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This paper investigates the effects of taxation on the distributions of income and wealth and 

on the welfare of heterogeneous households. I first demonstrate that the tails of income and 

wealth distributions converge to a Pareto distribution in a Bewley model in which 
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1 Introduction

Mechanisms underlying the distributions of income and wealth and the effects of tax

on the distributions have attracted renewed interests. Empirical studies by Feenberg

and Poterba [11] and Piketty and Saez [20] investigated the time series of top income

share in the U.S. by using tax returns data, and suggested that the tax reform play an

important role in determining inequality among households. Guvenen, Kuruscu, and

Ozkan [13] investigated the impact of tax on wage inequality. Cagetti and De Nardi

[6] studied the effect of estate tax on wealth inequality.

Along with the empirical studies, there has been a rapid development on the theo-

retical framework that accommodates the household heterogeneity and thereby income

and wealth inequality. For example, Numerical studies by Huggett [14] and Castañeda,

Dı́az-Giménez, and Ŕıos-Rull [9] successfully capture the overall shape of earnings and

wealth distributions in a dynamic general equilibrium model. Quadrini [21] and Cagetti

and De Nardi [6] match the wealth distribution in a rich model that explicitly formu-

lates entrepreneurs.

The present paper complements theirs by concentrating on the the tail distributions

of income and wealth, which covers a small fraction of population but has a large

impact on the inequality measures because of the tail’s large shares in income and

wealth. This motivation is shared with Benhabib and Bisin [4] who investigated the

wealth distribution in an overlapping generations model.

In this paper, I extend my previous study [19] which developed a simple analytical

theory of income distribution in the Solow and Ramsey growth models. The previous

paper incorporated an idiosyncratic asset return shock, and showed that the Solow

model generates a stationary Pareto distribution for the detrended household income

at the balanced growth path. The paper analytically derived the Pareto exponent from
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fundamental parameters. The intuition for the Pareto distribution was analogous to

Gabaix [12]: the wealth accumulation follows a multiplicative process with a reflective

lower bound in which wage income serves as the reflective bound. The Pareto exponent

was determined by the balance of the savings from wage income that pushes up the

bottom of the wealth distribution and the inequalizing diffusion effect that is attributed

to risk taking behaviors of the top wealth holders.

In the present paper, I show that the similar analysis applies to a Bewley model

with idiosyncratic investment shocks and borrowing constraints. Precautionary savings

due to the borrowing constraints and uninsurable shocks serve as the lower bound

of the wealth accumulation process. Using numerical computation, I show that the

model generates the Pareto distribution, and that the Pareto exponent is decreased

by a capital tax. Then, I introduce taxes on labor income and consumption as well,

and compare various taxation scheme that generate the same government expenditure-

GDP ratio. I find that the capital tax generates a more egalitarian distribution than

consumption tax, whereas the effects of consumption tax are similar to that of non-

distortionary tax.

The rest of the paper is organized as follows. In Section 2, I present a variation

of the Bewley model with idiosyncratic investment risks and borrowing constraints

and show the stationary distributions of income and wealth. I compare the result

to the same model without borrowing constraints, which generates a non-stationary

log-normal process for individual wealth. In Section 3, I introduce taxation other than

capital tax, compute the stationary equilibrium and compare the results across taxation

schemes. Section 4 concludes.
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2 Quantitative demonstration of the Pareto distri-

bution

2.1 Bewley model with investment shocks and borrowing con-

straints

In this section, a Bewley model with idiosyncratic investment shocks and borrowing

constraints is presented. The model is a variation of Covas [10] with a pension program

and exogenous growth. Consider a continuum of infinitely living households i ∈ [0, 1].

Each household inelastically supplies one unit of labor. Household i is also endowed

with initial capital ki,0 and a “backyard” production technology that is specified by a

Cobb-Douglas production function:

yi,t = kαi,t(ai,tli,t)
1−α, (1)

where li,t is the labor employed by i and ki,t is the capital owned by i. The labor-

augmenting productivity ai,t has a common trend γ > 1:

ai,t = γtεi,t, (2)

where εi,t is a temporary productivity shock. I assume that εi,t follows a two-state

Markov process. The households do not have the means to insure against the produc-

tivity shock εi,t except for their own savings.

Each household lineage is discontinued with a small probability µ in each period.

At this event, a new household is formed at the same index i with no wealth. Following

the perpetual youth model [5], I assume that the households participate in a pension

program. The households contract all of the non-human wealth to be confiscated by

the pension program at the discontinuation of the lineage, and they receive in return
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the premium in each period of continued lineage at rate p per unit of non-human wealth

they own. The pension program is a pure redistribution system, and must satisfy the

zero-profit condition: (1− µ)p = µ. Thus, the pension premium rate is determined as

p = µ/(1− µ). (3)

The households can hold assets in the form of physical capital ki,t and bonds bi,t. The

bond bears a risk-free interest Rt. The households can engage in lending and borrowing

through bonds. There is a limit on the borrowing. I assume that the households can

borrow only up to a fraction θ of their total wealth ki,t+bi,t. Capital income is taxed at

flat-rate τk. I assume that the tax proceeds are spent on the unproductive government

purchase of goods. In the following notation, consumption ci,t, assets ki,t and bi,t, and

real wage wt are detrended at the rate of technical progress γ.

