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1 Introduction

The free-riding problem is a central issue in collective decision-making. Examples include

lobbies that are formed to seek a government’s protection. Firms in an industry may form a

lobby to influence the government’s trade and industrial policies; but as long as a sufficient

number of firms participates in the lobbying (so that the resulting protection level is reason-

ably high), some firms may want to stay out and free-ride on others. Free-riding incentives

also exist in other examples of collective decision making, such as firms’ cartel formation and

international agreements to tackle the problem of global climate change. The effectiveness of

such lobbies, cartels, and international agreements depends on the composition of the active

participants in these activities, which is heavily influenced by free-riding incentives.

These problems can be regarded as pure public goods provision problems with voluntary

participation. Players are faced with a choice between actively participating in public goods

provision and free-riding on the contributors; if a player participates (and only in such

cases), she needs to share the cost of public goods provision, although she can then influence

the level of provision. A notable feature of the public goods provision problem is that

the expansion of the contribution group is always beneficial to everybody. Since benefits

from public goods will be extended beyond the contribution group members, however, there

always exist free-riding incentives, which generally grow as the contribution group expands.

Therefore, it is important to consider potential coalitional deviations that are immune to

further deviations. A proposal of membership expansion, which is regarded as a coalitional

deviation, may not be immune to free-riding by the incumbents, however, so some of these

Pareto-improving proposals may not be credible. To define an appropriate solution to the

public goods provision problem with voluntary participation, therefore, we must consider all

possible coalitional deviations that are immune to further deviations.

In this paper, employing a quasi-linear economy, or equivalently a transferable utility

(TU) framework, we propose the free-riding-proof core (FRP-Core) for the public goods

provision problem with voluntary participation, which is an institution-free solution concept

with farsightedness. The FRP-Core is a hybrid solution concept, as it is required to be
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immune not only to coalitional deviations to create an alternative contribution group (in

line with cooperative game theory) but to unilateral free-riding deviations (in line with non-

cooperative game theory); the FRP-Core can be considered as the core without binding

agreements. It determines the formation of a contribution group, public goods provision

level, and a payoff allocation within the group.

The FRP-Core is defined in the following way. First, for every possible contribution

group, we collect all allocations such that (i) they are immune to all coalitional deviations

by subsets of the group to reorganize the contribution group, and (ii) no member of the

group is better off by unilaterally opting out of the group to free-ride. These allocations

constitute the set of internally stable allocations for the contribution group. Second, for

each contribution group, we collect all internally stable allocations that are not blocked by

any other contribution group’s deviations with their internally stable allocations. The free-

riding-proof core (FRP-Core) is the union of such stable sets over all possible contribution

groups. In a pure public goods economy, the FRP-Core is always nonempty (Proposition 2).

The FRP-Core has not only intuitive appeal, but also useful correspondences with cooper-

ative and noncooperative game solution (equilibrium) concepts. On one hand, the FRP-Core

is equivalent to the core when the set of feasible allocations is restricted to those of the free-

riding-proof (Theorem 1). Thus, the FRP-Core is a natural and appealing solution concept

from the viewpoint of cooperative game theory, which provides solutions that are robust

to changes in detailed specifications of discussed situations. On the other hand, the FRP-

Core is equivalent to the set of equilibrium outcomes of a simple extensive-form game such

that players individually decide whether or not to participate in the public goods contribu-

tion group in the first stage, followed by a common agency game (Bernheim and Whinston,

1986) of public goods provision, with players in the contribution group as principals and

the government as the agent. This equivalence provides support for the FRP-Core from the

viewpoint of noncooperative game theory.

The equivalence result requires further explanation. The common agency game intro-

duced by Bernheim and Whinston (1986) is a game in which players (principals) simultane-
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ously offer their individual contribution schedules to the agent to try to affect the agent’s

action in their own interests.1 To refine the Nash equilibrium, which tends to yield a large

equilibrium set due to the coordination problem, Bernheim and Whinston (1986) propose

the coalition-proof Nash equilibrium (CPNE), a communication-based equilibrium concept

for the common agency game. In the first stage of our extensive-form game, players indi-

vidually decide whether or not to participate in the contribution group, which also involves

the coordination problem. Therefore, it is natural for us to adopt a dynamic extension of

CPNE, which is the perfectly coalition-proof Nash equilibrium (PCPNE; Bernheim, Peleg,

and Whinston, 1987). The equilibrium concept PCPNE fits particularly well with the public

goods provision problem in which players may communicate with each other as to whether

or not they join the contribution group.

The equilibrium concept PCPNE has a few merits: (i) it determines a contribution

group, public goods provision level, and how to share the provision costs all together; (ii)

it allows players to propose a (coalitional) deviation plan in which they coordinate their

strategies (including the ones in subgames) through communications; and (iii) it requires

credibility of proposed deviation plans so that no credible deviation remains in equilibrium.

CPNE and PCPNE are strategy profiles that are immune to (recursively defined) credible

group deviations with their strategies coordinated. A credible deviation is a deviation that

is immune to further nested credible deviations. The credibility requirement enables us to

exclude noncredible proposals of membership expansion from consideration. We show the

equivalence between the FRP-Core and PCPNEs of the aforementioned extensive-form game

of public goods provision (Theorem 2). In contrast, Appendix C examines some other natural

candidates for the equilibrium concept, such as the subgame perfect Nash equilibrium, and

some other forms of the public goods provision game, and shows that these other equilibrium

allocations do not coincide with the FRP-Core allocations. What distinguishes PCPNE from

other solution concepts is property (ii) above. Players in a deviation group can discuss which

(credible) strategies they take in the following subgames, which eliminates ungrounded fears

1This game has been widely applied to political economy models with lobbying, especially in the field of
international trade (e.g., Grossman and Helpman, 1994).
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about possibly unfavorable consequences of the deviation and hence solves the coordination

problem.

We examine properties of the set of FRP-Core allocations with a simple example in which

players differ only in their willingness-to-pay for a public good, and show that (i) there are

multiple possible equilibrium contribution groups in general, (ii) an equilibrium contribution

group may not include the player with the highest willingness-to-pay, and (iii) equilibrium

contribution-group members may not be consecutive in their willingness-to-pay, i.e., there

may be an outsider whose willingness-to-pay lies between those of two contributors.

We also analyze how equilibrium public goods provision changes as the economy grows

in size. Following Milleron’s (1972) notion of replicating a public goods economy, we prove

that the equilibrium public goods provision level converges to zero as the economy grows

(Theorem 3).2

This paper is organized as follows. The next two subsections briefly discuss some related

literature. Section 2 sets out our public goods provision game and introduces the FRP-Core

as a solution concept. We also provide a simple characterization of the FRP-Core (Theorem

1), which indicates that the FRP-Core is a natural solution concept for the public goods

provision problem with voluntary participation. In Section 3, we provide a noncooperative

voluntary participation game and propose PCPNE as an equilibrium concept. In Section

4, we prove the equivalence between PCPNE and the FRP-Core (Theorem 2). In Section

5, we provide an example to reveal some interesting properties of the FRP-Core. Section 6

considers a replica economy and shows that the public goods provision level shrinks to zero

as the economy is replicated in a certain way (Theorem 3). In Section 7, we conclude with a

discussion of the robustness of our results to the utility specification. In particular, we argue

that all the results would be preserved with some additional mild assumptions even if we

adopt Gorman-form utilities (Bergstrom and Cornes, 1983) instead of quasi-linear utilities.

Appendix A provides useful properties of the core of convex games and an algorithm that

2Muench (1972), Milleron (1972), and Conley (1994) discuss the difficulty of replicating a public goods
economy and offer various possible methods. Milleron’s notion of replication is to split endowments with
replicates and adjust preferences so that agents’ concerns for the private good are relative to the size of their
endowments. This notion is employed by Healy (2007).
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finds a core allocation starting with an arbitrary utility vector. Appendix B collects proofs

of our results. Appendix C examines some other equilibrium concepts and extensive-form

games to be compared with the PCPNE of our extensive-form game (or the FRP-Core).

1.1 Related Literature in the Theory of Coalition Formation

Since the public good in our problem is pure, so that outsiders can enjoy the benefits from

public goods provision, our problem belongs to the class of coalition formation problems

with spillovers (externalities). The literature on this subject is very large (see Bloch 1997,

and Ray 2007 for overviews); here we discuss only the most closely related papers to ours.

CPNE has been adopted as an equilibrium concept in the theory of coalition formation.

Thoron (1998) examines the formation of a single cartel and shows that the coalition-proof

stable cartel is uniquely determined adopting the CPNE as a solution concept. Yi and

Shin (2000) investigate a joint research venture allowing the formation of multiple R&D

cartels; they examine the existence of a CPNE and its properties. In these papers, credible

coalitional deviations are considered only at the stage of players’ decisions as to whether

or not to participate in a coalition. In the extensive-form game of this paper, we require

both participation and contribution decisions of players to be immune to credible coalitional

deviations. To our knowledge, this paper is the first to use PCPNE as a solution concept

of the coalition formation problem, which endogenously determines the coalition formation

and the allocation of payoffs within the coalition.

The literature also includes studies on coalition formation regarding the public goods

provision. Assuming identical players and nontransferable payoffs, Bloch (1997) provides a

complete comparison of the equilibrium coalition structures, employing various solution con-

cepts and game forms. Also assuming identical players, Ray and Vohra (2001) characterize

the equilibrium coalition structure and payoff allocations for a standard sequential coali-

tional bargaining game of public goods provision. These authors allow multiple coalitions to

form for public goods provision. In contrast, we assume that there is only one coalition and

its members are the only ones who provide the public good.3 But, we allow players to be

3With our second-stage common agency game, this difference turns out to be unimportant. Even if
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heterogeneous, and more importantly provide a simple characterization of the set of PCPNE

allocations utilizing its equivalence with the FRP-Core.

Last but not least, there is the literature on noncooperative coalition bargaining games

that discusses the relationship between the equilibrium outcome(s) in the limit cases and

the core. Chatterjee, Dutta, Ray, and Sengupta (1993) show that the Markov equilibrium

outcome is a subsolution of the core (in convex TU games). Perry and Reny (1994) and

Moldovanu and Winter (1995) provide coalitional bargaining games that implement the core.4

The latter two papers are particularly related to our paper, since the set of outcomes of CPNE

is equivalent to the core in our common agency game.5 In Appendix C, we compare the set of

PCPNEs of our game with equilibrium outcomes of these noncooperative bargaining games

preceded by a voluntary participation game.

1.2 Related Literature on Voluntary Participation Mechanisms in
a Public Goods Economy

It is well known that public goods provision is subject to free-riding incentives. Although

Samuelson’s (1954) view of this problem was pessimistic, Groves and Ledyard (1977) show

that efficient public goods provision can be achieved in Nash equilibrium if individual ratio-

nality is not required. Hurwicz (1979) and Walker (1981) show that the Lindahl mechanism

is implementable. Subsequently, numerous mechanisms have been proposed to improve the

properties of mechanisms. They all assume, however, that players have no freedom to make

participation decisions about the mechanism, i.e., players’ participation in the mechanism is

always assumed.

Introducing outside opportunities by a “reversion function” (such that each outcome

is mapped to another outcome in the case of no participation), Jackson and Palfrey (2001)

analyze the implementation problem when players’ participation in a mechanism is voluntary.

multiple coalitions are formed, the equilibrium public goods provision level will be the same as when the
union of them is the contribution group. We need to assume, however, that nonparticipants cannot contribute
in the second stage.

4We thank a referee for bringing our attention to this literature.
5Laussel and Le Breton (2001) show that the set of CPNE outcomes is equivalent to the core when the

underlying TU game of a common agency game is convex. Convexity of the TU game is satisfied in the
common agency game in a public goods provision problem.
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Although their reversion function is very general, it assigns the same outcome no matter

who deviates from the original outcome. Thus, the method may not be suitable for a

public goods provision problem in which different players’ deviations from participation may

generate different outcomes. Taking this consideration into account, Healy (2007) analyzes

the implementation problem in a public goods economy demanding all players’ participation

in equilibrium (i.e., equilibrium participation). He shows that as the economy is replicated in

Milleron’s (1972) sense, the set of equilibrium allocations of any mechanism that satisfies the

equilibrium participation condition converges to the endowment. Although the equilibrium

public goods provision level also converges to zero as the economy is replicated in our model,

we allow players not to participate in the contribution group in equilibrium, and it is indeed

a source of underprovision of the public good, unlike Healy’s (2007).

Closest to our noncooperative framework is the one by Saijo and Yamato (1999), who

are the first to consider a two-stage voluntary participation game of a public goods economy,

without requiring all players’ participation in equilibrium.6 They show a negative result on

the efficiency of public goods provision, and then characterize subgame perfect equilibria in

the case of symmetric Cobb-Douglas utility. In contrast, we show that the set of PCPNE of a

common agency game with a participation decision is equivalent to our FRP-Core, allowing

heterogeneous players that have quasi-linear utility functions.

