 <i>1.635</i> 0.363	28 0.933 36263 *** 0.247 2.711 *** 0.638 5.433 *** 0.184 5.894 *** 18460 -5402 40 0.826 23.565 *** 0.885 3.943 *** 1.298 6.44 *** 0.687	29 0.901 13.671 *** 0.137 0.385 0.578 1.777 * 0.186 2.245 ** 4318 -966.4 41 0.902 12.355 *** -0.372 -2.771 *** 1.071 3.377 *** 0.325	30 1.07 14.512 *** 0.232 0.717 -0.306 -0.931 0.061 0.751 4073 -879.7 4073 -879.7 4073 9.512 *** 1.999 2.602 *** 1.923 3.54 *** 1.286	31 0.558 7.086 *** 0.894 1.958 * 1.039 2.376 ** 0.032 0.307 1791 -613.2 43 0.774 12.565 *** 0.838 2.774 *** 1.084 3.341 *** 0.485	32 0.479 6.886 *** 1.032 2.603 *** 1.17 3.055 *** 0.53 4.347 *** 2437 -843.4 44 0.849 11.531 *** -0.714 -0.714 -1.182 0.193 0.452 0.168	33 0.722 18.665 *** 0.397 1.727 * 0.409 2.038 ** 0.115 2.249 ** 7056 -2509 45 0.583 7.471 *** 0.479 0.802 1.096 2.318 ** 0.257	34 0.817 24.347 *** 0.776 3.365 *** 0.55 2.926 *** 0.102 2.232 ** 9127 -3188 46 0.9 16.292 *** -0.075 -0.319 0.952 3.864 *** 0.161	35 0.766 14.423 *** 0.894 2.663 *** 1.478 4.468 *** 0.312 4.053 *** 3.615 -1128 47 0.697 5.203 *** 1.314 2.427 ** 2.427 ** 2.427 3.652 *** 0.649	36 0.731 10.893 *** 0.238 0.673 0.312 0.884 0.003 0.045 2991

 Loglikelihood
 -1171
 -1168
 -664.1
 -273

 Italic figures are z-values.
 *** statistically significant at 1 %, ** statistically significant at 5% and * statistically significant at 10%.

Sectoral dummies are omitted

Table 6: Sectoral Results (Logit regression in 1980)

egression 1: HQ separation ariables Sector Code	1	2	3	4	5	6	7	8	9	10
e	0.509	0.68	0.633	0.621	0.604	0.577	0.495	0.252	0.229	-0.011
6	22.892 ***	16.98 ***	24.613 ***	22.595 ***	18.011 ***	16.501 ***	11.231 ***	7.826 ***	6.179 ***	-0.1
or	0.439	0.239	0.803	0.139	0.249	0.965	0.831	0.727	-1.938	0.389
01	3.723 ***	1.348	<i>6.649 ***</i>	1.94 *	<i>2.309 **</i>	5.705 ***	3.316 ***	<i>4.093 ***</i>	-4.481 ***	0.389
	1.2	1.349	0.918	0.315	0.65	0.837	1.319	1.241	-0.041	3.08 ×
	10.057 ***	6.955 ***	<i>7.662 ***</i>	<i>2.834 ***</i>	5.164 ***	<i>4.625 ***</i>	6.295 ***	7.284 ***	-0.169	4.399
d	0.371	0.525	0.35	0.309	0.205	0.455	0.566	0.561	0.287	0.191
	12.846 ***	10.142 ***	<i>9.393 ***</i>	8.291 ***	6.216 ***	7.967 ***	8.926 ***	9.701 ***	4.716 ***	1.57
	31449	16421	36062	24655	25257	17829	10272	24841	3499	395
likelihood	-8182	-3117	-6685	-6310	-6445	-4794	-2871	-5295	-1929	-234.4
iables Sector Code	11	12	13	14	15	16	17	18	19	20
e	0.432	0.837	0.469	0.298	0.419	0.453	0.296	0.388	0.414	0.388
	6.963 ***	11.484 ***	16.843 ***	7.347 ***	8.208 ***	21.658 ***	14.187 ***	18.557 ***	12.387 ***	9.993
or	0.651	1.158	0.404	0.299	0.551	0.692	0.668	-0.13	1.111	0.059
	3.242 ***	3.171 ***	4.085 ***	0.767	2.501 **	5.369 ***	3.893 ***	-2.955 ***	5.078 ***	0.588
t	1.755	1.396	1.181	0.859	1.556	1.438	1.86	0.585	0.902	1.409