In each period, a household maximizes its profit from physical capital πi,t = yi,t −

wtli,t subject to the production function (1). Labor can be hired at wage wt, and the

labor contract is struck after the realization of the technology shock ai,t. The first-order

condition of profit maximization yields the labor demand function:

li,t = (1− α)1/αa
(1−α)/α
i,t w

−1/α
t ki,t. (4)

Plugging into the production function, I obtain the goods supply function:

yi,t = (1− α)1/α−1a
(1−α)/α
i,t w

1−1/α
t ki,t. (5)

Then, I obtain πi,t = αyi,t and wtli,t = (1− α)yi,t. At the optimal labor hiring li,t, the

return to capital is defined as

ri,t ≡ πi,t/ki,t + 1− δ = α(1− α)(1−α)/α(ai,t/wt)
(1−α)/α + 1− δ. (6)
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Given the optimal operation of physical capital in each period, the households solve

the following dynamic programming:

V (Wi, εi) = max
ci,k′i,b

′
i,W

′
i

c1−σ
i

1− σ
+ β̃E (V (W ′

i , ε
′
i) | εi) (7)

subject to

Wi = ci + γ(k′i + b′i), (8)

Wi = (1 + p)(riki +Rbi − τk((ri − 1)ki + (R− 1)bi)) + w, (9)

b′i/(k
′
i + b′i) > −θ, (10)

k′i, k
′
i + b′i > 0, (11)

where β̃ is a modified discount factor β̃ ≡ βγ1−σ(1−µ). Wi,t denotes the total resources

available to i at t (the cash-at-hand). The control variables ki and bi can be equivalently

expressed by i’s total financial assets xi ≡ ki + bi and portfolio θi ≡ bi/xi. Thus, the

dynamic programming solves the optimal savings problem for xi and the portfolio

choice for θi.

An equilibrium is defined as a value function V , policy functions (x, θ), price func-

tions (w,R), a joint distribution function Λ, and the law of motion Γ for Λ such that

V (Wi, εi; Λ), x(Wi, εi; Λ), and θ(Wi, εi; Λ) solve the household’s dynamic programming,

such that prices w(Λ) and R(Λ) clear the markets for labor
∫ 1

0 li,tdi = 1, goods, and

bonds
∫ 1
0 bi,tdi = 0, and such that the policy functions and the exogenous Markov pro-

cess of εi constitutes Γ that maps the joint distribution of Λ(Wi, εi) to that in the next

period. A stationary equilibrium is defined as a particular equilibrium in which Λ is a

fixed point of Γ.

With an autocorrelation in productivity εi,t, the households with high productivity

will invest in capital with a high rate of borrowing, while the households with low

6



productivity will shift their assets to risk-free bonds. Thus, as Covas [10] argued, this

model captures an economy in which a fraction of the households choose to become

entrepreneurs while the other households rely on wage and the returns from safe assets

as their main income source. Since the entrepreneurs bear the investment shocks

that generate the fat tail of wealth distribution in this model, I will observe that

the tail population largely consists of current and past entrepreneurs. As a model of

entrepreneurship, the model presented here is not as rich as the one with occupational

choice (see Quadrini [22] for a survey). Nonetheless, in this model, the entrepreneurs

(households with high productivity) do not diversify much of their investment risks

while workers choose to bear substantially smaller risks.

2.2 Borrowing constraints and Pareto distribution

I numerically solve for a stationary equilibrium of this economy. This model features a

multiplicative investment shock instead of an endowment shock that enters the wealth

accumulation process additively as in the benchmark model of Aiyagari [1]. Thus,

the stationary wealth distribution has a fat tail unlike in the Aiyagari economy. This

means that the simulation of wealth accumulation process suffers a slow convergence

of aggregate wealth, due to the fact that the aggregated noise in a fat tail does not

decrease as quickly as the simulated population increases. However, if the wealth state

is discretized in logarithmic space, the stationary distribution can be computed well

simply by iterating the multiplication of the Markov transition matrix. Intuitively, this

is because the logarithm of a multiplicative process falls back to an additive process.

To manage the computation of portfolio choice, I follow a two-step approach similar

to Barillas and Fernández-Villaverde [3], who solve the neoclassical growth model with

labor choice using the endogenous gridpoints method by Carroll [7] for the savings
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problem and the standard value function iteration for the labor choice. Further details

in the computation are deferred to Appendix A.

