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                                                        Abstract 

This paper introduces a new method for a statistical simulation of macrosocietal counterfactual 

situations.  In particular, this method is concerned with decomposing group differences in the mean of 

a variable into various within-group and between-group components with respect to group categories 

of intermediary variables.  In modeling counterfactual situations, I juxtapose two different 

mechanisms, the mechanism of realizing the counterfactual state that deviates least from the existing 

state, and the mechanism of holding other irrelevant-to-counterfactual relations of variables 

unchanged, and demonstrate that despite the big difference in the mechanisms, the two counterfactual 

models generally yield highly consistent outcomes.  As an illustrative example, the paper analyzes 

gender inequality in hourly wages in Japan and thereby demonstrates the usefulness of the new 

method for deriving policy implications.  
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A MACROCOUNTERFACTUAL ANALYSIS OF GROUP DIFFERENCES:  AN 

APPLICATION TO AN ANALYSIS OF THE GENDER WAGE GAP IN JAPAN  

 

1.  INTRODUCTION 

1.1   The Objective of this Research 

         This paper introduces a method for the decomposition of differences in the mean of 

a variable among groups in order to provide a prescriptive tool for a macrosocietal 

counterfactual analysis for assessing relative importance of the elements of group 

differences in policies intended to reduce the differences.   It is often claimed that while 

economics is a prescriptive social science, sociology is a descriptive social science.  

Since policy makers are concerned with finding an answer to the question whether a 

particular policy is effective in attaining an intended societal outcome, a prescriptive 

analysis is considered relatively useful in providing guidance for social engineering.  A 

descriptive analysis is indeed relatively useless if a policy to be considered is 

unprecedented and, therefore, no information about the consequence of the policy is 

empirically available.    

      A prescriptive analysis is possible in economics because economic theory primarily 

relies on mathematical reasoning on causality. However, prescriptions or predictions 

based on a theory that lacks an empirical ground will not be reliable.  An alternative to 

theoretical reasoning is a simulation of counterfactual situations that can in part reflect 

existing empirical states.   The method introduced in this paper can be regarded as such a 

method of statistical simulation.     
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     The method is concerned with modeling of macrosocital counterfactual situations.  

While modeling of counterfactual situations is important in microcausal analysis, that is, 

to model what the outcome would be if the subject were placed in an alternative 

treatment, as in Rubin’s causal models (RCM) (Rubin 1985; Rubin and Rozenbaum 

1986; Robins 2002), it is also important in causal analysis at the macrosocietal level, 

especially for analyses where we consider what would happen in society if a particular 

relation, or a set of relations, among variables, were eliminated. 

     A long time ago, Blalock, Duncan, and others considered “causal analysis” based 

on the path-analytic model and covariance structures (Blalock 1964, 1971, Duncan 1966).  

Their causal idea was later criticized because it reflected neither a counterfactual 

conception of causality nor the elimination of selection bias from the “treatment” states 

(Holland 1986).   These criticisms are certainly justified.  However, there was one thing 

in their “causal” thinking that is worthy of an elaboration – not in a statistical sense of 

introducing latent variables, correlated measurement errors, simultaneity, and so on, 

which were introduced later in structural equation models and in confirmatory factor 

analysis.   It was the macrosocial consideration of what would happen if a particular path, 

or a trajectory of paths, were eliminated from the observed societal state.  A distinction 

between the direct effect and indirect effects or, more generally, a decomposition of the 

effect of X on Y into trajectory components through intermediary variables, is based on 

such a consideration.  A particular assumption the method implicitly made in such a 

decomposition analysis was that the elimination of an effect does not change the other 

effects or the assumption of “other things being equal” for path coefficients other than 

those that are modified.  However, that assumption may not hold in reality.   
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        In this paper, the method introduced considers two very different alternative 

mechanisms for realizing a given counterfactual situation as a tool to provide a 

decomposition analysis of differences in the mean of a variable.  Partly based on 

empirical data and partly based on the assumptions for the realization of counterfactual 

situations, the analysis can numerically assess the relative effectiveness of alternative 

policies that are intended to change the effects of a particular variable on its consequence. 

The two mechanisms are juxtaposed in order to make the analysis rely on the consistency 

in the characteristics of outcome between the two predicted outcomes for counterfactual 

situations.  The consistency is attained mainly because, as shown in this paper, the 

outcomes do not depend on alternative assumptions under a general condition and differ 

only when the condition is not met.  We may regard the method as a variation of 

simulation analysis that utilizes information from empirical data.  At the same time, it can 

be considered a method that extends the old path-analytic idea to a different direction 

from purely statistical elaborations.  