	6.039 ***	4.369 ***	9.623 ***	3.497 ***	6.191 ***	14.376 ***	14.87 ***	7.53 ***	4.907 ***	7.057
d	0.637	0.494	0.492	0.251	0.386	0.598	0.671	0.397	0.576	0.45
	6.916 ***	4.928 ***	14.079 ***	3.65 ***	5.193 ***	17.738 ***	15.323 ***	12.557 ***	8.593 ***	6.715
				0.00 111	0.700 111					
			18522	5021	3500	45088	3/382	21022		
g likelihood	4503 -1165	5350 -1081	18522 -6297	5921 -2185	3509 -1342	45088 -13173	34382 -10117	21922 -7373	12521 -3353	6859 -2112
ression 2: Multi–plant decisi	4503 -1165	5350 -1081	-6297	-2185	-1342	-13173		-7373	-3353	-2112
ression 2: Multi−plant decisi ables Sector Code	4503 -1165 on 1	5350 -1081 2	-62973	-2185	-1342 5	-13173	<u>-10117</u> 7	-7373 8	-3353	-2112
ression 2: Multi−plant decisi ables Sector Code	4503 -1165 on <u>1</u> 0.976	5350 -1081 <u>2</u> 0.981	-6297 <u>3</u> 0.822	-2185 4 0.797	-1342 5 0.94	-13173 <u>6</u> 1.065	-10117 7 0.809	-7373 <u>8</u> 0.732	-3353 9 0.681	<u>-2112</u> 10 0.007
rression 2: Multi−plant decisi iables Sector Code ∋	4503 -1165 on 1 0.976 51.172 ***	5350 -1081 2 0.981 28.844 ***	-6297 3 0.822 43.492 ***	_2185 4 	-1342 5 0.94 <i>30.897 ***</i>	-13173 6 1.065 28.888 ***	-10117 7 0.809 25.086 ***	-7373 8 0.732 28.95 ***	-3353 9 0.681 23.316 ***	<u>-2112</u> 10 0.007 <i>0.096</i>
ression 2: Multi-plant decisi iables Sector Code	4503 -1165 on <u>1</u> 0.976 <i>51.172 ***</i> 0.376	5350 -1081 2 0.981 28.844 *** 0.238	-6297 3 0.822 43.492 *** 0.8	_2185 	-1342 5 0.94 <i>30.897 ***</i> -0.242	-13173 6 1.065 28.888 *** -0.188	-10117 7 0.809 <i>25.086 ***</i> 0.073	-7373 8 0.732 28.95 *** 0.676	-3353 9 0.681 <i>23.316 ***</i> 0.643	<u>-2112</u> 10 0.007 <i>0.096</i> -5.235
ression 2: Multi-plant decisi ables Sector Code	4503 -1165 on 1 0.976 51.172 *** 0.376 3.148 ***	5350 -1081 2 0.981 28.844 *** 0.238 1.731 *	-6297 3 0.822 43.492 *** 0.8 8.056 ***	_2185 4 0.797 <i>35.877 ***</i> 0.512 <i>4.49 ***</i>	-1342 5 0.94 <i>30.897 ***</i> -0.242 -7.154	-13173 6 1.065 28.888 *** -0.188 -0.641	-10117 -10017 0.809 25.086 *** 0.073 0.961	-7373 8 0.732 28.95 *** 0.676 4.133 ***	<u>9</u> 0.681 23.316 *** 0.643 3.047 ***	<u>-2112</u> 10 0.007 <i>0.096</i> -5.235 - <i>3.967</i>
ression 2: Multi-plant decisi iables Sector Code or	4503 -1165 on <u>1</u> 0.976 <i>51.172 ****</i> 0.376 <i>3.148 ***</i> 1.572	5350 -1081 2 0.981 28.844 *** 0.238 1.731 * 0.369	-6297 0.822 <i>43.492 ***</i> 0.8 <i>8.056 ***</i> 0.54	<u>4</u> 0.797 <i>35.877 ***</i> 0.512 <i>4.49 ***</i> 0.034	-1342 5 0.94 <i>30.897 ***</i> -0.242 -1.154 0.74	-13173 6 1.065 28.888 *** -0.188 -0.641 0.186	-10117 0.809 25.086 *** 0.073 0.961 1.322	-7373 8 0.732 28.95 *** 0.676 4.133 *** 0.579	<u>9</u> 0.681 <i>23.316 ***</i> 0.643 <i>3.047 ***</i> 1.724	<u>-2112</u> <u>10</u> 0.007 <i>0.096</i> -5.235 <i>-3.967</i> 0.291