I compute the stationary equilibrium distributions of after-tax income and wealth

under tax rates τk = 0.5 and τk = 0.28. The tax rates are chosen to emulate the change

in the top marginal income tax rate in 1986 in the U.S., which is discussed in Section

3.3). The wealth corresponds to Wi,t and the after-tax income is wt + (1 − τk)((ri,t −

1)ki,t + (Rt − 1)bi,t). The transition matrix Π for the investment shock εi is set by

π11 = 0.9723 and π22 = 0.8, for which the stationary fraction of households with high

productivity is 12% and the average exit rate from the high productivity group is 20%.

These numbers correspond to the fraction and exit rate of the entrepreneurs in the

U.S. data (Kitao [15]). The states of the Markov process εi,t are set at {0.95, 1.05}.

The states are chosen so that the stationary wealth distribution in the model with tax

rate τk = 0.5 has a Pareto exponent 2.2, which roughly matches with the U.S. level

right before the tax cut in 1986. The lineage discontinuation rate µ is set at 1%. The

borrowing constraint θ is set at 0.5. The parameters on technology and preferences are

set at standard values: α = 0.36, δ = 0.1, σ = 3, β = 0.96, and γ = 1.02.

Figure 1 plots the distributions of income and wealth at stationary equilibrium for

τk = 0.5 and 0.28. Pareto tails are clearly observed in both income and wealth dis-

tributions. The Pareto exponents for income and wealth coincide, since high income

earners earn most of the income from capital in this model. The Pareto tail is signifi-

cantly flatter in the low tax regime than in the high tax regime: 2.22 for τk = 0.5 and

1.96 for τk = 0.28. The simulations show that the Pareto distributions are obtained

in this model even when µ = 0, i.e., the households live indefinitely. I also compute a

transition path from the stationary distribution under τk = 0.5 to that under τk = 0.28.

In Figure 1, the plot shown by dots shows the transitional distribution 10 years after
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the tax cut is introduced.

2.3 Case without borrowing constraints

In this section, I analytically investigate the case without borrowing constraints. I

show that the wealth follows a log-normal process if there is no limit on borrowing,

no tax, µ = 0, and if εi,t is independent across t. This log-normal process implies

that no stationary distribution of relative wealth exists. When µ > 0, the stationary

distribution of wealth has a Pareto tail, and the Pareto exponent is analytically derived.

Since this model features a utility exhibiting constant relative risk aversion, the

savings rate and portfolio decisions are independent of wealth levels if there is no limit

on borrowing (Samuelson [23], Merton [18]). Here I draw on Angeletos’ [2] analysis of

a Bewley model with idiosyncratic investment risks. I set the capital tax to be zero:

τk = 0. Let Ht denote the human wealth, defined as the expected discounted present

value of future wage income stream:

Ht ≡
∞∑
τ=t

wτ (1− µ)τ−t
τ∏

s=t+1

R−1
s . (12)

The evolution of the human wealth satisfies Ht = wt + (1 − µ)R−1
t+1Ht+1. We define a

household’s total wealth as

Wi,t = (1 + p)(ri,tki,t +Rtbi,t) +Ht. (13)

Note that the wage wt, human wealth Ht, and total wealth Wi,t are detrended by the

growth factor γ.

Consider a balanced growth path at which Rt, wt, and Ht are constant over time.

Then, the household’s problem is formulated in a recursive form:

V (Wi) = max
ci,k′i,b

′
i,W

′
i

c1−σ
i

1− σ
+ β̃E (V (W ′

i )) (14)
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subject to

Wi = ci + γ(k′i + b′i) + (1− µ)R−1H, (15)

Wi = (1 + p)(riki +Rbi) +H. (16)

This dynamic programming allows the following solution with constants s and φ (see

Appendix B for derivation):

c = (1− s)W, (17)

k′ = φsW, (18)

b′ = (1− φ)sW − (1− µ)R−1H. (19)

By substituting the policy functions in the definition of wealth (13), and by noting

that (1 − µ)(1 + p) = 1 holds from the zero-profit condition for the pension program

(3), I obtain the equation of motion for the detrended individual total wealth:

Wi,t+1 =

 g̃i,t+1Wi,t with prob. 1− µ

H̄ with prob. µ,
(20)

where the growth rate is defined as

ĝ′i ≡
(φr′i + (1− φ)R)s

1− µ
. (21)

Thus, at the balanced growth path, the household wealth evolves multiplicatively ac-

cording to (20) as long as the household lineage is continued. When the lineage is

discontinued, a new household with initial wealth Wi = H replaces the old one. There-

fore, the individual wealth Wi follows a log-normal process with random reset events

where H is the resetting point. Using the result of Manrubia and Zanette [17], the

Pareto exponent of the wealth distribution is determined as follows.
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Proposition 1 A household’s detrended total wealth Wi,t has a stationary Pareto dis-

tribution with exponent λ that is determined by

(1− µ)E(ĝλi,t) = 1 (22)

if µ > 0. If µ = 0, Wi,t has no stationary distribution and asymptotically follows a

log-normal distribution with diverging variance.