       The method introduced below may also be considered to be related to decomposition 

methods introduced early by Kitagawa (1955) and elaborated by others such as Das 

Guputa (1978) and Liao (1989), to name only a few, for the decomposition of rates.  It is 

also related to methods for a decomposition of a difference in the interval-scale variable 

such as a method introduced early by Blinder (1973) and Oaxana (1973), and a method 

introduced later by DiNardo-Fortin-Lemieux  (hereafter DFL). (DiNardo et al, 1996).   

They are all standardization methods.   However, my approach in this paper does not 

consider the decomposition method to be merely a technique for standardization, but 

rather a method for modeling the social consequence of a macrocounterfactual situation. 
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        As shown in an illustrative analysis of gender inequality in hourly wages in Japan, 

an analysis based on the new method can provide some policy implications for reducing 

gender inequality in the hourly wage by providing numerical measures in assessing the 

relative importance of various factors that generate the gender inequality.  

 

1.2  A Review of the Blinder-Oaxana Method and the DFL Method 

          The Blinder-Oaxana method relies on (1) a conventional standardization method of 

assuming one group as the standard group and (2) linear regression equations.  For 

example, given a set of equations of y for two groups such as for men and women that     

           and ,M M M F F Fy y      X X

 

we obtain, 

            

( ) ( )
M F M F MF M My y          

   
X X X  

where the first component is the difference in y that would be explained by the gender 

difference in X because it gives the difference in y if women had the same X as men’s, 

and the second component is the unexplained difference and reflects both the main 

gender effect and the interaction effects of gender and X on y.  If we can assume a causal 

order among covariates X, we can further separate the explained part into components by 

sequentially applying the method for each X. 

          As can be easily seen, this method employs the multivariate distribution of X for 

one sex as the standard distribution in standardization.  In other words, it implicitly 

assumes that the joint distribution of gender (variable G) and X under the counterfactual 
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situation where G is independent of X is equal to the product of the conditional 

distribution of X for one group and the marginal probability of the group, such 

that ( , ) ( | 1) ( )f G f G P G X X .  While this assumption is a standard option for the 

method of standardization, it is an unrealistic assumption for modeling a counterfactual 

situation.  The results of the analysis depend on the choice of the standard group. Another 

limitation is a strong dependence of the results on the adequacy of the two linear 

regression equations.   

       The DFL method tries to improve the Blinder-Oaxana method by relaxing the 

assumption of linear relationship between y and X.   The method assumes a functionally 

unconstrained relation between y and X for each sex such that  

       ( | , 1) ( | 1) and ( | , 2) ( | 2) .
M F

X X
y f y X G f X G dX y f y X G f X G dX        

 
where G = 1 for men and G = 2 for women. The method then considers a counterfactual 

mean of y for women when they had the same distribution of X as men’s such that: 

      ( ) ( | , ) ( | ) ( | , ) ( | )
F

D X XX X
y f y G F f G M d f y G F f G F d      X X X X X X , 

where 

       

  

( | 1) ( , 1) / ( 1) ( 1 | ) /( ( ) ( 1))

( | 2) ( , 2) / ( 2) ( 1 | ) /( ( ) ( 2))

( 2) / ( 1) ( ( 1 | ) / ( 2 | ) .

X

f G f G f G f G f f G

f G f G f G f G f f G

P G P G P G P G

     
  

    

    

X X X X

X X X X

X X

 

        The nicety of this formulation is that weight X  can be estimated for each sample 

by modeling the logistic regression log( ( 1) / ( 2))P G P G  .  The method also 

recommends the use of this logistic regression equation as the propensity-score weighting 

by limiting the analysis to samples with a common areas of support for P(G=1) and 

P(G=2). 
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       Then, equation      

            FF

MXD

F

MXD

MFM
yyyyyy   )()(  

also leads to a decomposition of the mean difference into the explained and the 

unexplained components, and if we can assume a causal order among covariates X,  

we can further decompose the explained part into components by sequentially applying 

the decomposition for each X.   

       While the DFL method is certainly more elaborated than the Blinder-Oaxana method,  

it also assumes the multivariate distribution of X for a group as the standard distribution.  