Palfrey and Rosenthal (1984) show that in a binary public goods provision game where

symmetric players voluntarily make participation decisions, all pure-strategy Nash equilibria

are efficient (if contributions are not refundable in the case of no provision). With asymmetric

players, there are many Nash equilibria with different levels of cooperation. Shinohara (2009)

examines a public goods provision problem with decreasing marginal benefits, and shows in

the case of homogeneous players that it becomes harder to support efficient allocations as

the efficient level of the public good rises and hence the number of participants needed to

6In the field of international trade, Bombardini (2008) and Paltseva (2006) extend Grossman and Help-
man’s (1994) menu-auction political-economy model to incorporate firms’ voluntary participation in lobbies;
they consider the cases in which firms in oligopolistic, import-competing industries make participation de-
cisions. Unlike our noncooperative game framework, Bombardini (2008) considers only the most efficient
contribution group, while Paltseva (2006) assumes that firms are symmetric and derives subgame perfect
equilibrium as opposed to PCPNE.
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provide the public good increases. Our Theorem 3 is somewhat similar to this result.

2 The Model

This section sets out the contribution game in which all players’ interests accord with each

other, although the intensity of their interests can be heterogeneous. We first describe the

problem of interest and then propose the FRP-Core as an appealing solution to the problem.

2.1 Public Goods Provision Problem

A stylized public goods model is defined as follows. There is a public good whose provision

level is denoted by a ∈ A = R+.7 Provision cost function C : A → R+ is continuous

and strictly increasing with C(0) = 0. The government provides the public good, and its

cost is regarded as the government’s disutility from the provision; the government’s utility

from providing a units of the public good is vG(a) = −C(a). Player i’s utility function is

quasi-linear such that her utility from the consumption of the public good is vi(a) and the

net consumption x of the private goods enters the function linearly, i.e., vi(a) + x, where

vi : A → R+ is strictly increasing with vi(0) = 0. In order to guarantee the existence of a

nontrivial solution, we assume that (i) there exists ã ∈ A such that vi(ã)− C(ã) > 0 for all

i ∈ N , where N is the set of n players, and (ii) there is â ∈ A such that
∑

i∈N vi(a)−C(a) < 0

for all a > â. The only new element in this standard public goods provision game is that

every player has a choice as to whether or not to participate in the contribution group. The

contribution group, therefore, may be a proper subset of all players.

2.2 Free-Riding-Proof Core

We first define an intuitive hybrid solution concept, the free-riding-proof core (FRP-Core). In

short, the FRP-Core is the Pareto-optimal set of the Foley-core allocations of all contribution

groups that are immune to free-riding incentives. The FRP-Core will be shown to be always

7For our equivalence results (Theorems 1 and 2), we only need comonotonic preferences over an abstract
agenda set A. The extension is straightforward. We focus on the one-dimensional public goods economy
just for simplicity.
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nonempty in the public goods provision problem.

Our interests in the public goods provision problem are twofold: (i) which group provides

how much of the public goods, and (ii) how the benefits and costs of the public good are

shared by group members. For S ⊆ N with S 6= ∅, we define

V (S) ≡ max
a∈A

[∑
i∈S

vi(a)− C(a)

]
,

and

a∗(S) ≡ arg max
a∈A

[∑
i∈S

vi(a)− C(a)

]
.

An allocation for S is (S, a, u) such that u ∈ Rn
+,
∑

i∈S ui ≤
∑

i∈S vi(a)−C(a), and uj = vj(a)

for all j /∈ S. An efficient allocation for S is an allocation (S, a, u) such that
∑

i∈S ui = V (S)

with a ∈ a∗(S). (Henceforth, we assume that a∗(S) is a singleton just for simplicity.) Note

that N\S are passive free-riders, and they do not contribute at all. Let X(S) be the collection

of all efficient allocations for S. A free-riding-proof efficient allocation for S is an efficient

allocation for S, (S, a∗(S), u) ∈ X(S) such that

ui ≥ vi(a
∗(S\{i})) for any i ∈ S.

That is, under a free-riding-proof efficient allocation, no player in S has an incentive to opt

out of the contribution group while enjoying the public good provided by the remaining

players in S. Let XFRP (S) be the set of all free-riding-proof efficient allocations for S. It

should be emphasized that XFRP (S) can be empty when S is a large set; with a large number

of members, it becomes harder to satisfy free-riding-proofness.

Given that S is the contribution group, a natural way to allocate utility among the

members is to use the core (Foley, 1970).8 Focusing on coalition S and its subsets, we write

Core(S) =
{

(S, a∗(S), u) ∈ X(S) :
∑

i∈T ui ≥ V (T ), ∀T ⊆ S
}

, the set of all core allocations

8The Foley core is the standard core concept of a public goods economy. In the definition of the Foley
core, when a subset of the contribution group decides to deviate from an allocation, the original agreement
on the level of public goods provision and the cost-sharing are totally abandoned and the public good is
provided solely by the deviating coalition. Others, including the members (if any) of the original contribution
group in question who are not in the deviating coalition, are still able to enjoy the public good. In the Foley
notion of the core, what is important is whether or not members of a blocking coalition would be better off
by the deviation, while well-being of other players is not the issue.
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for S, which is immune to all subcoalitions’ group deviations. Obviously, a core allocation

for S may not be immune to free-riding incentives for the members of S. Thus, we define the

FRP-core allocation for S by CoreFRP (S) = Core(S) ∩XFRP (S). An FRP-Core allocation

for S is a core allocation for S that is immune to unilateral free-riding deviations, and

CoreFRP (S) is the set of all FRP-Core allocations for S.9 The set CoreFRP (S) is a collection

of internally stable allocations for S in the sense that no subgroup of S has an incentive to

deviate to form an alternative contribution group, and no player in S has an incentive to

free-ride. Similarly to XFRP (S), CoreFRP (S) may be empty for a large group S, but it is

nonempty for small groups (for singleton groups in particular).

Now, we consider allocations that are “fully” stable against any coalitional blocking.

A coalition T (weakly) blocks an allocation (S, a∗(S), u) via an allocation (T, a∗(T ), u′) if

and only if (i) u′i ≥ ui for all i ∈ T and u′j > uj for at least one member j ∈ T , (ii)∑
i∈T u

′
i = V (T ), and (iii)

∑
i∈T ′ u

′
i ≥ V (T ′) for all T ′ ⊂ T .10 The solution concept free-

riding-proof core (FRP-Core) is a collection of all FRP-Core allocations for all S, which are

not blocked by any coalitions T with an FRP-Core allocation for T . That is,

CoreFRP =
{

(S, a∗(S), u) ∈ ∪S′⊆NCoreFRP (S ′) : there does not exist T

and (T, a∗(T ), u′) ∈ CoreFRP (T ) that (weakly) blocks (S, a∗(S), u)
}
.

The FRP-Core is a collection of internally stable allocations for some coalition that are not

blocked by any other coalition with an internally stable allocation; we impose a credibility

constraint for legitimate coalitional deviations, regarding non-internally-stable coalitional

deviations as noncredible because there would be further deviations from such deviations.

The above hybrid solution concept is natural and appealing, but it might not appear to

be easy to work with when applied to specific problems. For example, it is not immediately

9The FRP-core allocations would not be affected even if we allow free-riding deviations by multiple
players in our public goods provision game. If an efficient allocation is immune to any unilateral free-riding
deviation, it is also immune to any free-riding deviations by multiple players, since the reduction of the
public good would become larger if more players free-ride, so that every player prefers free-riding by herself
if she free-rides at all.

10We use “weak” blocking and weak Pareto-domination in this paper, partly because it will give us clearer
results in the noncooperative game we consider in the next section.
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clear if FRP-Core is nonempty. The following proposition provides a useful property of the

core for subsets of N .

Proposition 1. If a core allocation for T , (T, a∗(T ), u′) ∈ Core(T ), blocks (S, a∗(S), u) ∈

Core(S), then a∗(S) < a∗(T ) and (T, a∗(T ), u′) ∈ Core(T ) (weakly) Pareto-dominates

(S, a∗(S), u) ∈ Core(S).

Proposition 1 claims that if a core allocation for T is preferred to a core allocation for

S by all members of T , then the former allocation Pareto-dominates the latter in our pure

public goods economy. This proposition simplifies the characterization of the FRP-Core,

allowing us to rewrite it as

CoreFRP = ∪S′∈2NCoreFRP (S ′),

where Ω, for an arbitrary set of allocations Ω, denotes the Pareto frontier of Ω (i.e., an

allocation (S, a, u) is in a set Ω if and only if there is no allocation (T, a′, u′) ∈ Ω such that

u′ ≥ u with u′i > ui for some i ∈ N). This property assures that CoreFRP is nonempty.

Proposition 2. CoreFRP = ∪S′∈2NCoreFRP (S ′) 6= ∅.

We can also characterize CoreFRP , using the standard core concept on a restricted allo-

cation set. Take the union of all free-riding-proof efficient allocations for S over all S ⊆ N

to obtain XFRP = ∪S⊆NXFRP (S). Then we apply the core concept to the set of free-riding-

proof allocations XFRP :

Core
〈
XFRP

〉
=

{
(S, a∗(S), u) ∈ XFRP : there does not exist (T, a∗(T ), u′) ∈ XFRP

such that u′i ≥ ui for all i ∈ T , and u′j > uj for some j ∈ T
}
.

We have the following theorem.

Theorem 1. CoreFRP = Core
〈
XFRP

〉
.

Two remarks follow. First, for the standard transferable utility (TU) and non-transferable

utility (NTU) characteristic-function-form game, Ray (1989) defines credible coalitions re-

cursively on nested coalitions and defines the credible core; he shows that the core and
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the credible core are equivalent. Despite the facts that our game has externalities due to

spillovers of the public good and that the grand coalition usually does not support the FRP-

Core, his argument extends to our case such that the credible core of XFRP coincides with

CoreFRP . Second, we impose efficiency on the allocations in the definition of XFRP only for

simplicity. We can easily allow inefficient allocations in the definition of feasible allocations

by using X̃FRP (S) = {(S, a∗(S), u) :
∑

i∈S ui ≤ V (S), and ui ≥ vi(a
∗(S\{i})) for all i ∈ S}

and letting X̃FRP = ∪S⊆NX̃FRP (S). However, we would still require each contribution group

S to provide the public good at the efficient level, i.e., a(S) = a∗(S). We need to assign a

public goods provision level to every S ⊂ N in order to define the free-riding-proof alloca-

tions; the efficient public goods provision level a∗(S) is a natural candidate to be assigned

to each group S.

3 A Voluntary Participation Game

We discuss the endogenous contribution-group formation and its consequences on public

goods provision. We first define the extensive-form, public-goods contribution game with

voluntary participation; the first stage is a group formation game, followed by the second-

stage common agency game played by group S that has been formed in the first stage.

For this extensive-form game, we require not only that the common-agency stage of public

goods provision be coalition-proof but also that the contribution-group formation itself be

coalition-proof. As an extension of CPNE for strategic-form games to the one for extensive-

form games, Bernheim, Peleg, and Whinston (1987) define the perfectly coalition-proof Nash

equilibrium (PCPNE) as the coalition-proof Nash equilibrium for multi-stage games.

The first-stage group-formation game is such that each player i ∈ N chooses her action

from the set Σ1
i = {0, 1}, where 0 and 1 represent non-participation and participation,

respectively, i.e., player i announces her participation decision. Once action profile σ1 =

(σ1
1, ..., σ

1
n) ∈ Σ1 = Πj∈NΣ1

j is selected, then the contribution game takes place in the second

stage with the set of active players S(σ1) = {i ∈ N : σ1
i = 1}. Since the agent’s (the

government’s) choice in the third stage is a mechanical decision problem, we incorporate

12



this stage in the second-stage contribution game (following Bernheim and Whinston, 1986).

The second-stage game is a common agency game played by participating principals

S(σ1), as analyzed by Bernheim and Whinston (1986). The set N\S(σ1) is the set of passive

free-riders. Each player i ∈ S(σ1) simultaneously offers a contribution schedule τi : A→ R+.

Given the profile of contribution schedules τS(σ1) = (τi(a))i∈S(σ1), the government G (the

agent) chooses a public goods provision level a ∈ A that maximizes its net payoff:

uG(a, τS(σ1)) =
∑

i∈S(σ1)

τi(a) + vG(a)

=
∑

i∈S(σ1)

τi(a)− C(a),

where the first term on the right-hand side of the last equation is the total contribution and

the second term is the cost of public goods provision. If the government chooses a ∈ A, then

player i obtains her payoff

ui(a, τi(a)) = vi(a)− τi(a),

for i ∈ S(σ1), and

ui(a) = vi(a),

for i /∈ S(σ1). The government’s optimal choice is described by

a∗(S, τS(σ1)) ∈ arg max
a∈A

uG(a, τS(σ1)),

with a slight abuse of notation. Let T be the set of all contribution schedules τi : A→ R+.