Proof: See Appendix C.

As seen in (22), the Pareto exponent is large when µ is large. If there is no discon-

tinuation event (i.e., µ = 0), then the individual wealth follows a log-normal process

as in [2]. In that case, the relative wealth Wi,t/
∫
Wj,tdj does not have a stationary

distribution. Eventually, a vanishingly small fraction of individuals possesses almost

all the wealth. This is not consistent with the empirical observations.

The log-normal process, and thus the diverging variance, do not occur in the model

with borrowing constraints even if µ = 0. The difference occurs from the fact that

the consumption function is nonlinear in wealth when there is a borrowing constraint

whereas it is linear without borrowing constraints. The linear consumption function

arises in a quite narrow specification of the Ramsey model as Carroll and Kimball [8]

argue. For example, a concave consumption function with respect to wealth arises

when the labor income is uncertain or when the household’s borrowing is constrained.

This implies that the log-normal process of wealth is a special case whereas the Pareto

distribution characterizes a wide class of specifications.

In sum, this section demonstrated that the Pareto distribution of income and wealth

naturally arises as a stationary distribution in the Bewley model with idiosyncratic in-

vestment shocks and borrowing constraints. I show that the precautionary savings that

arise from the borrowing constraints and the discontinuation of household lineage gen-

erate the stationary Pareto distribution, whereas without these two factors the model
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will generate a non-stationary log-normal development of wealth distribution. This

section also showed that the capital taxation reduces the stationary Pareto exponent.

A complete analysis of the effect of the savings on the Pareto exponent is provided in

a separate paper (Nirei [19]).

3 Effects of various taxation

3.1 Modified model with consumption, capital, and labor taxes

In the last section, I conducted an experiment of a tax cut in an environment where the

government expenditure is passively determined by the tax proceeds. In this section,

I fix the government expenditure as a fraction of GDP, and the tax rate is determined

so that the tax proceeds in a stationary equilibrium meets the required government

expenditure. By this way, I can compare the effects of various taxation schemes given

the constraint that the government must finance an exogenously fixed expenditure-

GDP ratio.

I modify the budget constraints of the household at the balanced growth path as

follows:

Wi = (1 + τc)ci + k′i + b′i, (23)

Wi = (1 + p)(1− τk)(riki +Rbi) + (1− τl)w, (24)

b′i/(b
′
i + k′i) > −θ, (25)

k′i, k
′
i + b′i > 0 (26)

where τl, τk, and τc denote flat tax rates on labor income, capital income, and consump-

tion, respectively. Note that the labor tax is non-distortionary, since labor is supplied

inelastically in this model.
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The exogenous ratio of government expenditure to GDP is denoted by ḡ. The

government budget constraint requires:

ḡ
∫
yidi = τc

∫
ci + τk(riki +Rbi)di+ τlw (27)

The stationary equilibrium is defined similarly to that in the previous section, with

an addition of the government budget constraint. The stationary equilibrium is solved

numerically with the algorithm similar to that in the previous section. One difference

is that I use simulations here rather than the multiplication of transition matrix to

compute the stationary distribution of wealth.

3.2 Numerical results

The parameter values are set as follows. The investment shock has two states, εi,t ∈

{0.85, 1.15}. These values are chosen so that the Pareto exponent of the simulated

income distribution falls in the empirical range. The transition matrix for ai,t is set

so that Pr(εi,t = 1.15 | εi,t−1 = 1.15) = 0.95 and Pr(εi,t = 0.85 | εi,t−1 = 0.85) = 0.5.

This transition probability is chosen so that at the stationary distribution 10% of the

households have a high shock. The government expenditure is set at g = 0.1 of GDP.

Tax rates for labor income, capital income, or consumption are set so that each tax

scheme raises the tax proceeds equal to the government expenditure. The government

expenditure is assumed unproductive. Other parameters are the same as in the previous

section: α = 0.36, δ = 0.1, σ = 3, β = 0.96, γ = 1.02, and µ = 0.01. For the

computation, the resource available to the households (the cash-at-hand) is discretized

by 100 grids which are equally spaced in logarithmic scale, and a population of 100,000

households are simulated.

Figure 2 plots the policy functions for savings (wealth next period) for the house-
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Figure 2: Optimal savings k′i + b′i as a function of Wi for the households with a low

shock (left) and a high shock (right)

holds with a low shock and a high shock. We observe that the functions are almost

linear except for around the lower bound of wealth. The households with high shocks

consume more than those with low shocks. The households save more under the capital

tax regime than other tax regimes.