However, if the distribution of X in question characterizes job characteristics such as 

occupation and employment status, an implicit assumption such that if women had the 

same distribution as men may not be the best way to model a counterfactual situation 

because jobs available in the labor market will depend on demand for jobs.  It seems 

more reasonable to assume that the marginal distribution of each variable remains the 

same under the counterfactual situation, and the counterfactual condition changes only 

the matching of job characteristics with the gender of the job occupants.  

      Second, while the DLF method eliminated a strong assumption on the linear 

relationship between Y and X, the results heavily depend on the adequacy of modeling 

propensity-score weighting by a logistic regression model.   

        In this paper, I introduce an alternative method that (1) does not require any 

regression equation, (2) does not assume the multivariate distribution of X for one sex as 

the standard distribution and, instead, models the joint distribution of X under a given 

counterfactual situation, and (3) enables further decomposition not only for the explained 

part but for the “unexplained” part.  Regarding (2), we assume two disttinct mechanisms 
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in realizing counter-factual distributions of variables and show theoretically and 

empirically that the results from the method introduced in this paper depend rather little 

on the two alternative assumptions.   The method has one major limitation, however.  It 

assumes that all covariates X are categorical variables.  This assumption, however, brings 

significant benefits by enabling the standardization and modeling of cross-classified 

frequency data developed in loglinear models to be incorporated into the method. 

 

2.  New Decomposition Method 

2.1   Notes on Considering Macrosocietal Counterfactual Situations 

        In order to provide a simplified image of what this paper tries to accomplish, 

suppose that we have a path model as in Figure 1.  In Figure 1, variable A is the key 

categorical variable whose effect on an interval-scale dependent variable Y is the quantity 

we wish to decompose into components, and variables B and C are intermediary 

categorical variables. The path diagram is simplified, because there can be many 

interaction effects among variables on the variables affected by them. 

                                      (Figure 1 about Here) 

          Suppose, as a concrete example, that variable A is the distinction between sexes, 

variable B is the distinction between full-time and part-time work, and variable C is 

occupation, with the assumption here that people’s choices of hours of work precede their 

choices of occupation, and variable Y is hourly wage.  We can assume an opposite order 

between B and C if that is more reasonable.  Generally, given this model, a gender 

difference in the hourly wage may exist because (1) women tend to hold part-time jobs 

more than men do, and hourly wages are lower for part-time jobs, (2) men and women 
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have different occupations, and occupations held disproportionately by women have 

lower hourly wages, and (3) women may get lower hourly wages than men even when 

men and women hold the same occupation and have the same proportions of full-time 

and part-time workers.  We can see in the path diagram of Figure 1 that factor 1 is 

represented by the effect of A on Y though B, factor 2 by the effect of A on Y through C, 

and factor 3 by the unique, or direct, effect of A on Y, and that factors 1 and 2 overlap to 

the extent that B has a significant effect on C.      

         If variables B and C are interval-scale variables and if no interaction effects 

between any two variables on a third variable exist, a decomposition of the total effect of 

A on Y into the three factors described above is a simple task through the path-analytic 

decomposition of direct and indirect effects.  However, if variables B and C as well as A 

are categorical variables, and there are higher-order interactions, or associations, not only 

among A, B, and C, but also in their effects on Y, such a decomposition of the gender 

difference into components is not as simple.   

        There is another important issue concerning the consideration of counterfactual 

situations not reflected in path-analytic decomposition. Suppose that we consider a 

counterfactual situation where the direct effect of A on C becomes absent when A affects 

C directly as well as indirectly through B.  Then we may reason that the total effect of A 

on C would be reduced to the extent to which A’s direct effect on C was eliminated.  

However, this reasoning is based implicitly on an assumption that the elimination of a 

direct path from A to C will not affect the extent of the indirect effect of A on C through B.   