ression 2: Multi-plant decisi lables Sector Code e or	4503 -1165 on 1 0.976 51.172 *** 0.376 3.148 *** 1.572 13.985 ***	5350 -1081 2 0.981 28.844 *** 0.238 1.731 * 0.369 2.11 **	-6297 0.822 <i>43.492 ***</i> 0.8 <i>8.056 ***</i> 0.54 5.722 ***	<u>4</u> 0.797 <i>35.877 ***</i> 0.512 <i>4.49 ***</i> 0.034 <i>0.319</i>	-1342 0.94 <i>30.897 ***</i> -0.242 -1.154 0.74 4.755 ***	-13173 6 1.065 28.888 *** -0.188 -0.641 0.186 0.791	-10117 0.809 25.086 *** 0.073 0.961 1.322 9.102 ***	-7373 0.732 28.95 *** 0.676 4.133 *** 0.579 3.684 ***	<u>9</u> 0.681 23.316 *** 0.643 3.047 *** 1.724 8.992 ***	<u> </u>
ression 2: Multi-plant decisi ables Sector Code or	4503 -1165 on 1 0.976 51.172 *** 0.376 3.148 *** 1.572 13.985 *** 0.403	5350 -1081 28.844 *** 0.238 1.731 * 0.369 2.11 ** 0.227	-6297 0.822 43.492 *** 0.8 8.056 *** 0.54 5.722 *** 0.157	2185 0.797 35.877 *** 0.512 4.49 *** 0.034 0.319 0.097	-1342 0.94 30.897 *** -0.242 -1.154 0.74 4.755 *** 0.167	<u>6</u> 1.065 28.888 *** -0.188 -0.641 0.186 0.791 0.114	-10117 0.809 25.086 *** 0.073 0.961 1.322 9.102 *** 0.358	-7373 0.732 28.95 *** 0.676 4.133 *** 0.579 3.684 *** 0.396	<u>9</u> 0.681 23.316 *** 0.643 3.047 *** 1.724 8.992 *** 0.277	<u> </u>
ression 2: Multi-plant decisi lables Sector Code e or	4503 -1165 on 1 0.976 51.172 *** 0.376 3.148 *** 1.572 13.985 *** 0.403 16.238 ***	5350 -1081 28.844 *** 0.238 1.731 * 0.369 2.11 ** 0.227 5.372 ***	-6297 0.822 43.492 *** 0.8 8.056 *** 0.54 5.722 *** 0.157 5.834 ***	2185 	-1342 5 0.94 30.897 *** -0.242 -1.154 0.74 4.755 *** 0.167 4.909 ***	-13173 6 1.065 28.888 *** -0.188 -0.641 0.186 0.791 0.114 1.89 *	-10117 0.809 25.086 *** 0.073 0.961 1.322 9.102 *** 0.358 9.073 ***	-7373 8 0.732 28.95 *** 0.676 4.133 *** 0.579 3.684 *** 0.396 7.45 ***	<u>9</u> 0.681 23.316 *** 0.643 3.047 *** 1.724 8.992 *** 0.277 6.755 ***	10 0.007 -5.235 -3.967 0.291 0.476 0.183 1.863
ression 2: Multi-plant decisi ables Sector Code	4503 -1165 on 1 0.976 51.172 *** 0.376 3.148 *** 1.572 13.985 *** 0.403 16.238 *** 34909	5350 -1081 2 0.981 28.844 *** 0.238 1.731 * 0.369 2.11 ** 0.227 5.372 *** 17546	-6297 3 0.822 43.492 *** 0.8 8.056 *** 0.54 5.722 *** 0.157 5.834 *** 39703	2185 	-1342 5 0.94 30.897 *** -0.242 -7.154 0.74 4.755 *** 0.167 4.909 *** 27294	-13173 6 1.065 28.888 *** -0.188 -0.641 0.186 0.791 0.114 1.89 * 18699	-10117 7 0.809 25.086 *** 0.073 0.961 1.322 9.102 *** 0.358 9.073 *** 12065	-7373 8 0.732 28.95 *** 0.676 4.133 *** 0.579 3.684 *** 0.396 7.45 *** 27276	<u>9</u> 0.681 23.316 *** 0.643 3.047 *** 1.724 8.992 *** 0.277 6.755 *** 5044	-2112 0.007 0.096 -5.235 -3.967 0.291 0.476 0.183 1.863 871