Figure 3 plots the policy functions for portfolio (the risk-free bond’s share of total

wealth) for the households with a low and a high shock. The households with low

shocks tend to hold wealth in the form of risk-free bond, while the households with

high shocks always borrow through bonds. The portfolio of the households with high

wealth and low shocks converges to a constant, which is consistent with the implication

of the Ramsey model without borrowing constraints. When the households are far

from the borrowing constraint point, their behavior becomes similar to that without

borrowing constraints. The households near the lower bound of wealth tend to choose

risky portfolio.
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Figure 3: Optimal portfolio b′i/(k
′
i + b′i) as a function of Wi for the households with a

low shock (left) and a high shock (right)

Figure 4 plots the value functions for the households with a low and a high shock

under various tax schemes. It is observed that the labor income tax achieves a higher

value for each wealth level than the capital income tax and consumption tax. This is

because the labor income tax in our model is equivalent to lump-sum tax, since labor

is supplied inelastically, and thus the labor tax is non distortionary. I observe that the

value functions under capital income tax and consumption tax do not differ very much.

Figure 5 plots the cumulative distribution of wealth across households in log-log

scale. Pareto distributions are observed in the tail. Pareto exponent is clearly higher

under the capital income tax scheme than under the labor income tax or the consump-

tion tax. This is because the capital income tax reduces the variance of the after-tax

rate of return to capital. In addition to the direct effect of tax on the after-tax rate

of return, households shift their wealth from risky assets to risk-free asset as shown

in Figure 3, because the reduced variance of after-tax rate decreases the contribution
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Figure 4: Value functions for the households with a low shock (left) and a high shock

(right)

of diffusion effects to the asset growth. Hence, the capital tax lowers the households’

risk-taking and results in the steepened tail distribution of wealth.

Table 1 shows the aggregate quantities and prices under various tax schemes. It is

clear that the capital taxation generates lower capital, output, consumption, and wage.

The after-tax return on capital is equilibrated across tax schemes, because the Euler

equation dictates the marginal rate of intertemporal substitution to be equal to the

after-tax return. The consumption tax produces almost the same outcome as the labor

(non-distortionary) tax. This results confirm the similar results known in homogeneous

agent models.

Table 2 shows the median household’s status and the overall inequality measures.

The median of x (the wealth available in a period), k (the physical capital), consump-

tion, and value v are reported. The Gini coefficient is computed for wealth x. The

Pareto exponent is estimated for the top 1% wealth holders by Hill’s estimator. I ob-
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Figure 5: Simulated stationary distributions of wealth

K Y C R-1 r(1)-1 r(2)-1 w

τl = 0.16 2.32 1.39 0.88 0.105 0.099 0.24 0.76

τc = 0.15 2.34 1.41 0.87 0.104 0.098 0.24 0.76

τk = 0.47 1.32 1.13 0.75 0.200 0.193 0.61 0.40

Table 1: Simulation results on aggregate quantities and prices
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med x med k med c med v Gini Pareto

τl = 0.16 1.88 1.11 0.72 -7.19 0.57 1.84

τc = 0.15 2.05 1.16 0.72 -6.99 0.58 1.90

τk = 0.47 1.51 0.80 0.65 -9.72 0.46 2.58

Table 2: Simulation results on median household and inequality indices

serve that the median consumption and welfare value is lower under the capital tax.

The inequality measures decrease under the capital tax. This is consistent with previ-

ous results in this paper. The capital tax steepens the slope of the tail distribution, i.e.

increases the Pareto exponent. Even though the capital tax also lowers the wage rate,

the equalization of the wealth dominates the effect and the overall inequality measure,

i.e. the Gini coefficient, goes down.

Finally, I conduct a welfare comparison. I consider a household with wealth x.

The value for this household located in the stationary economy under capital tax is

denoted by Vcapital(x), while that under consumption tax is Vconsumption(x). I define a

compensated wealth φ(x) as:

Vcapital((1 + φ)x) = Vconsumption(x) (28)

Namely, the household with x is indifferent between the two economies if φ fraction of

wealth x is compensated for living under the capital tax regime.

Figure 6 plots the compensation φ as a function of percentile in wealth x and a

productivity shock status. I observe that the capital tax is preferred by almost all

the households with high shocks and 90 percent of the households with low shocks.

This implies that, in this model, the benefits of the high wage and high returns to

capital outweigh the cost of consumption tax for most of the households, except for
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Figure 6: Compensated wealth φ for the relocation from the consumption tax economy

to the capital tax economy for a household with a relative wealth shown in the percentile

of x
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the households with low shocks and high wealth. This is intuitive: the households with

low shocks and high wealth finance their high consumption by dissaving, and thus the

benefit of high wage and returns is outweighed by the high cost of consumption.