Empirically, however, this assumption may not hold true.  For a concrete example, 

suppose that A is father’s occupation, B is son’s education, and C is son’s occupation and 
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that a counterfactual state as well as the present state realizes an “equilibrium” that partly 

reflects the consequence of people’s choices in the respective situations.  Suppose now 

that we consider a hypothetical societal situation where self-employment that can be 

passed from fathers to sons is made negligible and occupational opportunities among 

people with different family backgrounds are made completely equal at each level of 

education by, for example, legally prohibiting, and socially sanctioning against, 

employment decisions based on job applicants’ family backgrounds.  Then, cognizant of 

the situation that the investment in son’s education is the only means for making son’s 

occupational attainment advantageous, parents’ with more resources than others may try 

to exert a stronger influence than before on son’s educational attainment, which will then 

lead to an increase in the effect of father’s occupation (A) on son’s education (B).  In 

addition, since the direct influence of family background on son’s occupation is 

eliminated, occupational attainment may become more strongly dependent on educational 

credentials, which will lead to an increase in the effect of son’s education (B) on son’s 

occupation (C).   Hence, both the effect of A on B and the effect of B on C will increase, 

thereby increasing the indirect effect of A on C through B and partially compensating for 

the loss of the direct effect of A on C.  More generally, we may expect that there will be 

some underlying social forces that make the existing structure resistant to change under a 

new social condition imposed externally. 

          This consideration may seem to require a behavioral model, as in economics, to 

predict the relationship among variables in a counterfactual situation.   This paper, 

however, provides an alternative approach by considering two extreme situations 
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between which the realization of a counterfactual situation is expected to take place, and 

it demonstrates the usefulness of such an analysis.        

 

2.2    Basic Formulation  

          Below, we first consider some counterfactual situations with two intermediary 

variables.  We also assume here, for simplicity of description, a temporal order in the 

realization of categorical variables A, B, and C and an interval-scale variable Y as 

depicted in Figure 1.  We are concerned with a decomposition of the effect of A on Y. 

      Let 
ABC

ijky  and ABC
ijkw  be the mean value of Y and the number of people in the sample 

(or in the population) with i, j, k as categories of variables A, B, and C, respectively.   The 

difference between A = 1 and A = 2 in the mean of Y is then given as 

       

 

1 1 2 2

1 2
1 2

| |
|1 |21 2 , (1)

ABC ABCABC ABC
jk jk jk jk

A A j k j k

ABC ABC
jk jk

j k j k

BC A ABC BC A ABC
jk jkjk jkj k

w y w y

y y
w w

w y w y

  

 

 
 

 

 

|
|where / and

BC A ABC A A ABC
jk i ijk i i ijkj k

w w w w w    .  Note that the weight for the mean of Y 

differs between A = 1 and A = 2, with respective weights being equal to the proportion of 

the combined B and C states for each category of A. 

          Generally, given the assumed temporal order among variables, we can express the 

joint frequency distribution of A, B, and C as the product of the marginal frequency of A 

and two conditional probabilities such that             

        
| |
| |( / )( / ) ,

B A C ABABC A AB A ABC AB A
j i k ijijk i ij i ijk ij iw w w w w w w w w                   (2) 
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where A ABC
i ijkj k

w w  and AB ABC
ij ijkk

w w  are one-way and two-way marginal 

frequencies, respectively,
|
| /

B A AB A
j i ij iw w w  is the conditional probability of B for a given A, 

and 
|
| /

C AB ABC AB
k ij ijk ijw w w  is the conditional probability of C for a given set of A and B.   We 

consider below various counterfactual situations that impose some constraints on 

equation (2). 

 

2.3   When A Is Independent of Both B and C 

         Suppose now that we consider a counterfactual situation where A becomes 

independent of B and C, while B and C are associated.  Substantively, this implies using 

the concrete example of A, B, C, and Y described before, a situation where men and 

women come to have the same composition of hours of work and the same composition 

of occupation.   

         The consideration for a situation where B and C become independent of A leads to a 

modification of equation (2) such that 

           
|
| ,

B C B BCABC A A
j k j jkijk i iW w W W w W                                               (3) 

where a capital letter for frequencies W and (conditional) probabilities W indicates a 

hypothetical value realized in the counterfactual situation, and 
|
|

BC B C B
jk j k jW W W  is the 

hypothetical joint probability distribution of B and C.  Equation (3) indicates that when B 

and C are independent of A, the conditional probabilities of B for a given category of A 

become unconditional probabilities and the conditional probabilities of C for given 

categories of A and B depend only on B’s category.  However, without knowing the 
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mechanism of their realizations, 
B
jW  and 

|
|

C B
k jW  remain unknown.   For the moment, I 

defer my discussion on this mechanism.   