Player i’s second-stage strategy σ2
i is a mapping σ2

i : 2N\{∅} → T : i.e., a contribution

schedule is assigned to each subgame. Note that in subgame S ∈ 2N\{∅} where i /∈ S,

σ2
i (S) : A → R+ is irrelevant to the outcome. Nevertheless, we include non-participant’s

second-stage strategies for notational simplicity. The set of player i’s second-stage strategies

is denoted by Σ2
i .

3.1 Perfectly Coalition-Proof Nash Equilibrium for the Contribution-
Group Participation Game

Following Bernheim, Peleg, and Whinston (1987), we define PCPNE for our two-stage game.

Let Σ ≡ Πi∈NΣi. Player i’s strategy is σi = (σ1
i , σ

2
i ) ∈ Σi = Σ1

i ×Σ2
i and her payoff function

13



is ui : Σ→ R as described above.

For T ⊆ N , we consider a reduced game Γ(T, σ−T ) in which only players in T are active

while players in N \T are passive such that they always choose σ−T . We also consider proper

subgames for every σ1 ∈ Σ1, and reduced subgames Γ(T, σ1, σ2
−T ) in a similar way. A perfectly

coalition-proof Nash equilibrium (PCPNE) (σ∗, a∗) ≡ ((σ1∗
i , σ

2∗
i )i∈N , a

∗) is defined recursively

as follows.

Definition. (Bernheim, Peleg, and Whinston, 1987)

(i) In a single-player, single-stage subgame Γ({i}, σ1, σ2
−{i}), strategy σ2∗

i (S(σ1)) ∈ T and

agenda a∗ chosen by the agent is PCPNE if σ2∗
i maximizes ui through the choice of a∗.

(ii) Let (n, t) be the pair of the number of players and the number of stages of the reduced

(sub-)game, where t ∈ {1, 2}. Let (n, t) 6= (1, 1). Assume that PCPNE has been

defined for all games with m players and r stages, where (m, r) ≤ (n, t) with (m, r) 6=

(n, t).

(a) For any game Γ with n players and t stages, (σ∗, a∗) ∈ Σ × A is perfectly self-

enforcing, if for all proper subset T of the n players, (σ∗T , a
∗) is PCPNE in the

reduced game Γ(T, σ∗−T ), and if the restriction of σ∗ to any proper subgame forms

a (P)CPNE in that subgame,

and

(b) for any game Γ with n players and t stages, (σ∗, a∗) is a PCPNE if it is perfectly

self-enforcing, and if there does not exist another perfectly self-enforcing pair

(σ, a) ∈ Σ× A such that ui (a, σi) ≥ ui (a
∗σ∗i ) for all i = 1, ..., n with at least one

strict inequality.11

11Bernheim, Peleg, and Whinston (1987) define the PCPNE based on strictly improving coalitional devi-
ations. We adopt, however, a definition based on weakly improving coalitional deviations, since the theorem
on menu auction in Bernheim and Whinston (1986), to which we appeal, uses CPNE based on weakly
improving deviation. For details on these two definitions, see Konishi, Le Breton, and Weber (1999).
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For any T ⊆ N and any strategy profile σ, let PCPNE(Γ(T, σ−T )) denote the set of

PCPNE strategy profiles for T in the reduced game Γ(T, σ−T ). A strategic coalitional devi-

ation (T, σ′T , a
′) from any strategy profile (σ, a) is credible if (σ′T , a

′) ∈ PCPNE(Γ(T, σ−T )).

A PCPNE is a strategy profile that is immune to any credible coalitional deviation. An

outcome allocation for (σ∗, a∗) is a list (S(σ1∗), a∗, u, uG) ∈ 2N ×A×RN ×R, where (u, uG)

is the resulting utility allocation for players and the government.

There are two remarks to be made about PCPNE.

First, if a coalition T wants to deviate in the first stage, it can orchestrate the whole plan

of the deviation by assigning a new CPNE to each subgame so that the target allocation (by

the deviation) would be attained as a PCPNE of the reduced game Γ(T, σ−T ).

Second, the definition of PCPNE coincides with the coalition-proof Nash equilibrium

(CPNE) in the (static) second stage. Thus, a CPNE needs to be assigned to each subgame.

There are useful characterizations of CPNE of a common agency game in the literature. The

first characterization is provided by Bernheim and Whinston (1986). Consider a subgame

S, and denote player i’s strategy in this subgame σ2
i (S) : A → R+ by τi : A → R+. They

introduce a concept, called truthful strategies, where τi is truthful relative to ā if and only if

for all a ∈ A either vi(a)−τi(a) = vi(ā)−τi(ā), or vi(a)−τi(a) < vi(ā)−τi(ā) with τi(a) = 0.

A truthful Nash equilibrium (τ ∗S, a
∗) is a Nash equilibrium such that τ ∗i is truthful relative

to a∗ ∈ A for all i ∈ S. Bernheim and Whinston (1986) show that (i) every truthful Nash

equilibrium is a CPNE, and (ii) the set of truthful equilibria and that of CPNE in the utility

space are equivalent, and they provide a useful characterization of CPNE in the utility space.

Laussel and Le Breton (2001) further analyze CPNE in utility space. One of their results

provides a nice characterization of CPNE when payoff functions satisfy a special (yet useful)

property, the comonotonic payoff property : ui(a) ≥ ui(a
′) if and only if uj(a) ≥ uj(a

′) for all

i, j ∈ S and all a, a′ ∈ A. Obviously, this property is satisfied in our public goods provision

problem.

Fact. (Laussel and Le Breton, 2001) Consider a common agency problem Γ = (S,A, (T , vi)i∈S, C)

played by the set S of the principals and the agent G with a comonotonic payoff property.
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Then, in all CPNEs of the common agency game, agent G obtains uG = maxa∈A[−C(a)] (no-

rent property), and the set of CPNE in utility space is equivalent to the core of the character-

istic function game (Ṽ (T ))T⊆S, where Ṽ (T ) = V (T )− uG = maxa∈A
(∑

i∈T vi(a)− C(a)
)
−

uG.

In the public goods provision problem, uG = −C(0) = 0, and thus Ṽ (T ) = V (T ) for

all T ⊆ S. A payoff vector uS = (ui)i∈S is in the core if and only if
∑

i∈S ui = V (S) and∑
i∈T ui ≥ V (T ) for all T ⊂ S.

4 The Main Result

This section shows our main result that the set of FRP-core allocations coincides with the

set of PCPNE outcomes of the voluntary participation game. In the public goods provision

problem, the above Fact (Laussel and Le Breton, 2001) implies that the second-stage CPNE

outcomes coincide with the set of all core allocations of a characteristic function form game

for S with (V (T ))T⊆S where V (T ) = maxa∈A
(∑

i∈T vi(a)− C(a)
)
.12 This is nothing but

Foley’s (1970) core in a public goods economy for S. This observation gives us some insight

into our two-stage noncooperative game. First, for each subgame played by S ′ = S(σ1′), the

utility outcome uS′ must be in the core of (V (T ))T⊆S′ . Second, given the setup of our group-

formation game in the first stage, if a CPNE outcome u in a subgame S can be realized as the

equilibrium outcome (on the equilibrium path), it is necessary that u ∈ CoreFRP (S), since

otherwise some member of S would deviate in the first stage obtaining a secured free-riding

payoff. This observation is useful in our analysis of the equivalence theorem. With a careful

construction of equilibrium strategies, we can show the following.

Proposition 3. If an allocation (S, a∗(S), u) is in the FRP-Core, then there is a PCPNE σ

whose outcome is (S, a∗(S), u).

We relegate a proof of Proposition 3 to Appendix B (with some preliminary analyses in

Appendix A). Here, we briefly describe how to construct PCPNE σ.

12Indeed, CPNE and strong Nash equilibrium (Aumann, 1959) with weakly improving deviations are
equivalent in a common agency game with the no-rent property. See Konishi, Le Breton, and Weber (1999).
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First, in defining σ, we need to assign a CPNE utility profile to every subgame that

corresponds to a coalition S ⊆ N . Since the second-stage strategy profile is described by

utility allocations assigned to each subgame, we partition the set of subgames (expressed in

terms of active players) S = {S ∈ 2N : S 6= ∅} into three categories: (i) S1 = {S∗} on the

equilibrium path, which is the contribution group formed in equilibrium, (ii) S2 = {S ∈ S :

S ∩ S∗ = ∅}, and (iii) S3 = {S ∈ S\S1 : S ∩ S∗ 6= ∅}. As Laussel and Le Breton (2001)

show, a CPNE outcome in a subgame S ′ corresponds to a core allocation for S ′. To support

the equilibrium path (S∗, a∗(S∗), u∗) ∈ CoreFRP by a PCPNE, we need to show that there

is no credible deviation in the first stage. This requires careful and nontrivial assignment of

a core allocation to every single subgame.

We prove Proposition 3 by contradiction. Consider a deviation from S∗ by a coalition

T , which leads to the formation of a new contribution group S ′. As Figure 1 shows, T

consists of players who change their first-stage actions ((i) and (ii) in the figure) and players

who change their second-stage actions ((iv) in the figure). Suppose to the contrary that

this deviation is credible. Then, for all members of T , both profitability of deviation and

free-riding-proofness must be satisfied. Thus, for every player i ∈ T , the post-deviation

payoff u′i must satisfy u′i ≥ ūi = max{u∗i , vi(S ′\{i})}, where u∗i denotes player i’s payoff in

the prescribed equilibrium. The case where S ′ ∩ S∗ 6= ∅ as depicted in Figure 1 is the most

subtle. We show that even in such cases, if there were such a credible deviation, there would

exist an allocation (S ′, a∗(S ′), u′) ∈ CoreFRP (S ′) that Pareto-dominates (S∗, a∗(S∗), u∗).

By the characterization in Proposition 2, however, this contradicts the supposition that

(S∗, a∗(S∗), u∗) ∈ CoreFRP . We show Pareto-domination by using the fact that the util-

ity allocation assigned to subgame S ′ under σ is a core allocation, and construct the core

allocation by the algorithm that is provided in Appendix A.

Once this direction of the relationship between the FRP-Core and PCPNE is estab-

lished, the converse is trivial. The PCPNE requires free-riding-proofness, so every PCPNE

must be an FRP-Core allocation for some S. Since CoreFRP is the Pareto-frontier of

∪S⊆NCoreFRP (S), Proposition 3 indeed implies that any Pareto-dominated FRP-Core allo-
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cation for S can be defeated by an FRP-Core allocation, which is supported by a PCPNE.

Theorem 2. An allocation (S, a∗(S), u) is in the FRP-Core if and only if there is a PCPNE

σ whose outcome is (S, a∗(S), u).

Proof. We prove the converse of the relationship described in Proposition 3, i.e., we show

that every PCPNE σ generates an FRP-Core allocation as its outcome. It is easy to see

that the outcome (S, a∗(S), u) of a PCPNE σ is an FRP-Core allocation (and not just a core

allocation) for S, since otherwise a player would have an incentive to free-ride in the first

stage of the extensive-form game and hence the resulting allocation would not be a PCPNE.

Thus, (S, a∗(S), u) ∈ CoreFRP (S). Now, suppose that u /∈ CoreFRP . Then, there is an

FRP-Core allocation (S ′, a∗(S ′), u′) ∈ CoreFRP with u′ > u. Proposition 3 further implies

that a deviation by the grand coalition N that induces (S ′, a∗(S ′), u′) can attain u′ with a

PCPNE σ′. This means that there is a credible coalitional deviation from σ, which leads to

a contradiction. Thus, every PCPNE achieves an FRP-Core allocation. �

This result depends crucially on the “comonotonicity of preferences” (Laussel and Le

Breton, 2003) and perfectly nonexcludable public goods (free-riders can fully enjoy public

goods). Without these assumptions, the above equivalence does not hold in general.

Although the FRP-Core is much easier to grasp than PCPNE, it may still not be clear

what the FRP-Core looks like. A simple example in the next section illustrates the properties

of FRP-Core allocations and thus the outcomes of PCPNE of our voluntary contribution

game.

5 An Example: Linear Utility and Quadratic Cost

Let vi(a) = θia for any i ∈ N and C(a) = a2/2, where θi > 0 is a preference parameter. In

this section, we identify players by their preference parameters, i.e., θi = i for any i ∈ N .

Then, the optimal level of the public good for group S is determined by the first-order
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condition
∑

i∈S θi − a = 0, i.e.,

a∗(S) =
∑
i∈S

θi.

Consequently, the value of S is written as

V (S) =
∑
i∈S

θi

(∑
i∈S

θi

)
− 1

2

(∑
i∈S

θi

)2

=

(∑
i∈S θi

)2
2

.

For an outsider j ∈ N\S, the payoff is

vj(a
∗(S)) = θj

(∑
i∈S

θi

)
.

Consider the following example.

Example 1. Let N = {11, 5, 3, 1}, where θi = i for each i ∈ N .