3.3 Transition effects of a tax cut

Taxation has a direct effect on wealth accumulation by lowering the after-tax increment

of wealth and the effect through the altered incentives that the households face. The

impact of income tax legislation in the 1980s in the U.S. has been extensively discussed

in the context of the recent U.S. inequalization. As studied by Feenberg and Poterba

[11], an unprecedented decline in the Pareto exponent occurred right after the Tax

Reform Act in 1986. Although the stable exponent after the downward leap suggests

that the sudden decline was partly due to the tax-saving behavior, the steady decline

of the Pareto exponent in the 1990s may suggest more persistent effects of the tax

act. Piketty and Saez [20] suggests that the imposition of progressive tax around the

Second World War was the possible cause for the top income share to decline during

this period and stay at its low level for a long time until the 1980s.

The simulated results shown in Figure 1 and the above analytical results confirm

that the tax cut that affects capital income reduces the Pareto exponent. However,

the simulations of the transition path from τk = 0.5 to 0.28 show that the transition

in the slope of the tail takes a very long time while the mean of income and wealth

converges relatively fast. Given a tax cut, the households choose to consume more

in the present, and thus their accumulation of wealth becomes slower than what the

Solow model predicts as in [19]. This postponement effect is greater for the households

with higher wealth.

This point is shown in Figure 7, in which the convergence to the stationary distri-
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Figure 7: Transition path from the stationary equilibrium with τk = 0.5 to that with

τk = 0.28
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Figure 8: Transition paths from the stationary equilibrium with τk = 0.5 to that with

τk = 0.28

bution of wealth is faster for the low-wealth group than the high-wealth group. Thus,

even though the aggregate capital adjusts toward its new level steadily (as shown in

Figure 8), the effect on slope takes much longer. This is an important departure from

the Solow model.

The transition path in the simulated model is consistent with the fact that the top

share of income has increased after the tax cut [20], since the aggregate capital and the

top income shares converge to a new stationary level relatively quickly. However, it is

not consistent with the observation that the Pareto exponent has also decreased in the

years after the cut. One possible explanation is that the Pareto exponent I estimated

at the top 1 percentile of income [19] does not correspond to the Pareto exponent I
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observe at the very end of our computed distribution. In Figure 1, I observe that the

slope at the 1 percentile is steeper than the slope further at the tail. This is because

the contribution of wage income is non-negligible for this level of income.

3.4 Effects of riskiness

Finally, I explore an alternative explanation for the U.S. historical experience. The

Pareto exponent has experienced a large change in drift around 1970s in the U.S. It

has been recognized that the income distribution has become inegalitarian since 1980s

([20], [24]), and it has come to much public notice. The flattened tail constitutes an

important part of this inequalization process. Our model (as in [19]) identifies several

fundamental parameters as the determinant of the Pareto exponent. Let us focus on

the key variable, (z/x̄)/(Var(g)/2), that measures the ratio between the contributions

of the savings from labor income and of the diffusion effect. The numerator can be

decomposed into the personal savings rate, the labor share of income, and the output-

capital ratio. The latter two factors are fairly stable, while the personal savings rate

shows a steady decline in these years. Figure 9 plots the historical personal savings

rate in the NIPA statistics. The denominator, the variance of the asset growth rate for

individuals, is hard to measure. Figure 9 plots the time series of the annual excess re-

turns of the S&P500 index relative to the treasury bills (smoothened by 7-year moving

average). The plotted excess returns measure our Var(g)/2 under the assumptions that

the individual wealth experiences the same volatility as the S&P500 index, and that

the mean of the logarithmic instantaneous returns coincide between the S&P500 index

and the Treasury Bills. Under the assumptions, the logarithm of the annual return of

the S&P500 is equal to the returns on the treasury bills plus a half of the logarithmic

variance of the S&P500 returns. I note that the excess returns experienced a marked
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Figure 9: Excess returns measured by S&P500 index returns minus T-Bills returns

(left axis) and the personal savings rate (right axis). The excess returns are smoothed

by 7-year moving average.
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Figure 10: U.S. Pareto exponent (estimated in the range of the 99 percentile to the

99.9 percentile income) and the model prediction when the excess returns of S&P500

index is used as the proxy for Var(g)/2.

trough around 1970. Figure 10 shows the model prediction when the excess return

is used for Var(g)/2 and when the NIPA personal savings rate is used to compute z

in our formula for λ [19]. The time series of the labor share is computed from the

NIPA statistics and the capital-output ratio is fixed at the historically stable value,

2 (Maddison [16]). The predicted Pareto exponent is mostly too small to match the

estimated exponent, possibly due to the underestimation of the contribution from the

savings and due to the overestimation of the wealth growth variance. Also, the pre-

dicted exponent becomes extremely large or negative around 1970, due to the near-zero

or negative values of the excess returns of S&P500 index during the periods. However,

the movement of the predicted series is remarkably parallel to the actual series.
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4 Conclusion

This paper demonstrated that the Bewley model with idiosyncratic investment shocks

is able to generate the Pareto distribution as the stationary distribution of income

at the balanced growth path. I argued that the Pareto distribution is generated by

the investment shock that provides a multiplicative shock in the wealth accumulation

process and by the borrowing constraints that induce precautionary savings and work

as a reflective lower bound of the wealth accumulation. I showed that the capital tax

reduces the Pareto exponent. The Pareto exponent was also analytically determined

by fundamental parameters for a particular case.