ression 2: Multi-plant decisi	4503 -1165 on 1 0.976 51.172 *** 0.376 3.148 *** 1.572 13.985 *** 0.403 16.238 ***	5350 -1081 28.844 *** 0.238 1.731 * 0.369 2.11 ** 0.227 5.372 ***	-6297 0.822 43.492 *** 0.8 8.056 *** 0.54 5.722 *** 0.157 5.834 ***	2185 	-1342 5 0.94 30.897 *** -0.242 -1.154 0.74 4.755 *** 0.167 4.909 ***	-13173 6 1.065 28.888 *** -0.188 -0.641 0.186 0.791 0.114 1.89 *	-10117 0.809 25.086 *** 0.073 0.961 1.322 9.102 *** 0.358 9.073 ***	-7373 8 0.732 28.95 *** 0.676 4.133 *** 0.579 3.684 *** 0.396 7.45 ***	<u>9</u> 0.681 23.316 *** 0.643 3.047 *** 1.724 8.992 *** 0.277 6.755 ***	-2112 10 0.007 0.096 -5.235 -3.967
ression 2: Multi-plant decisi ables Sector Code or d	4503 -1165 on 1 0.976 <i>51.172</i> *** 0.376 <i>3.148</i> *** 1.572 <i>13.985</i> *** 0.403 <i>16.238</i> *** 34909 -8717	5350 -1081 2.0.981 28.844 *** 0.238 1.731 * 0.369 2.11 ** 0.227 5.372 *** 17546 -3545	-6297 3 0.822 43.492 *** 0.8 8.056 *** 0.54 5.722 *** 0.157 5.834 *** 39703 -10295	-2185 4 0.797 35.877 *** 0.512 4.49 *** 0.034 0.319 0.097 2.996 *** 28289 -9274	-1342 5 0.94 30.897 *** -0.242 -1.154 0.74 4.755 *** 0.167 4.909 *** 27294 -6324	-13173 6 1.065 28.888 *** -0.188 -0.641 0.186 0.791 0.114 1.89 * 18699 -3358	-10117 7 0.809 25.086 *** 0.073 0.961 1.322 9.102 *** 0.358 9.073 *** 12065 -4128	-7373 8 0.732 28.95 *** 0.676 4.133 *** 0.579 3.684 *** 0.396 7.45 *** 27276 -6282	-3353 9 0.681 23.316 *** 0.643 3.047 *** 1.724 8.992 *** 0.277 6.755 *** 5044 -2504	<u>-2112</u> 10 0.007 -5.235 -3.967 0.291 0.476 0.183 <i>1.863</i> 871 -530.5
ression 2: Multi-plant decisi ables Sector Code or likelihood ables Sector Code	4503 -1165 on 1 0.976 51.172 *** 0.376 3.148 *** 1.572 13.865 *** 0.403 16.238 *** 34909 -8717 11	5350 -1081 2 0.981 28.844 *** 0.238 1.731 * 0.369 2.11 ** 0.227 5.372 *** 17546 -3545	-6297 3 0.822 43.492 *** 0.8 8.056 *** 0.54 5.722 *** 0.157 5.834 *** 39703 -10295 13	2185 	-1342 5 0.94 30.897 *** -0.242 -1.154 0.74 4.755 *** 0.167 4.909 *** 27294 -6324	-13173 <u>6</u> 1.065 28.888 *** -0.188 -0.641 0.186 0.791 0.114 <u>1.89</u> * 18699 -3358	-10117 7 0.809 25.086 *** 0.073 0.961 1.322 9.102 *** 0.358 9.073 *** 12065 -4128	-7373 8 0.732 28.95 *** 0.676 4.133 *** 0.579 3.684 *** 0.396 7.45 *** 27276 -6282 18	-3353 9 0.681 23.316 *** 0.643 3.047 *** 1.724 8.992 *** 0.277 6.755 *** 5044 -2504 19	<u>10</u> 0.007 0.096 -5.235 -3.967 0.291 0.476 0.183 <u>1.863</u> 871 -530.5
ression 2: Multi-plant decisi ables Sector Code or likelihood ables Sector Code	4503 -1165 on 1 0.976 51.172 *** 0.376 3.148 *** 1.572 13.985 *** 0.403 16.238 *** 34909 -8717 11 0.926	5350 -1081 0.981 28.844 *** 0.238 1.731 * 0.369 2.11 ** 0.227 5.372 *** 17546 -3545 12 0.996	-6297 3 0.822 43.492 *** 0.8 8.056 *** 0.54 5.722 *** 0.157 5.834 *** 39703 -10295 13 0.764	2185 	-1342 5 0.94 30.897 *** -0.242 -1.154 0.74 4.755 *** 0.167 4.909 *** 27294 -6324 15 0.782	-13173 <u>6</u> 1.065 28.888 *** -0.188 -0.641 0.186 0.791 0.114 <u>1.89</u> * 18699 -3358 <u>16</u> 0.901	-10117 0.809 25.086 *** 0.073 0.961 1.322 9.102 *** 0.358 9.073 *** 12065 -4128 17 0.811	-7373 8 0.732 28.95 *** 0.676 4.133 *** 0.579 3.684 *** 0.396 7.45 *** 27276 -6282 18 0.716	-3353 9 0.681 23.316 *** 0.643 3.047 *** 1.724 8.992 *** 0.277 6.755 *** 5044 -2504 19 0.797	-2112 10 0.007 0.096 -5.235 -3.967 0.291 0.476 0.183 <u>1.863</u> 871 -530.5 20 0.741