First we check if the grand coalition S = N is supportable. When S = N , we have

a∗(N) =
∑

i∈N i = 20, and V (N) = 202/2 = 200. For the allocation to be free-riding-proof,

each player must obtain the following payoff at the very least:

v11(a
∗(N\{11})) = (20− 11)× 11 = 99,

v5(a
∗(N\{5})) = (20− 5)× 5 = 75,

v3(a
∗(N\{3})) = (20− 3)× 3 = 51,

v1(a
∗(N\{1})) = (20− 1)× 1 = 19.

The sum of all these values exceeds the value of the grand coalition V (N). As a result, we

can conclude CoreFRP (N) = ∅.

• The FRP-Core for the grand coalition N may be empty. Thus, the FRP-Core may be

suboptimal.
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Next, consider S = {11, 5}. Then, a∗(S) = 16, and V (S) = 128. To check if the

FRP-Core for S is nonempty, we first check again the free-riding incentives.

v(a∗(S\{11})) = (16− 11)× 11 = 55,

v(a∗(S\{5})) = (16− 5)× 5 = 55.

Thus, if there is an FRP-Core allocation for S, u = (u11, u5) must satisfy

u11 + u5 = 128,

u11 ≥ 55,

u5 ≥ 55,

u11 ≥
11× 11

2
= 60.5,

u5 ≥
5× 5

2
= 12.5,

where the last two conditions follow from the core requirement. That is, we have13

Core({11, 5})

= {u ∈ R5
+ : u11 + u5 = 128, u11 ≥ 60.5, u5 ≥ 12.5, u3 = 48, u2 = 32, u1 = 16},

and

CoreFRP ({11, 5})

= {u ∈ R5
+ : u11 + u5 = 128, u11 ≥ 60.5, u5 ≥ 55, u3 = 48, u2 = 32, u1 = 16}.

It is readily seen that CoreFRP ({11, 5}) 6= ∅, but it is a smaller set than Core({11, 5}).

• Free-riding-proof constraints may narrow the set of attainable core allocations for a

coalition.

Note that in this case, only the free-riding incentive constraint for player 5 is binding. It is

better for player 11 to provide public goods alone than to free-ride on player 5. �

13For notational simplicity, we abuse notations by dropping irrelevant arguments of allocations. Thus, in
this subsection, allocations are simply expressed by utility allocations.
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Now, let us analyze the FRP-Core. Since the FRP-Core requires Pareto-efficiency on the

union of FRP-Cores over all subsets S of the players, we first need to find the FRP-Core for

each S. In general, even a minimal task of checking the nonemptiness of the FRP-Core for

S is cumbersome, since the FRP-Core for S demands two almost unrelated requirements:

immunity to coalitional deviation attempts and to free-riding incentives. However, it is easy

to narrow down the candidates by using a necessary condition for the nonemptiness of the

FRP-Core for S.

Observation. In the case of linear utility and quadratic cost, if the FRP-Core for S is

nonempty, then S satisfies the following aggregate “no free-riding condition.”

Φ(S) ≡ V (S)−
∑
i∈S

θia
∗(S\{i})

=
∑
i∈S

θia
∗(S)− 1

2
(a∗(S))2 −

∑
i∈S

θia
∗(S\{i}) ≥ 0,

which is equivalent to ∑
i∈S

θ2
i ≥

1

2

(∑
i∈S

θi

)2

.

The proof is straightforward and hence omitted.

By utilizing this proposition, we can characterize the FRP-Core of the public goods

economy in Example 1.

Example 1. (Continued) The FRP-Core allocations are attained by groups {11, 5, 1},

{11, 3, 1}, {11, 5}, {11, 3}, and {5, 3}.

First, by applying the Observation, we find that there are 12 contribution groups that

satisfy the necessary condition for the nonempty FRP-Core for S: {11, 5, 1}, {11, 3, 1},

{11, 5}, {11, 3}, {11, 1}, {5, 3}, {5, 1}, {3, 1}, {11}, {5}, {3}, and {1}.

The FRP-Core for S = {11, 5, 3} is empty, for example. For S = {11, 5, 3}, we have

a∗(S) = 19 and V (S) = 180.5. Since 11v(a∗(S\{11})) = 88, 5v(a∗(S\{5}) = 70, 3v(a∗(S\{3})) =

48, and 88 + 70 + 48 > 180.5, the necessary condition for S = {11, 5, 3} to give an FRP-

Core allocation is violated. As we will see, however, CoreFRP ({11, 5, 1}) is not empty. Thus
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{11, 5, 1} is the group that achieves the highest level of public goods while having a nonempty

FRP-Core. This analysis provides an interesting observation.

• (Even the largest) group that achieves an FRP-Core allocation may not be consecu-

tive.14

The intuition behind this result is simple. Suppose Φ(S) is positive (say, S = {11, 5}).

Now, we try to find S ′ ⊃ S that still satisfies Φ(S ′) ≥ 0. If the value of Φ(S) is positive and

yet not too large, then adding a player with a high θ (say, player 3) may make Φ(S ′) < 0,

since adding such a player may greatly increase a∗(S ′), making the free-riding problem more

severe. By contrast, adding a player with a low θ (say, player 1) does not make the free-rider

problem too severe, so Φ(S ′) ≥ 0 may be satisfied relatively easily.

Among the above 12 groups, it is easy to see that groups {5, 1}, {3, 1}, {11}, {5}, {3},

and {1} do not survive the test of Pareto-domination. For example, consider S ′ = {11, 5}

and u′ = (73, 55, 48, 16) ∈ CoreFRP ({11, 5}). This is the best allocation for player 11 in

CoreFRP ({11, 5}) as the characterization of CoreFRP ({11, 5}) in the above indicates. Players

other than 11 and 5 are free-riders, and their payoffs are directly generated from a∗({11, 5}) =

16. Now it is straightforward to see that the allocation u′ dominates all allocations for the

above six groups; public goods provision levels of those groups are insufficient compared with

a∗({11, 5}) = 16.

By contrast, {5, 3} is not dominated by any FRP-Core allocations for any contribution

group. We can show that player 11 can obtain at most 73 in a FRP-Core allocation for any

S 3 11, whereas she obtains 88 by free-riding on {5, 3}. Thus, player 11 would not join a

deviation. Without player 11’s cooperation, no free-riding core allocation that dominates

those of {5, 3} can be realized.

Similarly, FRP-Core allocations for S = {11, 1} are dominated by the one for S ′ = {11, 5}.

Under S = {11, 1}, player 5 obtains 60, but S ′ can attain u′ = (63, 65, 48, 16). Free-riding-

proof core allocations for {11, 3, 1} and {11, 3} cannot be beaten, however, by the ones for

14Although the context and approach are very different from ours, the formation of such nonconsecutive
coalitions has attracted tremendous interests in the fields of political science and sociology. For a game-
theoretical treatment of this line of literature (known and “Gamson’s law”), see Le Breton, et al. (2008).
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S ′ = {11, 5}; player 5, for example, gets 70 even under {11, 3} while she would obtain at

most 67.5 under S ′ = {11, 5}, as we can see from CoreFRP ({11, 5}) derived above.

Finally, consider S = {11, 5}, {11, 3}. The FRP-Core allocations for S = {11, 5} are

characterized by u11 + u5 = 128, u11 ≥ 60.5 and u5 ≥ 55, with u3 = 48 and u1 = 16.

Now, consider S ′ = {11, 5, 1}, for which the FRP-Core allocations are characterized by

u′11 + u′5 + u′1 = 144.5, u′11 + u′5 ≥ 128, u′11 ≥ 66, u′5 ≥ 60, and u′1 ≥ 16, with u′3 = 51.

(u′5 + u′1 ≥ 18 and u′11 + u′1 ≥ 72 are satisfied because u′11 ≥ 66, u′5 ≥ 60, and u′1 ≥ 16.)

Here, S ′ can attain u′11 + u′5 = 144.5− 16 = 128.5 as long as u′11 ≥ 66 and u′5 ≥ 60. Thus, if

u ∈ CoreFRP ({11, 5}) satisfies u11 +u5 = 128, 60.5 ≤ u11 ≤ 68.5, and 55 ≤ u5 ≤ 62.5, then u

is improved upon by an allocation in CoreFRP ({11, 5, 1}). However, if u ∈ CoreFRP ({11, 5})

satisfies u11 + u5 = 128, u11 > 68.5, or u5 > 62.5, then u cannot be improved upon by

group {11, 5, 1}. The FRP-Core allocations for S = {11, 3} have a similar property with

possible deviations by group S ′ = {11, 3, 1}. This phenomenon illustrates another interesting

observation:

• An expansion of a group definitely increases the total value of the group, while it gives

less flexibility in allocating the benefits among the group members since free-riding

incentives increase as the level of the public goods provision rises. As a result, some

unequal FRP-Core allocations for the original group may not be improved upon by the

group expansion.

In summary, the FRP-Core is the union of the following sets of allocations attained by

the five different groups.

1. S = {11, 5, 1}; a∗(S) = 17 and all FRP-Core allocations for S are included:

CoreFRP ({11, 5, 1})

= {u ∈ R5
+ : u11 + u5 + u1 = 144.5, u3 = 51, u11 ≥ 66, u5 ≥ 60, u1 ≥ 16.}

2. S = {11, 3, 1}; a∗(S) = 15 and all FRP-Core allocations for S are included:

CoreFRP ({11, 3, 1})

= {u ∈ R5
+ : u11 + u3 + u1 = 112.5, u5 = 75, u11 ≥ 60.5, u3 ≥ 36, u1 ≥ 14}.
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3. S = {11, 5}; a∗(S) = 16 and only a subset of FRP-Core allocations for S is included:

{
u ∈ CoreFRP ({11, 5}) : u11 > 68.5 or u5 > 62.5

}
= {u ∈ R5

+ : u11 + u5 = 128, u3 = 48, u1 = 16, 68.5 < u11 ≤ 73 or 62.5 < u5 ≤ 67.5}

4. S = {11, 3}; a∗(S) = 14 and only a subset of FRP-Core allocations for S is included:

{
u ∈ CoreFRP ({11, 3}) : u11 > 62.5

}
= {u ∈ R5

+ : u11 + u3 = 98, u5 = 70, u1 = 14, 62.5 < u11 ≤ 65}

5. S = {5, 3}; a∗(S) = 8 and all FRP-Core allocations for S are included:

CoreFRP ({5, 3})

= {u ∈ R5
+ : u5 + u3 = 32, u11 = 88, u1 = 8, u5 ≥ 15, u3 ≥ 15}

�

Before closing this section, we compare the FRP-Core allocations with a Nash equilibrium

of a simultaneous-move voluntary public goods provision game studied by Bergstrom, Blume,

and Varian (1986). Each player i chooses her monetary contribution mi ≥ 0 to finance a

public good. The public goods provision level is given by a(m) =
√

2
∑

i∈N mi reflecting

the cost function of public goods production C(a) = a2/2. Consider player i. Given that

others contribute M−i in total, player i chooses mi so as to maximize θi
√

2 (mi +M−i)−mi.

The best response for player i is m∗i = max {(θ2
i /2)−M−i, 0}. It is easy to see that in our

example, only player 11 contributes, so the public goods provision level is 11.15 Thus, by

forming a contribution group in the first stage, it is possible to increase the equilibrium level

of the public goods provision. But it is also possible that the level of public goods provision is

lower than the Nash equilibrium provision level of the standard voluntary contribution game,

as we have found that group {5, 3} achieves some FRP-Core allocations in our example.

15Contribution is made only by the highest willingness-to-pay player. This observation is true for all
quasi-linear utility players (with no income effect).
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• There may be FRP-Core allocations that achieve lower public goods provision levels

than the Nash equilibrium outcome of a simple voluntary contribution game studied by

Bergstrom, Blume, and Varian (1986).

This occurs because in our setup, player 11 can commit to being an outsider in the first

stage, which cannot happen in a simultaneous-move voluntary contribution game. Finally,

needless to say, we have:

• The FRP-Core may be a highly nonconvex set, as different allocations may be realized

by different contribution groups.

6 Replicated Economies

In this section, we analyze whether or not public goods provision and the participation rate

decrease as the economy is replicated.

There is a tricky issue in replicating a (pure) public goods economy. If the set of con-

sumers is simply replicated, the amount of resources in the economy grows to infinity, while

maintaining the same cost function for public goods production. Following Milleron’s (1972)

method, Healy (2007) makes each consumer’s endowment shrink proportionally to the pop-

ulation as the economy is replicated to overcome this problem; consumers’ preferences are

also modified in the replication process.16 We adopt the same preference modification in the

replication of a quasi-linear economy. We shrink each consumer’s willingness-to-pay propor-

tionally as the economy is replicated. This method of replication is natural for a quasi-linear

economy, since the aggregate willingness-to-pay and cost functions stay the same in the

replication process.

The original economy is a list E = (N, (vi)i∈N , C). Let r = 1, 2, 3, ... be a natural number.