I compared the distributions of income and wealth across different tax schemes that

generate the same government expenditure-GDP ratio. Under calibrated parameter

values, the simulation shows that the Pareto exponent is lower under capital tax than

under consumption tax, while the exponent under consumption tax is similar to that

under non distortionary tax. I also conducted a welfare comparison between the capital

and consumption taxes. The result showed that a small fraction of the households with

low shocks and high wealth prefers the stationary equilibrium under the consumption

tax while others showed the opposite preference.

Appendix

A Computation

In this section I explain the numerical computation of the model in Section 2.2. A

household’s cash-at-hand Wi is discretized by 100 grids that are equally spaced in

logarithmic scale. The pseudo code for the stationary equilibrium is as follows.
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1. Outer loop: Set nt = 0 and guess values for θ0(Wi, εi)

(a) Inner loop 1: Set nk = 0 and guess values for x0(Wi, εi) and aggregate capital

K0

i. Compute wnk and rnk

ii. Solve for the value function Vnk and the savings function xnk by the

endogenous gridpoints method, under fixed θnt

iii. Construct a transition matrix Γnk for (Wi, εi) by xnk , θnt , and the tran-

sition matrix for εi

iv. Compute a stationary distribution Λnk(Wi, εi) by iterating the transition

matrix Γnk

v. Compute aggregate capital Knk+1 by the stationary distribution Λnk

and θnt .

vi. If |Knk+1 −Knk | > εK , reset nk to nk + 1 and go to (i). Otherwise, go

out of the loop.

(b) Inner loop 2: Set nb = 0 and guess a value for risk-free rate R0

i. Compute the portfolio function θnt+1 by solving the first order condition,

under fixed xnk

ii. Compute aggregate bond demand Bnb by Λnk and θnb

iii. If |Bnb | > εB, reset nb to nb + 1, update Rnb and go to (i). Otherwise,

go out of the loop.

2. If sup |θnt+1(Wi, εi)−θnt(Wi, ε)| > εθ, reset nt to nt+1 and go to 1(a). Otherwise,

exit the algorithm.
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To compute a transition path from τk = 0.5 to τk = 0.28, first I compute the

stationary equilibria for both taxes. I set the transition period T sufficiently long (1,000

in this computation). I set the policy functions at T to be equal to the stationary policy

functions under τk = 0.28. Then, I guess a transition path of (Kt, Rt, θt(Wi, εi)) for

which K0 and KT are set to the aggregate capital at the stationary equilibrium under

τk = 0.5 and τk = 0.28, respectively. By using the value function at the end point

and the guessed path of (Kt, Rt, θt), I solve backward for the savings function xt for

t = 0, 1, . . . , T − 1. Then, applying the policy functions successively forward to the

initial distribution Λ0 which is equal to the stationary distribution under τk = 0.5, I

obtain the transition path of Λt. Using the path of Λt and θt, I compute the path of Kt

and compare it to the old path of Kt. If the two paths deviate sufficiently, I go back

and solve backward the savings functions. If the two paths converge, then I compute

the optimal portfolio θt and the market-clearing risk free rate Rt for each t. Then, I

update the path of (Rt, θt) and go back to the beginning of the outer loop. I exit the

outer loop when the paths (Rt, θt) converge.

In order to compute the stationary equilibrium when a tax rate is determined so

that it can finance a fixed government expenditure-GDP ratio, I make a guess for the

tax rate τ0 along with the risk-free rate R0 at 1(b): Inner loop 2. Then, at 1(b)(iii),

I add a convergence criterion for the government budget constraint along with the

market clearing condition for bonds.
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B Derivation of the policy function in the Ramsey

model

First, I guess and verify the policy functions (17,18,19) at the balanced growth path

along with a guess on the value function V (W ) = BW 1−σ/(1−σ). The guessed policy

functions for c, k′, b′ are consistent with the budget constraint (15).

The first-order conditions and the envelope condition for the Bellman equation (14)

are:

c−σ = β̃E[r′V ′(W ′)], (29)

c−σ = β̃RE[V ′(W ′)], (30)

V ′(W ) = c−σ. (31)

Note that we used the condition (1 − µ)(1 + p) = 1 from (3). By imposing the guess

on these conditions, and by using W ′ = (φr′+ (1− φ)R)(1 + p)sW from (20), I obtain

the equations that determine the constants:

0 = E[(r′ −R)(φr′ + (1− φ)R)−σ], (32)

s/(1− s) = (1− µ)
(
βE[r′(φr′ + (1− φ)R)−σ]

)1/σ
, (33)

B = (1− s)−σ. (34)

Thus the guess is verified.