ression 2: Multi-plant decision ables Sector Code or d likelihood ables Sector Code	4503 -1165 on 1 0.976 51.172 *** 0.376 3.148 *** 1.572 13.985 *** 0.403 16.238 *** 34909 -8717 11 0.926 18.636 ***	5350 -1081 28.844 *** 0.238 1.731 * 0.369 2.11 ** 0.227 5.372 *** 17546 -3545 12 0.996 15.29 ***	-6297 3 0.822 43.492 *** 0.8 8.056 *** 0.54 5.722 *** 0.157 5.834 *** 39703 -10295 13 0.764 35.485 ***	-2185 4 0.797 35.877 *** 0.512 4.49 *** 0.034 0.097 2.996 *** 28289 -9274 14 0.654 20.97	-1342 5 0.94 <i>30.897 ***</i> -0.242 - <i>1.154</i> 0.74 <i>4.755 ***</i> 0.167 <i>4.909 ***</i> 27294 -6324 15 0.782 <i>18.688 ***</i>	-13173 6 1.065 28.888 *** -0.188 -0.641 0.186 0.791 0.114 1.89 * 18699 -3358 16 0.901 48.618 ***	-10117 0.809 25.086 *** 0.073 0.961 1.322 9.102 *** 0.358 9.073 *** 12065 -4128 17 0.811 46.25 ***	-7373 8 0.732 28.95 *** 0.676 4.133 *** 0.579 3.684 *** 0.396 <u>7.45</u> *** 27276 -6282 18 0.716 46.379 ***	<u>9</u> 0.681 23.316 *** 0.643 3.047 *** 1.724 8.992 *** 0.277 6.755 *** 5044 -2504 19 0.797 33.493 ***	-2112 10 0.007 0.096 -5.235 -3.967 0.291 0.476 0.183 1.863 871 -530.5 20 0.741 22.918
ression 2: Multi-plant decision ables Sector Code or d likelihood ables Sector Code	4503 -1165 on 1 0.976 51.172 *** 0.376 3.148 *** 1.572 13.985 *** 0.403 16.228 *** 34909 -8717 11 0.926 18.636 *** -0.003	5350 -1081 2 0.981 28.844 *** 0.238 1.731 * 0.369 2.11 ** 0.227 5.372 *** 17546 -3545 12 0.996 15.29 *** 1.311	-6297 3 0.822 43.492 *** 0.8 8.056 *** 0.54 5.722 *** 0.157 5.834 *** 39703 -10295 13 0.764 35.485 *** 0.427	<u>4</u> 0.797 35.877 *** 0.512 4.49 *** 0.034 0.319 0.097 2.996 *** 28289 -9274 <u>14</u> 0.654 20.97 0.404	-1342 5 0.94 <i>30.897 ***</i> -0.242 -7.154 0.74 <i>4.755 ***</i> 0.167 <i>4.909 ***</i> 27294 -6324 15 0.782 <i>18.688 ***</i> 0.28	-13173 6 1.065 28.888 *** -0.188 -0.641 0.186 0.791 0.114 1.89 * 18699 -3358 16 0.901 48.618 *** 0.331	-10117 7 0.809 25.086 *** 0.073 0.961 1.322 9.102 *** 0.358 9.073 *** 12065 -4128 17 0.811 46.25 *** 0.401	-7373 8 0.732 28.95 *** 0.676 4.133 *** 0.579 3.684 *** 0.396 7.45 *** 27276 -6282 18 0.716 46.379 *** -0.039	<u>9</u> 0.681 23.316 *** 0.643 3.047 *** 1.724 8.992 *** 0.277 6.755 *** 5044 -2504 <u>19</u> 0.797 33.493 *** 0.189	<u>-2112</u> <u>10</u> 0.096 -5.235 -3.967 0.291 0.476 0.183 <u>1.863</u> 871 -530.5 <u>20</u> 0.741 <u>22.918</u> -0.026