The rth replica of E is a list Er = (N r, (vriq)i∈N,q=1,...,r, C), where N r = ∪i∈N{i1, ..., ir} and

vriq(a) = vri (a) = 1
r
vi(a) for all q = 1, .., r.17 Let a characteristic function form game generated

from Er be V r.
16Conley (1994) uses a different definition of replicated economy and investigates the convergence of the

core.
17Let x and a denote the consumption level of a private good and the level of a public good, and let �i
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We analyze FRP-Core allocations (S, a∗(S), u∗) of the characteristic function form game

V r by focusing on the free-riding-proofness condition. Note that for any r, and for any

S ⊆ N r, the public goods provision level a = a∗(S) is determined so that the sum of

willingness-to-pay across all members of S equals the marginal cost of public goods provision,

i.e.,
∑

iq∈S v
r′
iq(a) = C ′(a). Furthermore, we need

∑
iq∈S

(
vriq(a∗(S))− vriq(a∗(S\{iq})

)
≥

C(a∗(S)) in order to satisfy the free-riding-proofness, where the terms in the parentheses

on the left-hand side indicate how much each player can pay without sacrificing free-riding-

proofness. Let mi(S) ∈ {0, · · · , r} denote the number of type i players in S. Then, the above

necessary condition for free-riding-proofness can be rewritten as∑
i∈N

mi(S) (vri (a
∗(S))− vri (a∗(S\{iq}))) ≥ C(a∗(S)),

where it should be understood that S \ {iq} denotes the set of all players but one player of

type i in S. Or equivalently,∑
i∈N

mi(S)

r
[vi(a

∗(S))− vi(a∗(S\{iq}))] ≥ C(a∗(S)). (1)

Now, consider the kth replication, where k = 1, 2, · · ·, of this rth replica of the original

economy, which implies that each player in the rth replica of the original economy is divided

into k players. Let Sk be a coalition in this k × rth replica economy that contains all k

replica players of all members of S in rth replica economy. Obviously, a∗(S) in rth replica

economy equals a∗(Sk) in k×rth replica economy. However, although the coefficients satisfy

mi(S)/r = mi(S
k)/(kr), a∗(Sk\{i}) converges to a∗(Sk) = a∗(S) as k goes to infinity. Thus,

the k× rth replica economy’s counterpart of inequality (1) would be violated at some point.

Formally, we have the following result.

Proposition 4. Suppose that C and vi are twice continuously differentiable for any i ∈ N

with (i) C(0) = 0, C ′(a) > 0, C ′′(a) > 0, and lima→0C
′(a) = 0, and (ii) v′i(a) > 0 and

v′′i (a) ≤ 0 for all i ∈ N . Then, for any ā > 0, there exists a natural number r̄(ā) such that

for any r ≥ r̄(a), a∗(S∗) < ā holds for any (S∗, a∗(S∗), u∗) ∈ CoreFRP (V r) .

and �r
i be preference relations in the original and rth replica economy, respectively. According to Milleron’s

(1972) preference modification, relation �r
i is generated such that (x, a) �r

i (x′, a′) if (rx, a) �i (rx′, a′). In
the quasi-linear economy where �i is described by the utility function x+vi(a), this implies vr

i (a) = vi(a)/r.
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Together with Theorem 1, Proposition 4 immediately implies the following theorem.

Theorem 3. Suppose that C and vi are twice continuously differentiable for any i ∈ N with

(i) C(0) = 0, C ′(a) > 0, C ′′(a) > 0, and lima→0C
′(a) = 0, and (ii) v′i(a) > 0 and v′′i (a) ≤ 0

for all i ∈ N . Then, the public goods provision levels for all FRP-Core allocations shrink to

zero as the economy is replicated.

Although this result has some similarity to the main result of Healy (2007), the models

and the objectives are very different. Unlike our model, Healy requires that all players

(voluntarily) participate in equilibrium, while he does not ask contribution groups to achieve

efficient provision of public goods. Thus, the reasons for the convergence are very different

in his and our papers. Note also that unlike Theorems 1 and 2, Theorem 3 (and Proposition

4) relies on the concavity and convexity of utility and cost functions, respectively, as well as

the differentiability of them.

7 Conclusion

This paper has added players’ participation decisions to a (pure) public goods provision

problem. We propose a free-riding-proof core (FRP-Core), which is a hybrid solution concept

based on credibility of coalitional deviations. The FRP-Core is always nonempty in a public

goods economy but does not usually achieve global efficiency. The FRP-Core has support

from both cooperative and noncooperative games. In particular, it is equivalent to the

set of perfectly coalition-proof Nash equilibria (Bernheim, Peleg, and Whinston, 1987) of

a dynamic game with participation decisions followed by a common agency contribution

game. With a simple example, we have found that the equilibrium contribution group

may not be consecutive (with respect to players’ willingness-to-pay), and the public good

may be under-provided (compared with the case of voluntary contribution game studied by

Bergstrom, Blume, and Varian, 1986, for example). Furthermore, the public goods provision

level decreases to zero as the economy grows.

Although we have restricted our analysis to the public goods problem with transferable
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utility (assuming that all players have quasi-linear utilities), we can extend our analysis to a

Gorman-form utility function (Bergstrom and Cornes, 1983) to allow the (positive) income

effect for the public goods.18 Suppose that player i’s preferences are represented by a utility

function of the form ui(a, x) = α(a)x + βi(a) for all i = 1, ..., n, while the government’s

utility is u0(a, x) = α(a) (x− C(a)). As long as players have enough endowments such that

their budget constraints would not be binding, the characterization results of Bernheim and

Whinston (1986) extend to this utility specification. We can show that if α(a) is nonde-

creasing, and the ratio βi(a)/α(a) is nondecreasing for all i ∈ N , the efficient public good

provision level a∗(S) is nondecreasing with respect to group expansion, and hence the re-

sulting game (V (S))S⊆N is a convex game. Thus, our equivalence theorem continues to hold

in this class of public goods economies. Relaxing the assumption on utility functions (even

further) is of interest, since then we would be able to examine how the income distribution

across players affects free-riding incentives and equilibrium public goods provision levels, for

example. Indeed, Theorem 1 of our analysis extends to a general NTU game. To obtain our

main equivalence result, however, we have appealed to the results obtained by Bernheim and

Whinston (1986), who analyze TU games. Thus, we first need to extend their analysis to

NTU games to examine the equivalence between the FRP-Core and PCPNE. We leave this

interesting and nontrivial exercise to our future research.

Appendix A: Preliminary Analysis on the Core of Con-

vex Games

In this appendix, we list a few useful preliminary results on the core of convex games. In

our public goods (comonotonic) domain, the characteristic-function game generated from a

(public goods) economy is convex. Let V : 2N → R with V (∅) = 0 be a characteristic-

function form game. Game V is convex if V (S ∪ T ) + V (S ∩ T ) ≥ V (S) + V (T ) for all pairs

of subsets S and T of N . The core of game V is Core(N, V ) = {u ∈ RN :
∑

i∈N ui = V (N)

and
∑

i∈S ui ≥ V (S) for all S ⊂ N}. Shapley (1971) analyzes the properties of the core of

18We thank a referee for bringing our attention to this possible extension.
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convex games in detail. One of his results that is useful for us is the following.

Property 1. (Shapley, 1971) Let ω : {1, · · · , |N |} → N be an arbitrary bijection, and

let uω(1) = V ({ω(1)}), uω(2) = V ({ω(1), ω(2)}) − V ({ω(1)}),..., and uω(|N |) = V (N) −

V (N\{ω(|N |)}). Then, u = (ui)i∈N ∈ Core(N, V ), and the set of all such allocations forms

the set of vertices of Core(N, V ).

Now, we consider a reduced game, in which outsiders always join coalitions and walk away

with the payoffs they could obtain by forming their own coalition. Let T be a proper subset

of N . A reduced game of V on T is ṼT : 2T → R such that ṼT (S) = V (S∪(N\T ))−V (N\T )

for all S ⊆ T . We have the following result.

Property 2. Suppose that V : N → R is a convex game. Let uN\T = (ui)i∈N\T be a core

allocation of a game V : N\T → R. Then, uT ∈ Core(T, ṼT ) if and only if (uT , uN\T ) ∈

Core(N, V ).

Proof. First, we show that uT ∈ Core(T, ṼT ) if (uT , uN\T ) ∈ Core(N, V ). Since (uT , uN\T ) ∈

Core(N, V ),
∑

i∈S∪(N\T ) ui ≥ V (S ∪ (N\T )) holds for all S ⊂ T . Rewriting this, we

have
∑

i∈S ui ≥ V (S ∪ (N\T )) −
∑

i∈N\T ui = V (S ∪ (N\T )) − V (N\T ) = ṼT (S). Thus,

uT ∈ Core(T, Ṽ ).

Second, we show that uT ∈ Core(T, ṼT ) implies (uT , uN\T ) ∈ Core(N, V ). Suppose this

is not the case. Then, there is S ⊂ N such that

V (S) >
∑
i∈S

ui =
∑
i∈S∩T

ui +
∑

i∈S∩(N\T )

ui. (2)

Since uT ∈ Core(T, Ṽ ) and V is a convex game, we have
∑

i∈S∩T ui ≥ V (S ∪ (N\T )) −

V (N\T ) ≥ V (S) − V (S ∩ (N\T )). Substituting this inequality into (2), we have V (S) >

V (S)−V (S∩(N\T ))+
∑

i∈S∩(N\T ) ui, which leads to a contradiction since uN\T ∈ Core(N\T, V )

implies
∑

i∈S∩(N\T ) ui ≥ V (S ∩ (N\T )). �
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Now, we rewrite the core. Let u = (ui)i∈N be an arbitrary utility vector. Let

Q+(u) = {S ∈ 2N :
∑
j∈S

uj > V (S)},

Q0(u) = {S ∈ 2N :
∑
j∈S

uj = V (S)},

Q−(u) = {S ∈ 2N :
∑
j∈S

uj < V (S)}.

That is, sets Q+(u) and Q−(u) denote the collections of coalitions in which players as a whole

are satisfied and unsatisfied (in the strict sense) with the utility vector u, respectively. The set

Q0(u) is the collection of coalitions in which players are just indifferent collectively between

deviating and not deviating. Obviously, a utility vector u is in the core, i.e., u ∈ Core(N, V ),

if and only if Q−(u) = ∅ (or S ∈ Q+(u) ∪ Q0(u) for all S ∈ 2N) and N ∈ Q0(u). Let

η(S, u) ≡ [V (S)−
∑

i∈S ui]/ |S| be the (per capita) shortage of payoff for coalition S for any

S ∈ Q−(u). Let

Q−max(u) ≡ {S ∈ Q−(u) : η(S, u) ≥ η(S ′, u) for all S ′ ∈ Q−(u)},

and

Q−max(u) = ∪S∈Q−max(u)S.

Using the above definitions, we now construct an algorithm that starts from an arbitrary

utility vector u and terminates with a core allocation û.

Algorithm. Let u ∈ RN and let V : N → R be a convex game. Let u(t) be the utility

vector at stage t ∈ R+, and u(0) = u (the initial value).

(a) Suppose Q−(u) = ∅. Then, 2N\{∅} = Q0(u) ∪ Q+(u). If N ∈ Q0(u(0)), then the

algorithm terminates immediately. Otherwise,
∑

i∈N ui > V (N) holds, and we reduce

each ui for i ∈ N\(∪S∈Q0(u)S) continuously at a common speed as t increases.19 Since

19It follows from the definition of a convex game that ∪Q∈Q0(u)Q = N implies N ∈ Q0(u). To prove this
claim, it suffices to show that if T, T ′ ∈ Q0(u), then T ∪T ′ ∈ Q0(u) when Q−(u) = ∅ as is assumed. We have
from the definition of a convex game that V (T ∪T ′)+V (T ∩T ′) ≥ V (T )+V (T ′) =

∑
i∈T∪T ′ ui +

∑
i∈T∩T ′ ui.

Since T ∩ T ′ ∈ Q0(u) ∪ Q+(u),
∑

i∈T∩T ′ ui ≥ V (T ∩ T ′). Together with the above inequality, this implies
V (T ∪ T ′) ≥

∑
i∈T∪T ′ ui. Since Q−(u) = ∅, T ∪ T ′ ∈ Q0(u).
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all elements in Q0(u) continue to be in Q0(u(t)), while some of elements of Q+(u(t))

switch to Q0(u(t)) in the process, Q0(u(t)) monotonically expands as t increases. Thus,

N ∈ Q0(u(t̂)) occurs at some stage t̂. Then we terminate the process. The final

outcome is û = u(t̂).