C Proof of Proposition 1

In this section, I solve the Ramsey model and show the existence of the balanced growth

path. Then the proposition obtains directly by applying Manrubia and Zanette [17].
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To be compatible with the notation in [19], I define Xt = Kt/γ
t as detrended

aggregate physical capital. At the steady state X̄, the return to physical capital (6) is

written as:

ri,t = αε
(1−α)/α
i,t E(ε

(1−α)/α
i,t )α−1X̄α−1 + 1− δ, (35)

which is a stationary process. The average return is:

r̄ ≡ E(r) = αηX̄α−1 + 1− δ. (36)

The lending market must clear in each period, which requires
∫
bi,tdi = 0 for any

t. By aggregating the non-human wealth and using the market clearing condition for

lending, I obtain:
∫
Fi,tdi = r̄Kt. Thus the aggregate total wealth satisfies

∫
Wi,tdi =

(1− µ)−1r̄Kt + Ht. At the balanced growth path, aggregate total wealth, non-human

wealth and human wealth grow at rate γ. Let W̄ , H̄, and w̄ denote the aggregate total

wealth, the human capital and the wage rate detrended by γt at the balanced growth

path, respectively. Then I have:

W̄ = (1− µ)−1r̄X̄ + H̄. (37)

Combining the market clearing condition for lending with the policy function for lend-

ing (19), I obtain the equilibrium risk-free rate:

R =
γ(1− µ)

s(1− φ)

H̄

W̄
. (38)

By using the conditions above and substituting the policy function (17), the budget

constraint (15) becomes in aggregation:

(γ − s(1− µ)−1r̄)X̄ = (s− (1− µ)R−1γ)H̄. (39)

Plugging into (38), I obtain the relation:

R =
γ(1− µ)

s(1− φ)
− φ

1− φ
r̄. (40)
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Thus, the mean return to the risky asset and the risk-free rate are determined by X̄

from (36,40). The expected excess return is solved as:

r̄ −R =
1

1− φ
(
αηX̄α−1 + 1− δ − (1− µ)γ/s

)
. (41)

If log ε ∼ N(−σ2/2, σ2), then I have η = e
σ2

2
(1−α)(1/α−2). This shows a relation between

the expected excess return and the shock variance σ2.

Then, the human wealth is written as:

H̄ = γ−t

 ∞∑
τ=t

w̄γτ (1− µ)τ−t
τ∏

s=t+1

R−1
s

 =
w̄

1− (1− µ)γR−1
=

(1− α)ηX̄α

1− (1− µ)γR−1
.

(42)

Equations (36,39,40,42) determine X̄, H̄, R, r̄. In what follows, I show the existence

of the balanced growth path in the situation when the parameters of the optimal policy

s, φ reside in the interior of (0, 1). By using (36,40,42), I have:

X̄

H̄
=

1− (1−µ)γs(1−φ)
γ(1−µ)−sφ(1−δ)−sφαηX̄α−1

(1− α)ηX̄α−1
. (43)

The right hand side function is continuous and strictly increasing in X̄, and travels

from 0 to +∞ as X̄ increases from 0 to +∞.

Now, the right hand side of (39) is transformed as follows:

H̄(s− (1− µ)γR−1) = H̄

(
s− s(1− φ)

W̄

H̄

)
= H̄s

(
1− (1− φ)

(
(1− µ)−1 r̄X̄

H̄
+ 1

))

= H̄s

(
φ− (1− φ)(1− µ)−1 r̄X̄

H̄

)
. (44)

Then I rearrange (39) as:
γ

sφ

X̄

H̄
= 1 + (1− µ)−1 r̄X̄

H̄
. (45)

By (36), r̄ is strictly decreasing in X̄, and R is strictly increasing by (40). Thus W̄/H̄

is strictly decreasing by (38), and so is r̄X̄/H̄ by (37). Thus, the right hand side of (45)
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is positive and strictly decreasing in X̄. The left hand side is monotonically increasing

from 0 to +∞. Hence there exists the steady-state solution X̄ uniquely. This verifies

the unique existence of the balanced growth path.

The law of motion (20) for the detrended individual total wealth xi,t is now com-

pletely specified at the balanced growth path:

xi,t+1 =

 g̃i,t+1xi,t with prob. 1− µ

H̄ with prob. µ,
(46)

where,

g̃i,t+1 ≡ (φri,t+1 + (1− φ)R)s/((1− µ)γ). (47)

This is the stochastic multiplicative process with reset events studied by Manrubia and

Zanette [17]. By applying their result, I obtain the proposition.
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