ression 2: Multi-plant decision ables Sector Code or d likelihood ables Sector Code	4503 -1165 on 1 0.976 51.172 *** 0.376 3.148 *** 1.572 13.985 *** 0.403 16.238 *** 34909 -8717 11 0.926 18.636 *** -0.003 -0.052	5350 -1081 2 0.981 28.844 *** 0.238 1.731 * 0.369 2.11 ** 0.227 5.372 *** 17546 -3545 12 0.996 15.29 *** 1.311 4.345 ***	-6297 3 0.822 43.492 *** 0.8 8.056 *** 0.54 5.722 *** 0.157 5.834 *** 3.9703 -10295 13 0.764 35.485 *** 0.427 4.938 ***	<u>-2185</u> <u>4</u> 0.797 35.877 *** 0.512 4.49 *** 0.034 0.319 0.097 2.996 *** 28289 -9274 <u>14</u> 0.654 20.97 0.404 1.59 ***	-1342 5 0.94 30.897 *** -0.242 -1.154 0.74 4.755 *** 0.167 4.909 *** 27294 -6324 15 0.782 18.688 *** 0.28 1.663 *	-13173 <u>6</u> 1.065 28.888 *** -0.188 -0.641 0.186 0.791 0.114 1.89 * 18699 -3358 <u>16</u> 0.901 48.618 *** 0.331 3.112 ***	-10117 7 0.809 25.086 *** 0.073 0.961 1.322 9.102 *** 0.358 9.073 *** 12065 -4128 17 0.811 46.25 *** 0.401 3.155 ***	-7373 8 0.732 28.95 *** 0.676 4.133 *** 0.579 3.684 *** 0.396 7.45 *** 27276 -6282 18 0.716 46.379 *** -0.039 -0.956	<u>9</u> 0.681 23.316 *** 0.643 3.047 *** 1.724 8.992 *** 0.277 6.755 *** 5044 -2504 <u>19</u> 0.797 33.493 *** 0.189 1.001	<u>-2112</u> <u>10</u> 0.007 0.096 -5.235 -3.967 0.291 0.476 0.183 <u>1.863</u> 871 <u>-530.5</u> <u>20</u> 0.741 <u>22.918</u> -0.026 -0.026 -0.026 -0.026
gression 2: Multi-plant decisi iables Sector Code or : d : iikelihood iables Sector Code	4503 -1165 on 1 0.976 51.172 *** 0.376 3.148 *** 1.372 13.985 *** 0.403 16.238 *** 34909 -8717 11 0.926 18.636 *** -0.003 -0.052 0.326	5350 -1081 2 0.981 28.844 *** 0.238 1.731 * 0.369 2.11 ** 0.227 5.372 *** 17546 -3545 12 0.996 1.529 *** 1.311 4.345 *** 0.243	-6297 0.822 43.492 *** 0.8 8.056 *** 0.54 5.722 *** 0.157 5.834 *** 339703 -10295 13 0.764 35.485 *** 0.427 4.938 *** 1.723	2185 	-1342 5 0.94 30.897 *** -0.242 -1.154 0.74 4.755 *** 0.167 4.909 *** 27294 -6324 15 0.782 18.688 *** 0.28 1.663 * 0.943	-13173 <u>6</u> 1.065 28.888 *** -0.188 -0.641 0.186 0.791 0.114 <u>1.89</u> * 18699 -3358 <u>16</u> 0.901 <u>48.618</u> *** 0.331 <u>3.112</u> *** 0.9	-10117 -10117 0.809 25.086 *** 0.073 0.961 1.322 9.102 *** 0.358 9.073 *** 12065 -4128 17 0.811 46.25 *** 0.401 3.155 *** 1.071	-7373 8 0.732 28.95 *** 0.676 4.133 *** 0.579 3.684 *** 0.396 7.45 *** 27276 -6282 18 0.716 46.379 *** -0.039 -0.956 0.32	<u>9</u> 0.681 23.316 *** 0.643 3.047 *** 1.724 8.992 *** 0.277 6.755 *** 5044 -2504 <u>19</u> 0.797 33.493 *** 0.189 1.001 1.036	<u>-2112</u> <u>10</u> 0.007 0.096 -5.235 -3.967 0.291 0.476 0.183 <u>1.863</u> 871 -530.5 <u>20</u> 0.741 <u>22.918</u> -0.026 -0.176 0.476 0.476 0.476 -0.176 0.476 0.476 -0.176 0.476 -0.176 0.476 -0.176 -0.4766 -0.47