(b) Suppose Q−(u) 6= ∅. There are two phases, starting with phase 1.

i. Phase 1: Start with u(0) = u. For all i ∈ Q−max(u(t)), increase ui continuously at

a common speed. Terminate this phase of the algorithm when Q−max(u(t)) = ∅ (or

Q−(u(t)) = ∅), and call such t as t̃.20

ii. Phase 2: Now, Q−(u(t̃)) = ∅. Then, we go to the procedure in (a), and we reach

a final outcome û = u(t̂) when N ∈ Q0(u(t̂)) occurs. �

Let Q0(u) ≡ ∪S∈Q0(u)S, and define

W ≡ {i ∈ N : ∃t ≥ 0 with i ∈ Q−max(u(t)) in phase 1 of case (b)},

I ≡ {i ∈ N : i ∈ Q0(u(0)) in case (a), or i ∈ Q0(u(t̃))\W in case (b)},

L ≡ {i ∈ N : i /∈ Q0(u(0)) in case (a), or i /∈ Q0(u(t̃)) in case (b)}.

These sets will be shown to be collections of players who gain, remain indifferent, and lose

in the above algorithm relative to the initial value u, respectively. By the construction of

the algorithm, the following Lemma is straightforward.

Lemma 1. Set N is partitioned into W , I, and L: ûi > ui for all i ∈ W , ûi = ui for all

i ∈ I, and ûi < ui for all i ∈ L.

Proof. Note that the payoff for any player in W does not change in phase 2 of case (b) as

W ⊆ ∪S∈Q0(u(t̃))S. Thus, for all i ∈ W , ûi > ui. Given this, the rest is obvious. �

This lemma identifies the winners, unaffected players, and losers of the algorithm as sets W ,

I, and L, respectively.

20This process guarantees that every player i ∈ Q−max(u(t)) at some stage t ∈ [0, t̃] must belong to some
S′ ∈ Q0(u(t̃)) at the end of phase 1.
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Lemma 2. Consider the above algorithm. In phase 1 of case (b), Q−max(u(t)) monotonically

expands as t increases for t ∈ [0, t̃). This phase terminates with Q−(u(t̃)) = ∅. Moreover,

W = limt→t̃Q
−
max(u(t)) ∈ Q0(u(t̃)), and W ∈ Q0(u(t̂)).

Proof. As t increases, the payoffs of all members of Q−max(u(t)) increase at the same speed;

thus for any S ∈ Q−max(u(t)), η(S, u(t)) decreases at the same speed. Note that for all other

coalitions T /∈ Q−max(u(t)), η(T, u(t)) decreases at a slower pace (if T ∩ Q−max(u(t)) 6= ∅) or

stays constant (if T ∩ Q−max(u(t)) = ∅). Therefore, Q−max(u(t)) monotonically expands as t

increases. This monotonic utility-raising process continues until Q−(u(t)) = ∅ realizes at

t = t̃. Since Q−max(u(t)) monotonically expands, W = limt→t̃Q
−
max(u(t)) holds.

Now, we will show Q−max(u) = ∪S∈Q−max(u)S ∈ Q−max(u), which proves W ∈ Q0(u(t̃))

and W ∈ Q0(u(t̂)) (in phase 2 of case (b), payoffs of players in W are not affected). Let

S1, S2 ∈ Q−max(u) with S1 6= S2. Let

η̄ ≡
V (S1)−

∑
i∈S1

ui

|S1|
=
V (S2)−

∑
i∈S2

ui

|S2|
.

By convexity, it follows that

V (S1 ∪ S2) + V (S1 ∩ S2) ≥ V (S1) + V (S2)

= η̄ (|S1|+ |S2|) +
∑
i∈S1

ui +
∑
i∈S2

ui.

Since
V (S1 ∩ S2)−

∑
i∈S1∩S2

ui

|S1 ∩ S2|
≤ η̄,

we have

V (S1 ∪ S2) ≥ η̄ (|S1|+ |S2|) +
∑
i∈S1

ui +
∑
i∈S2

ui − V (S1 ∩ S2)

≥ η̄ (|S1|+ |S2| − |S1 ∩ S2|) +
∑
i∈S1

ui +
∑
i∈S2

ui −
∑

i∈S1∩S2

ui,

or
V (S1 ∪ S2)−

∑
i∈S1∪S2

ui

|S1 ∪ S2|
≥ η̄.

Thus, S1 ∪ S2 ∈ Q−max(u). Repeated application of the same argument proves Q−max(u) ∈

Q−max(u). �
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Lemma 3. Starting from any initial value u ∈ RN , this algorithm terminates with a core

allocation û ∈ Core(N, V ).

Proof. First, we show that case (a) terminates with a core allocation. To this end, we

need only show that ∪S∈Q0(u)S 6= N whenever
∑

i∈N ui > V (N) (otherwise, the algorithm

terminates with an infeasible u). Suppose to the contrary that
∑

i∈N ui > V (N), while

∪S∈Q0(u)S = N in case (a). Let S1, S2, ..., SK ∈ Q0(u) be distinct subsets of N with ∪Kk=1Sk =

N . Then, we have
∑

i∈S1
ui = V (S1) and

∑
i∈S2

ui = V (S2). By convexity, V (S1 ∪ S2) +

V (S1 ∩ S2) ≥ V (S1) + V (S2) =
∑

i∈S1
ui +

∑
i∈S2

ui holds. By the construction of the

algorithm, S1 ∩ S2 ∈ Q0(u) or S1 ∩ S2 ∈ Q+(u), i.e., V (S1 ∩ S2) ≤
∑

i∈S1∩S2
ui holds. Thus,

we have V (S1 ∪ S2) ≥
∑

i∈S1∪S2
ui. Applying the same argument to S1 ∪ S2 and S3, we

have V (S1 ∪ S2 ∪ S3) ≥
∑

i∈S1∪S2∪S3
ui, since (S1 ∪ S2) ∩ S3 ⊂ S3 implies (S1 ∪ S2) ∩ S3 ∈

Q0(u) or (S1 ∪ S2) ∩ S3 ∈ Q+(u). Repeated application of the same argument generates

V (N) = V (∪Kk=1Sk) ≥
∑

i∈∪K
k=1Sk

ui =
∑

i∈N ui. This is a contradiction. Thus, in case

(a), the algorithm terminates with a feasible allocation. Since u(t) changes continuously,

N ∈ Q0(û) holds, and û ∈ Core(N, V ).

Now, it follows from Lemma 2 that phase 1 of case (b) terminates with Q−(ũ) = ∅. Thus,

the same argument as in case (a) applies to phase 2 of case (b), leading to the conclusion

that û ∈ Core(N, V ) also in case (b). �

Appendix B: Proofs

Proof of Proposition 1.

First, we show that (T, a∗(T ), u′) ∈ Core(T ) blocking (S, a∗(S), u) ∈ Core(S) implies

a∗(S) < a∗(T ). Since (S, a∗(S), u) ∈ Core(S), S ⊇ T cannot happen. Thus, we have

either (i) S $ T , or (ii) S " T and S # T . Case (i) implies a∗(S) < a∗(T ), since if

a∗(S) = a∗(T ), blocking cannot occur (core allocations are efficient for the contribution

group). Thus, consider case (ii). Note that for all i ∈ T\S, we have u′i ≥ ui = vi(a
∗(S)).
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Suppose to the contrary that a∗(S) ≥ a∗(T ) holds. Since∑
j∈T

u′j =
∑
j∈T

vj(a
∗(T ))− C(a∗(T )),

we have∑
j∈T∩S

u′j =
∑
j∈T

vj(a
∗(T ))− C(a∗(T ))−

∑
i∈T\S

u′i

=
∑
j∈T∩S

vj(a
∗(T ))− C(a∗(T ))−

∑
i∈T\S

u′i −
∑
i∈T\S

vi(a
∗(T ))


≤

∑
j∈T∩S

vj(a
∗(T ∩ S))− C(a∗(T ∩ S))−

∑
i∈T\S

u′i −
∑
i∈T\S

vi(a
∗(T ))


= V (T ∩ S)−

∑
i∈T\S

u′i −
∑
i∈T\S

vi(a
∗(T ))

 .

Since (T, a∗(T ), u′) ∈ Core(T ), the content of the above parenthesis is nonpositive.∑
i∈T\S

u′i ≤
∑
i∈T\S

vi(a
∗(T )).

Since a∗(S) ≥ a∗(T ), we have u′i ≥ vi(a
∗(S)) ≥ vi(a

∗(T )) for all i ∈ T\S. Thus, we conclude

u′i = vi(a
∗(S)) = vi(a

∗(T )) for all i ∈ T\S, and a∗(S) = a∗(T ).

This also implies ∑
j∈T∩S

u′j = V (T ∩ S).

Since ui = vi(a
∗(S)) = u′i for all i ∈ T\S, none in coalition T is strictly better off by this

deviation (T, a∗(T ), u′). This is a contradiction. Thus, a∗(T ) > a∗(S) must hold.

Now, with the above result, it is easy to prove the rest. Since (T, a∗(T ), u′) ∈ Core(T )

blocks (S, a∗(S), u) ∈ Core(S), and a∗(T ) > a∗(S), it is clear that (T, a∗(T ), u′) weakly

Pareto-dominates (S, a∗(S), u). �

Proof of Proposition 2.

Pick a coalition S̄ that achieves the highest level of public goods provision among the coali-

tions that support CoreFRP . There exists such S̄, since the number of coalitions is fi-

nite. By Proposition 1, if (S, a∗(S), u) ∈ CoreFRP (S) is weakly blocked by (T, a∗(T ), u′) ∈
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CoreFRP (T ), then a∗(S) < a∗(T ). Thus, no allocation in CoreFRP (S̄) is not weakly blocked

by any other allocations in ∪S′∈2NCoreFRP (S ′). Thus, CoreFRP (S̄) ⊆ ∪S′∈2NCoreFRP (S ′) =

CoreFRP . This implies that CoreFRP is nonempty. �

Proof of Theorem 1.

Let Core
〈
XFRP , S

〉
= {(S, a∗(S), u) ∈ XFRP : ∀T ⊆ S,∀(T, a∗(T ), u′) ∈ XFRP ,∃i ∈

T s.t. u′i < ui}. This is a collection of FRP and efficient allocations for S that are immune

to nested FRP and efficient deviations. We first claim Core
〈
XFRP , S

〉
= CoreFRP (S).

Since for CoreFRP (S), coalitional deviations are not required to be FRP, it is obvious that

Core
〈
XFRP , S

〉
⊇ CoreFRP (S) holds. To see the opposite direction, we only need to show

that FRP condition is not binding for nested deviations. For this, notice that a∗(T ) ≤ a∗(S)

holds for all T ⊂ S. That is, vi(a
∗(T\{i})) < vi(a

∗(S\{i})) holds for all i ∈ T , which implies

that if ui ≥ vi(a
∗(S\{i})) then ui ≥ vi(a

∗(T\{i})) holds for all i ∈ T . This implies that

all coalitional deviations that block (S, a∗(S), u) must at least satisfy FRP condition. This

proves our first claim, Core
〈
XFRP , S

〉
= CoreFRP (S).

Now, let us consider non-nested coalitional deviations. Pick (S, a∗(S), u) ∈ CoreFRP (S) =

Core
〈
XFRP , S

〉
. If for all nonnested T , (S, a∗(S), u) is not blocked by any (T, a∗(T ), u′) ∈

CoreFRP (T ), then (S, a∗(S), u) ∈ CoreFRP holds since (S, a∗(S), u) is immune to nested

deviations. Now, if (S, a∗(S), u) is not blocked by all (T, a∗(T ), u′) ∈ XFRP (T ), then

(S, a∗(S), u) ∈ Core
〈
XFRP

〉
holds. Since CoreFRP (T ) ⊆ XFRP (T ) for all T , for an al-

location (S, a∗(S), u) to be in Core
〈
XFRP

〉
, it needs to be immune to more deviations than

to be in CoreFRP (S). Thus, clearly, CoreFRP ⊇ Core
〈
XFRP

〉
holds. We will show the

opposite direction is also true in the following. Pick (S, a∗(S), u) ∈ Core
〈
XFRP , S

〉
=

CoreFRP (S) ⊆ CoreFRP , and T is not nested from S. Suppose that there is (T, a∗(T ), u′) ∈

XFRP (T )\CoreFRP (T ) such that u′i > ui for all i ∈ T . Then, there exists T ′ ⊂ T such

that
∑

i∈T ′ u
′
i < V (T ′). The FRP condition u′i ≥ vi(a

∗(T ′\{i})) is trivially satisfied since

u′i ≥ vi(a
∗(T\{i})) for all i ∈ T ′ and T ⊃ T ′. However, this implies that there ex-

ists (T ′, a∗(T ′), u′′) ∈ XFRP (T ′) with u′′i > u′i for all i ∈ T ′ that blocks (S, a∗(S), u) ∈
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Core
〈
XFRP , S

〉
= CoreFRP (S). If (T ′, a∗(T ′), u′′) /∈ CoreFRP (T ′), then again there ex-

ists T ′′ ⊂ T ′ with (T ′′, a∗(T ′′), u′′′) ∈ XFRP (T ′′) and u′′′i > u′′i for all i ∈ T ′′ that blocks

(S, a∗(S), u) ∈ Core
〈
XFRP , S

〉
= CoreFRP (S). This process must stop since T ⊃ T ′ ⊃ T ′′ ⊃

... andXFRP ({i}) = CoreFRP ({i}) = ({i}, a∗({i}), vi(a∗({i})−C({i}), (vj(a∗{i}))j 6=i). Thus,

there exists T ′′′ ⊂ T , and (T ′′′, a∗(T ′′′), u′′′′) ∈ CoreFRP (T ′′′) that blocks (S, a∗(S), u). This

proves that whenever (S, a∗(S), u) is blocked by non-nested T via (T, a∗(T ), u′) ∈ XFTP (T ),

it is also blocked by some T ′′′ ⊂ T via (T ′′′, a∗(T ′′′), u′′′′) ∈ CoreFRP (T ′′′). This completes

the proof of CoreFRP = Core
〈
XFRP

〉
. �

Proof of Proposition 3.