ression 2: Multi-plant decision iables Sector Code or : d : iables Sector Code or : :	4503 -1165 on 1 0.976 51.172 *** 0.376 3.148 *** 1.572 13.985 *** 0.403 16.238 *** 34909 -8717 11 0.926 18.636 *** -0.003 -0.052 0.326 1.42	5350 -1081 2 0.981 28.844 *** 0.238 1.731 * 0.369 2.11 ** 0.227 5.372 *** 17546 -3545 12 0.996 15.29 *** 1.311 4.345 *** 0.243 0.833	-6297 0.822 43.492 *** 0.8 8.056 *** 0.54 5.722 *** 0.157 5.834 *** 39703 -10295 13 0.764 35.485 *** 0.427 4.938 *** 1.723 16.508 ***	2185 	-1342 5 0.94 30.897 *** -0.242 -1.154 0.74 4.755 *** 0.167 4.909 *** 27294 -6324 15 0.782 18.688 *** 0.28 1.663 * 0.943 4.112 ***	-13173 6 1.065 28.888 *** -0.188 -0.641 0.186 0.791 0.114 1.89 * 18699 -3358 16 0.901 48.618 *** 0.331 3.112 *** 0.9 9.535 ***	-10117 0.809 25.086 *** 0.073 0.961 1.322 9.102 *** 0.358 9.073 *** 12065 -4128 17 0.811 46.25 *** 0.401 3.155 *** 1.071 9.648 ***	-7373 8 0.732 28.95 *** 0.676 4.133 *** 0.579 3.684 *** 0.396 <u>7.45</u> *** 27276 -6282 18 0.716 46.379 *** -0.039 -0.956 0.32 5.274 ***	-3353 9 0.681 23.316 *** 0.643 3.047 *** 1.724 8.992 *** 0.277 6.755 *** 5044 -2504 19 0.797 33.493 *** 0.189 1.001 1.036 6.982 ***	-2112 10 0.007 0.096 -5.235 -3.967 0.291 0.476 0.183 1.863 1.863 871 -530.5 20 0.741 22.918 -0.026 -0.176 0.4 2.181
ression 2: Multi-plant decision iables Sector Code or d likelihood iables Sector Code	4503 -1165 0 0 1 0.976 51.172 *** 0.376 3.148 *** 1.572 13.985 *** 0.403 16.238 *** 34909 -8717 11 0.926 18.636 *** -0.003 -0.052 0.326 1.42 0.004	5350 -1081 2 0.981 28.844 *** 0.238 1.731 * 0.369 2.11 ** 0.227 5.372 *** 17546 -3545 12 0.996 15.29 *** 1.311 4.345 *** 0.243 0.833 0.342	-6297 3 0.822 43.492 *** 0.8 8.056 *** 0.54 5.722 *** 0.157 5.834 *** 39703 -10295 13 0.764 35.485 *** 0.427 4.938 *** 1.723 16.508 *** 0.609	-2185 4 0.797 35.877 *** 0.512 4.49 *** 0.034 0.097 2.996 *** 28289 -9274 14 0.654 20.97 0.404 1.59 *** 1.588 8.579 *** 0.376	-1342 5 0.94 30.897 *** -0.242 -1.154 0.74 4.755 *** 0.167 4.909 *** 27294 -6324 15 0.782 18.688 *** 0.28 1.663 * 0.943 4.112 *** 0.103	-13173 6 1.065 28.888 *** -0.188 -0.641 0.186 0.791 0.114 1.89 * 18699 -3358 16 0.901 48.618 *** 0.331 3.112 *** 0.9 9.535 *** 0.43	-10117 7 0.809 25.086 *** 0.073 0.961 1.322 9.102 *** 0.358 9.073 *** 12065 -4128 17 0.811 46.25 *** 0.401 3.155 *** 1.071 9.648 *** 0.228	-7373 8 0.732 28.95 *** 0.676 4.133 *** 0.579 3.684 *** 0.396 7.45 *** 27276 -6282 18 0.716 46.379 *** -0.039 -0.956 0.32 5.274 *** 0.101	<u>9</u> 0.681 23.316 *** 0.643 3.047 *** 1.724 8.992 *** 0.277 6.755 *** 5044 -2504 <u>19</u> 0.797 33.493 *** 0.189 1.001 1.036 6.982 *** 0.289	<u>-2112</u> <u>10</u> 0.097 0.291 0.476 0.183 <u>1.863</u> 871 -530.5 <u>20</u> 0.741 <u>22.918</u> -0.026 -0.176 0.4 2.181 0.028
ression 2: Multi-plant decision iables Sector Code or : d : iables Sector Code or : :	4503 -1165 on 1 0.976 51.172 *** 0.376 3.148 *** 1.572 13.955 *** 0.403 16.238 *** 34909 -8717 11 0.926 18.636 *** -0.003 -0.052 0.326 1.42 0.004 0.075	5350 -1081 2 0.981 28.844 *** 0.238 1.731 * 0.369 2.11 ** 0.227 5.372 *** 17546 -3545 12 0.996 15.29 *** 1.311 4.345 *** 0.243 0.342 3.744 ***	-6297 0.822 43.492 *** 0.8 8.056 *** 0.54 5.722 *** 0.157 5.834 *** 39703 -10295 13 0.764 35.485 *** 0.427 4.938 *** 1.723 16.508 ***	2185 	-1342 5 0.94 30.897 *** -0.242 -1.154 0.74 4.755 *** 0.167 4.909 *** 27294 -6324 15 0.782 18.688 *** 0.28 1.663 * 0.943 4.112 ***	-13173 6 1.065 28.888 *** -0.188 -0.641 0.186 0.791 0.114 1.89 * 18699 -3358 16 0.901 48.618 *** 0.331 3.112 *** 0.9 9.535 ***	-10117 0.809 25.086 *** 0.073 0.961 1.322 9.102 *** 0.358 9.073 *** 12065 -4128 17 0.811 46.25 *** 0.401 3.155 *** 1.071 9.648 ***	-7373 8 0.732 28.95 *** 0.676 4.133 *** 0.579 3.684 *** 0.396 <u>7.45</u> *** 27276 -6282 18 0.716 46.379 *** -0.039 -0.956 0.32 5.274 ***	-3353 9 0.681 23.316 *** 0.643 3.047 *** 1.724 8.992 *** 0.277 6.755 *** 5044 -2504 19 0.797 33.493 *** 0.189 1.001 1.036 6.982 ***	-2112 10 0.096 -5.235 -3.967 0.291 0.476 0.183 1.863 871 -530.5 20 0.741 22.918 -0.026
g ression 2: Multi-plant decisi i <u>ables Sector Code</u> e ior t d g likelihood	4503 -1165 0 0 1 0.976 51.172 *** 0.376 3.148 *** 1.572 13.985 *** 0.403 16.238 *** 34909 -8717 11 0.926 18.636 *** -0.003 -0.052 0.326 1.42 0.004	5350 -1081 2 0.981 28.844 *** 0.238 1.731 * 0.369 2.11 ** 0.227 5.372 *** 17546 -3545 12 0.996 15.29 *** 1.311 4.345 *** 0.243 0.833 0.342	-6297 3 0.822 43.492 *** 0.8 8.056 *** 0.54 5.722 *** 0.157 5.834 *** 39703 -10295 13 0.764 35.485 *** 0.427 4.938 *** 1.723 16.508 *** 0.609	-2185 4 0.797 35.877 *** 0.512 4.49 *** 0.034 0.037 0.097 2.996 *** 28289 -9274 14 0.654 20.97 0.404 1.59 *** 1.588 8.579 *** 0.376	-1342 5 0.94 30.897 *** -0.242 -1.154 0.74 4.755 *** 0.167 4.909 *** 27294 -6324 15 0.782 18.688 *** 0.28 1.663 * 0.943 4.112 *** 0.103	-13173 6 1.065 28.888 *** -0.188 -0.641 0.186 0.791 0.114 1.89 * 18699 -3358 16 0.901 48.618 *** 0.331 3.112 *** 0.9 9.535 *** 0.43	-10117 7 0.809 25.086 *** 0.073 0.961 1.322 9.102 *** 0.358 9.073 *** 12065 -4128 17 0.811 46.25 *** 0.401 3.155 *** 1.071 9.648 *** 0.228	-7373 8 0.732 28.95 *** 0.676 4.133 *** 0.579 3.684 *** 0.396 7.45 *** 27276 -6282 18 0.716 46.379 *** -0.039 -0.956 0.32 5.274 *** 0.101	<u>9</u> 0.681 23.316 *** 0.643 3.047 *** 1.724 8.992 *** 0.277 6.755 *** 5044 -2504 <u>19</u> 0.797 33.493 *** 0.189 1.001 1.036 6.982 *** 0.289	<u>-2112</u> <u>10</u> 0.097 0.291 0.476 0.183 <u>1.863</u> 871 -530.5 <u>20</u> 0.741 <u>22.918</u> -0.026 -0.176 0.4 2.181 0.028

*** statistically significant at 1 %, ** statistically significant at 5% and * statistically significant at 10%. Prefecture dummies are omitted

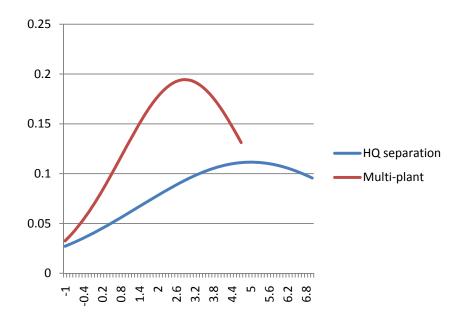


Figure 1: Marginal Effect in Plant Size