First, we construct a strategy profile σ, which will be shown to support (S∗, a∗(S∗), u∗),

where u∗ ∈ CoreFRP (S∗), as a PCPNE. In defining σ, we assign a CPNE utility profile to

every subgame S ′. Then, we show by way of contradiction that there is no credible and

profitable deviation from σ.

A strategy profile in the second stage σ2 is generated from utility allocations assigned in

each subgame (we utilize truthful strategies that support utility outcomes). We partition the

set of subgames S = {S ′ ∈ 2N : S ′ 6= ∅} into three categories: S1 = {S∗} on the equilibrium

path, S2 = {S ′ ∈ S : S ′ ∩ S∗ = ∅}, and S3 = {S ′ ∈ S\S1 : S ′ ∩ S∗ 6= ∅}. As Laussel and

Le Breton (2001) show, a CPNE outcome in a subgame S ′ corresponds to a core allocation

for S ′. To support the equilibrium path (S∗, a∗(S∗), u∗), we need to show that there is no

credible deviation in the first stage. Since a credible deviation requires both free-riding-

proofness and profitability, utility level ūi = max{u∗i , vi(S ′\{i})} plays an important role as

to whether or not player i joins a coalitional deviation.

We construct a core allocation for subgame S ′ with the algorithm described in Ap-

pendix A, starting with the initial value ū. Then we show that if there exists a credi-

ble deviation by coalition T , which induces (S ′, a∗(S ′), u′) from (S∗, a∗(S∗), u∗), then (S \

S∗, a∗(S \ S∗), (u′i)i∈S′\S∗ , (vj(a∗(S ′ \ S∗)))j 6∈S′\S∗) ∈ CoreFRP (S ′ \ S∗) and Pareto-dominates

(S∗, a∗(S∗), u∗). This is a contradiction to the presumption that (S∗, a∗(S∗), u∗) ∈ CoreFRP .
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Thus, we will conclude that there is no credible deviation from (S∗, a∗(S∗), u∗).

The construction of the core allocation for each subgame is as follows.

1. We assign (S∗, a∗(S∗), u∗) ∈ CoreFRP to the on-equilibrium subgame S∗.

2. For any S ′ with S ′ ∩ S∗ = ∅, we assign an extreme point of the core for S ′ of a

convex game. For an arbitrarily selected order ω over S ′, we assign payoff vector

uω(1) = V ({ω(1)})− V (∅), uω(2) = V ({ω(1), ω(2)})− V ({ω(1)}), and so on, following

Shapley (1971). Call this allocation ûS′ ∈ Core(S ′, V ) (see Property 1 in Appendix

A).

3. For any S ′ with S ′ ∩ S∗ 6= ∅, we assign a core allocation in the following man-

ner. It requires a few steps. First, we deal with the outsiders S ′ \ S∗. Let ω :

{1, · · · , |S ′\S∗|} → S ′\S∗ be an arbitrary bijection, and let ûω(1) = V ({ω(1)}), ûω(2) =

V ({ω(1), ω(2)}) − V ({ω(1)}), · · · , ûω(|S′\S∗|) = V (S ′\S∗) − V ((S ′\S∗)\{ω(|S ′\S∗|)}).

Such a core allocation minimizes the total payoffs for S ′\S∗ (Shapley, 1971). The

rest V (S ′) − V (S ′\S∗) goes to S ′ ∩ S∗. Consider a reduced game of (S ′, V ) on

S ′ ∩ S∗ with uS′\S∗ as given above and ṼS′∩S∗ : 2S
′∩S∗ → R such that ṼS′∩S∗(Q) =

V (Q∪ (S ′\S∗))−
∑

j∈S′\S∗ uj = V (Q∪ (S ′\S∗))− V (S ′\S∗). By Property 2, we know

that uS′∩S∗ ∈ Core(S ′ ∩ S∗, ṼS′∩S∗) if and only if (uS′∩S∗ , uS′\S∗) ∈ Core(S ′, V ). For

each i ∈ S ′ ∩ S∗, let ūi = max{u∗i , vi(S ′\{i})}. By the algorithm in Appendix A, we

construct a core allocation ûS′∩S∗ from vector ūS′∩S∗ = (ūi)i∈S′∩S∗ for the reduced game

ṼS′∩S∗ of game V : 2S
′ → R.

We support these core allocations by truthful strategies. Let σ1
i = 1 for i ∈ S∗, and σ1

i = 0

for i /∈ S∗. Let σ2
i [S
∗] be a truthful strategy relative to a∗(S∗) such that σ2

i [S
∗](a∗(S∗)) =

vi(a
∗(S∗)) − u∗i for all i ∈ S∗, and let σ2

i [S
′] be a truthful strategy relative to a∗(S ′) with

σ2
i [S
′](a∗(S ′)) = vi(a

∗(S ′)) − ûi(S
′) for all i ∈ S ′. Since a core allocation with truthful

strategies is assigned to every subgame, it is a CPNE. If there is a deviation from σ, therefore,

it must happen in the first stage.

37



Suppose to the contrary that there exists a coalition T that profitably and credibly

deviates from the equilibrium σ. Note that in the reduced game played by T , it must be a

PCPNE deviation with σ′T for given σ−T . In the original equilibrium, S∗ is the contribution

group. This implies that every i ∈ (N\S∗)\T plays σ1
i = 0, i.e., free-riding, in the first stage,

while every i ∈ S∗\T plays σ1
i = 1 in the first stage and engages in the same strategy, i.e.,

the prescribed menu σ2
i (S

′) contingent to group S ′, in the second stage. Any i ∈ T\S∗ has

chosen σ1
i = 0 but chooses σ1′

i = 1 upon deviation in the first stage, whereas i ∈ T ∩ S∗ may

or may not choose σ1′
i = 1. Some may choose to free-ride by switching to 0, while others

stay in the contribution group, adjusting their strategies in the second stage. To summarize,

let S ′ be the contribution group formed as a result of T ’s deviation, i.e., S ′ = S(σ1
−T , σ

1′
T ).

Then, there are five groups of players to be considered (see Figure 1).

(i) the members of S∗\S ′ ⊂ T that switch to free-riding after the deviation,

(ii) the members of S ′\S∗ ⊂ T that join the contribution group upon deviation,

(iii) the members of (S∗ ∩ S ′)\T ⊂ S ′ that still participate in the contribution group after

the deviation, with the same prescribed menu in the second stage,

(iv) the members of (S∗ ∩ S ′) ∩ T ⊂ S ′ that change their strategies in the second stage,

(v) the members of N\(S ′ ∪ S∗) that are outsiders both before and after the deviation.

Let the resulting allocation be (S ′, a∗(S ′), u′). Since the deviation is profitable and cred-

ible, the members of T , i.e., those who are categorized in (i), (ii), and (iv), are better off

after the deviation. That is,

vi(a
∗(S ′)) ≥ u∗i for all i ∈ S∗\S ′,

u′i ≥ ūi for all i ∈ S ′\S∗,

u′i ≥ ūi for all i ∈ (S∗ ∩ S ′) ∩ T ,

where ūi = max{u∗i , vi(a∗(S ′\{i})}.

Given our supposition, the following claims must be true.
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First we claim that members of (ii) exist and that a∗(S ′) > a∗(S∗), as they are better

off after the deviation. The set of players in (ii) is nonempty, since otherwise S ′ ⊂ S∗ and a

coalitional deviation by T cannot be profitable, as (S∗, a∗(S∗), u∗) is a core allocation. This

result is from Proposition 1.

Claim 1. S ′\S∗ 6= ∅ and a∗(S ′) > a∗(S∗).

Since all players use truthful strategies in the strategy profile σ even after T ’s deviation,

the members in (iii) (outsiders of T ) obtain the same payoff vector û(S∗∩S′)\T (S ′) as in the

original subgame CPNE for S ′. This is because in subgame S ′ (even after deviation), a∗(S ′)

must be provided, as a CPNE (core) must be assigned to the subgame. Thus, we have the

following for group (iii).

Claim 2. After the deviation by T , every i ∈ (S∗ ∩ S ′)\T ⊂ S ′ receives exactly u′i = ûi.

Since u′ needs to be a CPNE payoff vector in the second stage of the reduced game by

T , we have
∑

i∈S′\S∗ u
′
i ≥ V (S ′\S∗) for uS′ to be in Core(S ′, V ). By the construction of ûS′ ,

on the other hand, we have
∑

i∈S′\S∗ ûi = V (S ′\S∗). Thus, we have the following for group

(ii).

Claim 3.
∑

i∈S′\S∗ u
′
i ≥ V (S ′\S∗) =

∑
i∈S′\S∗ ûi.

The next claim shows that the counterpart of Claim 3 holds for group (iv).

Claim 4.
∑

i∈S′∩S∗∩T u
′
i =

∑
i∈S′∩S∗∩T ûi

Proof of Claim 4. Group (iv) consists of members of W , I, and L. Note that u′i ≥ ūi for

any i ∈ S ′ ∩ S∗ ∩ T since otherwise they would have no incentive to join the deviation.

First consider the set W of winners in group (iv); we have ûi ≥ ūi by the definition of

W . The contribution group S ′ must be immune to a coalitional deviation by W , so we have

∑
i∈W

u′i ≥ Ṽ (W ) =
∑
i∈W

ûi,
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where the equality holds by Lemma 2. As for players in I, we have ûi = ūi by definition.

Thus, it follows from u′i ≥ ūi that u′i ≥ ûi for any i ∈ I. Payoffs for losers, by definition,

must satisfy ûi < ūi, so we have u′i > ûi because u′i ≥ ūi. However, it follows from Claim 2,

Claim 3, and
∑

i∈S′ u
′
i =

∑
i∈S′ ûi = V (S ′) that

∑
i∈S′∩S∗∩T

u′i ≤
∑

i∈S′∩S∗∩T

ûi. (3)

Together with
∑

i∈W u′i ≥
∑

i∈W ûi and
∑

i∈I u
′
i ≥

∑
i∈I ûi, these imply that L is empty, and

hence
∑

i∈S′∩S∗∩T u
′
i ≥

∑
i∈S′∩S∗∩T ûi. Consequently, we have from (3) that

∑
i∈S′∩S∗∩T u

′
i =∑

i∈S′∩S∗∩T ûi. �

Claims 2, 3, and 4 immediately imply the following for group (ii).

Claim 5.
∑

i∈S′\S∗ u
′
i =

∑
i∈S′\S∗ ûi = V (S ′\S∗).

The final claim follows from Claim 5 and the supposition that the deviation by T is

profitable and credible.

Claim 6. Consider a deviation by S ′ ∪ S∗ such that S ′ \ S∗ is the resulting contribu-

tion group (all members in S∗ stop contributing). Then the allocation (S ′ \ S∗, a∗(S ′ \

S∗), (u′i)i∈S′\S∗ , (vj(a
∗(S ′\S∗)))j /∈S′\S∗) is in CoreFRP (S ′\S∗) and Pareto-dominates (S∗, a∗(S∗), u∗).

Proof of Claim 6. Since the deviation by T is profitable, we have

∑
i∈S′\S∗

vi(a
∗(S ′\S∗))− C(a∗(S ′\S∗)) = V (S ′\S∗)

=
∑

i∈S′\S∗
u′i

>
∑

i∈S′\S∗
vi(a

∗(S∗)).

Thus, we have
∑

i∈S′\S∗ vi(a
∗(S ′ \S∗)) >

∑
i∈S′\S∗ vi(a

∗(S∗)), and hence a∗(S ′ \S∗) > a∗(S∗).

Now, since the deviation by T is credible, and hence u′i ≥ vi(a
∗(S ′ \ {i})) ≥ vi(a

∗((S ′ \ S∗) \

{i})) for any i ∈ S ′ \ S∗, Claim 5 implies that (S ′ \ S∗, a∗(S ′ \ S∗), (u′i)i∈S′\S∗ , (vj(a∗(S ′ \

S∗)))j /∈S′\S∗) ∈ CoreFRP (S ′ \ S∗).
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Next, we show that ((u′i)i∈S′\S∗ , (vj(a
∗(S ′ \ S∗)))j /∈S′\S∗) Pareto-dominates u∗. First, the

profitability of the deviation by T immediately implies that u′i ≥ vi(a
∗(S∗)) = u∗i for any

i ∈ S ′ \ S∗. Thus, we have shown the Pareto-domination for group (ii). Pareto-domination

for group (v) is immediate from a∗(S ′ \ S∗) > a∗(S∗). As for groups (i), (iii), and (iv), i.e.,

for all i ∈ S∗, we first note that since u∗ ∈ Core(S∗) and the game V is convex, we have

u∗i ≤ V (S∗)− V (S∗\{i}) (Shapley, 1971). Now,

V (S∗)− V (S∗\{i})

=
∑
j∈S∗

vj(a
∗(S∗))− C(a∗(S∗))−

 ∑
j∈S∗\{i}

vj(a
∗(S∗\{i}))− C(a∗(S∗\{i}))


< vi(a

∗(S∗))

+
∑

j∈S∗\{i}

vj(a
∗(S∗))− C(a∗(S∗))−

 ∑
j∈S∗\{i}

vj(a
∗(S∗\{i}))− C(a∗(S∗\{i}))


< vi(a

∗(S ′\S∗)),

where the last inequality holds since
∑

j∈S∗\{i} vj(a)−C(a) is maximized at a = a∗(S∗\{i}).

This proves that all members of groups (i), (iii), and (iv) are better off in the allocation

(S ′\S∗, a∗(S ′\S∗), (u′i)i∈S′\S∗ , (vj(a∗(S ′\S∗)))j /∈S′\S∗). Hence, we conclude that (S∗, a∗(S∗), u∗) ∈

CoreFRP is Pareto-dominated by (S ′\S∗, a∗(S ′\S∗), (u′i)i∈S′\S∗ , (vj(a∗(S ′\S∗)))j /∈S′\S∗), which

is in CoreFRP (S ′\S∗). �

The statement of Claim 6 is an apparent contradiction to (S∗, a∗(S∗), u∗) ∈ CoreFRP

(see Proposition 2). Thus, we have shown that there is no profitable and credible deviation

from the constructed strategy profile σ, so σ is a PCPNE. �

Proof of Proposition 4

Suppose to the contrary that for any natural number l, there exists r ≥ l such that

(Sr, a
∗(Sr), u

∗
r) ∈ CoreFRP (V r) and a∗(Sr) ≥ ā. This implies that there exists an increasing

sequence of natural numbers r that satisfy (Sr, a
∗(Sr), u

∗
r) ∈ CoreFRP (V r). We show that

(under this supposition) for any r with (Sr, a
∗(Sr), u

∗
r) ∈ CoreFRP (V r) and any iq ∈ Sr,
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a∗(Sr \ {iq}) approaches a∗(Sr) as r →∞, and hence the left-hand side of

∑
i∈N

mi(S)

r
[vi(a

∗(S))− vi(a∗(S\{iq}))] ≥ C(a∗(S)). (4)

diminishes to zero (since v′i(a
∗(S)) ≤ v′i(ā) < ∞). Since C(a∗(S)) ≥ C(ā) > 0, this im-

plies that (1) is violated eventually as r → ∞, which in turn leads to a contradiction to

(Sr, a
∗(Sr), u

∗
r) ∈ CoreFRP (V r).

Now, a∗(Sr), the public goods provision level induced by the contribution group Sr, is

chosen so as to satisfy the first-order condition:

∑
j∈N

mj(Sr)

r
v′j(a

∗(Sr))− C ′(a∗(Sr)) = 0, (5)

where [mj(Sr)/r]v
′
j(a) =

∑
iq∈S v

r′
iq(a). For any r, the left-hand side of (5) is continuous and

strictly decreasing in the public goods provision level a since v′′j ≤ 0 and C ′′ > 0 (as Figure

2 illustrates). Similarly, for any iq ∈ Sr, the optimality of public goods provision requires

that a∗(Sr \ {iq}) satisfy

∑
j∈N

mj(Sr \ {iq})
r

v′j(a
∗(Sr \ {iq}))− C ′(a∗(Sr \ {iq})) = 0, (6)

or equivalently

∑
j∈N

mj(Sr)

r
v′j(a

∗(Sr \ {iq}))−
v′i(a

∗(Sr \ {iq}))
r

− C ′(a∗(Sr \ {iq})) = 0,

where the second term in the second equation represents the free-rider iq’s marginal benefit

from the public goods provision.

Now, we claim that for any ε ∈ (0, ā), there exists a positive integer rε such that for any

r ≥ rε, ∑
j∈N

mj(Sr)

r
v′j(a

∗(Sr)− ε)−
v′i(a

∗(Sr)− ε)
r

− C ′(a∗(Sr)− ε) > 0,

i.e., the left-hand side of (6), evaluated at a = a∗(Sr)− ε instead of a∗(Sr \ {iq}), is positive

as Figure 2 shows. Together with v′′j ≤ 0 and C ′′ > 0, this implies that a∗(Sr \ {iq}) ∈

(a∗(Sr)− ε, a∗(Sr)), which in turn implies the convergence of a∗(Sr \ {iq}) to a∗(Sr).
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To show the claim, we first define the minimum C ′′ over the relevant range as c ≡

mina∈[0,a∗(N)]C
′′(a). It follows from C ′′ > 0 that c > 0. Now, for any r, it follows from (5)

and Taylor’s formula that there exists a′ ∈ [a∗(Sr)− ε, a∗(Sr)] such that

∑
j∈N

mj(Sr)

r
v′j(a

∗(Sr)− ε)− C ′(a∗(Sr)− ε)

=
∑
j∈N

mj(Sr)

r
v′j(a

∗(Sr))− C ′(a∗(Sr))

−ε

[∑
j∈N

mj(Sr)

r
v′′j (a′)− C ′′(a′)

]

= ε

[
C ′′(a′)−

∑
j∈N

mj(Sr)

r
v′′j (a′)

]
≥ cε,

where we have used v′′j ≤ 0 to derive the last inequality. On the other hand, it follows from

v′i(a
∗(Sr)− ε) ≤ v′i(ā− ε) (as a∗(Sr) > ā) that there exists rε such that

v′i(a
∗(Sr)− ε)
r

≤ v′i(ā− ε)
r

<
cε

2

holds for any r ≥ rε. Then the claim follows immediately since

∑
j∈N

mj(Sr)

r
v′j(a

∗(Sr)− ε)−
v′i(a

∗(Sr)− ε)
r

− C ′(a∗(Sr)− ε) > cε− cε

2

> 0.

Now, we have from mi(Sr) ≤ r and the claim established above that

∑
i∈N

mi(Sr)

r
[vi(a

∗(Sr))− vi(a∗(Sr \ {iq}))]

≤
∑
i∈N

[vi(a
∗(Sr))− vi(a∗(Sr \ {iq}))]→ 0 as r →∞.

Since C(a∗(S)) > C(ā) > 0, we have shown that there exists r̄(ā) such that for any r ≥ r̄(ā),

the free-riding-proofness condition (1) fails to be satisfied, which implies that a∗(S∗) < ā for

any (S∗, a∗(S∗), u∗) ∈ CoreFRP (V r) when r ≥ r̄(ā).
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Appendix C

In this appendix, we provide some logical relationships between PCPNE of our game and

other equilibrium concepts of (possibly other) noncooperative coalition formation games.

For the sake of simplicity, we assume that the TU game generated from the public goods

provision game is not only a convex game but also a strictly convex game (i.e., inequalities

are strict). This is not at all a restrictive assumption when the public goods space is the

nonnegative real line.

First note that even within our game, PCPNE is different from a subgame perfect Nash

equilibrium (SPNE) with a coalition-proof Nash equilibrium (CPNE) assigned to each sub-

game (i.e., a Nash equilibrium in the participation game with a CPNE assigned to each

subgame of the contribution stage). In PCPNE, when a group of players deviates in the

first stage, they can coordinate their strategies in the following subgames in order to support

a target outcome (as long as such a deviation strategy profile is credible in the recursive

sense). In contrast, in SPNE, only a single player can change her strategy in the first stage

and also in the following subgame. Since an equilibrium strategy is taken in each subgame,

the deviating player has no incentive to switch her strategies in the subgames. Thus, given

that a CPNE is assigned to every subgame, we need only check if there exists a unilateral

deviation incentive in the first stage to see if a given strategy profile for the entire game

is SPNE. This distinction makes a big difference. In the following, we will compare the

set of equilibrium outcomes of various rules of games including (noncooperative) coalition

bargaining games.

In this paper, we have analyzed CoreFRP (S) for S ⊆ N , CoreFRP , and PCPNE of our

voluntary-participation game with common agency games as the second-stage subgames. Re-

call that we have found that PCPNE of our game is equivalent to CoreFRP and Core〈XFRP 〉.

Here, we consider the following other possible games and equilibrium concepts:

1. SPNE with CPNE of the common agency game, i.e., Nash equilibrium (NE) of our

voluntary-participation game with CPNE assigned to each common agency subgame.
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2. SPNE with the strong Nash equilibrium (SNE) of the common agency game, i.e., NE of

our voluntary-participation game with SNE assigned to each common agency subgame.

3. Perfect strong Nash equilibrium (PSNE), i.e., SNE of our voluntary-participation game

with SNE assigned to each common agency subgame.

4. SPNE with the stationary subgame perfect Nash equilibrium (SSPNE) of Perry and

Reny’s (1994) or Moldovanu and Winter’s (1995) noncooperative coalition bargaining

games in the second stage that follows the voluntary participation game in the first

stage.

We restrict our attention to the open-membership participation game in the first stage since

voluntary participation in the common agency contribution game is of primary interest to

us. We will show the logical relationship that is schematically described in Figure 3.

Claim 1. Games 1, 2, and 4 generate a common set of outcomes that includes PCPNE =

CoreFRP of our game. This inclusion relationship is strict in general.

Proof. In our common agency (sub)game, the set of CPNE outcomes, the set of SNE

outcomes, and the core of the TU game generated from our public good economy are all

equivalent. Perry and Reny (1994) show that the core of a TU game is implementable

by a noncooperative coalitional bargaining game when it is totally balanced. Similarly,

Moldovanu and Winter (1995) show that the core of an NTU game is implementable by

their noncooperative coalitional bargaining game when the NTU game has a nonempty core

in all subgames. Thus, in the subgame S ⊆ N of games 1, 2, and 4 generate Core(S). The

sets of outcomes of these three games are the same, since the Nash equilibrium concept is

adopted in the first stage voluntary-participation game of all the three.

As for the comparison with PCPNE = CoreFRP , it is clear that every PCPNE allocation

is included in the outcome allocations of the above three games, since the perfectness of

PCPNE is more demanding than Nash equilibrium.

We show that this inclusion relationship is strict with the example in the main text.

Since the TU game generated from the public goods provision problem is convex, we can
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utilize Property 1 of Appendix A (Shapley, 1972). That is, the worst core allocation for

each player i is V ({i}) in any convex games. First, consider singleton coalition S = {11}

as the contribution group. In this case, a∗({11}) = 11 and V ({11}) = 60.5. The unique

allocation of Core(S) is (S, a∗(S), u) = ({11}, 11, (60.5, 55, 33, 11)). Although it does not

belong to CoreFRP (or the set of allocations in PCPNE), we can support it as a subgame

perfect Nash equilibrium of games 1, 2, and 4. Since the participation stage just demands

being a Nash equilibrium in these three games, we only need to consider three subgames

S ′ = {11, 1}, S ′′ = {11, 3}, and S ′′′ = {11, 5}, which yield V (S ′) = 72, V (S ′′) = 98, and

V (S ′′′) = 128, respectively. We assign an extreme point of the core to each of subgames

S ′, S ′′, and S ′′′: (u′11, u
′
1) = (71.5, 0.5), (u′′11, u

′′
3) = (93.5, 4.5), and (u′′′11, u

′′′
5 ) = (115.5, 12.5),

respectively. Clearly, none of 1, 3, and 5 has an incentive to deviate. Thus, the allocation

(S, a∗(S), u) = ({11}, 11, (60.5, 55, 33, 11)) is in SPNE of games 1, 2, and 4. �

Claim 2. Game 3 generates the set of outcomes that is included in PCPNE = CoreFRP

of our game. Moreover, it is empty unless there is a grand coalition free-riding-proof core

allocation.

Proof. Clearly, PSNE ⊂ PCPNE since SNE ⊂ CPNE. In the public goods pro-

vision problem, for all S $ N and all (S, a∗(S), u) ∈ Core(S), there is an allocation

(N, a∗(N), u′) ∈ Core(N) with u′ > u; the grand coalition with this allocation blocks the al-

location (S, a∗(S), u). Thus, unless there is an FRP-Core allocation with the grand coalition,

PSNE is an empty set. �
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