          In this counterfactual situation, the difference in the mean of Y between A = 1 and 

A = 2, which we denote 1 2 | ( )( )
A A

y y A BC , becomes 

         

 
 

 
 

 

1 1 2 2

1 2

1 2

1 2

| ( )( )

. (4)

BC ABC BC ABCA A
jk jkjk jk

A A j k j k

BC BCA A
jk jk

j k
j k

BC ABC ABC
jk jk jkj k

w W y w W y

y y A BC
w W w W

W y y

  

 

 

  

 

 

         Equation (4) shows that when A is independent of B and C, the difference in Y 

between A = 1 and A = 2 becomes a weighted average of the within-B-and-C-group 

differences inY between A = 1 and A = 2 with the probability distribution of the B-and-C 

states realized in this counterfactual situation as weights.  By calculating the ratio of 

1 2( )
BC ABC ABC
ij jk jkW y y to 1 2 | ( )( )

A A
y y A BC , we can also determine how much the within-

group difference for each combined state of B and C contributes to the overall within-

group difference.  On the other hand, the difference between 1 2

A A
y y  and 

1 2 | ( )( )
A A

y y A BC  represents the between-B-and-C-group difference in Y.    Similarly, we 

can regard 1 2

1 2

| ( )( )
A A

A A

y y A BC

y y




 and 

   1 2 1 2

1 2

| ( )( )
A A A A

A A

y y y y A BC

y y

  


 as representing the 

relative proportions of the within-group and the between-group inequality in 1 2

A A
y y , 

respectively.  In short, by considering the counterfactual situation where A becomes 

independent of B and C, we can decompose the difference in Y into within-group and 

between-group components.  
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         An important fact here is that if there are neither interaction effects of A and B nor 

interaction effects of A and C on Y, the value of 1 2 | ( )( )
A A

y y A BC  actually does not 

depend on weights 
BC
jkW . 

         Suppose that 

        ,
ABC A B C BC
ijk i j k jky                                                                          (5) 

where 0,A B C BC BC
i j k jk jki j k j k

              holds, so that there are neither 

AB nor AC interaction effects on Y.  Then, since 1 2 1 2

ABC ABC A A
jk jky y     , we obtain 

         1 2 1 2 1 2| ( )( ) ,
A A BC ABC ABC A A

jk jk jkj k
y y A BC W y y                              (6) 

and, therefore, the value of 1 2 | ( )( )
A A

y y A BC  does not depend on weights 
BC
jkW .  This 

finding is a special case of a more general theorem that Little and Pullum (1979) 

introduced in the generalized linear framework for standardization.   Note that we also 

implicitly assume here that the effects of A, B, and C on Y do not change in the 

counterfactual situation where A becomes independent of B and C, and this assumption 

also relies on one of the two mechanisms assumed below.2   

            It follows that only when the interaction effects either A and B or A and C on Y 

exist do we need to know a mechanism that generates the joint probability distribution of 

B and C in order to obtain the value of 1 2 | ( )( )
A A

y y A BC , and this fact relieves us of the 

                                                 
2 The fact that the effects of A, B, and C on Y do not change is evident for the case of the standardization 
method that assumes that all unmodified effects remain the same.  In the case of the maximum likelihood 

method, the joint likelihood of A, B and C, and Y can be expressed as the product of the marginal 

likelihood of A, B, and C and the conditional likelihood of Y for a given set of A, B, and C, and the change 
in the marginal likelihood under a given counterfactual situation does not affect parameter estimates that 
maximize the conditional likelihood, and thereby keeps the effects of A, B, and C on Y unchanged  
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burden of making some additional assumptions about the mechanism in determining of 

the joint distribution of B and C realized under the counterfactual condition.   

 

2.4  Two Alternative Assumptions for the Realization of Counterfactual Situations 

    Now we ask what mechanisms we can reasonably assume for obtaining the 
BC
jkW  in 

equation (3) in the counterfactual situation where A is independent of B and C.  We 

consider two “extreme” mechanisms between which we expect the real outcome to lie.  

One mechanism assumes that there will be strong resistance to change in the joint 

distribution of variables under the externally imposed conditions of the given 

counterfactual situation so that the new joint distribution of variables under the externally 

imposed condition will have a minimal deviation from the existing one.  The other 

mechanism assumes that there will be no change in the relationship among variables 

other than those that are modified by the externally imposed conditions of a given 

counterfactual situation.         

         For the first mechanism, we employ, as the criterion of measuring deviation, the 

statistical significance of residuals, and this criterion leads to the use of the maximum 

likelihood (ML) estimates of frequencies for a given condition. Although the ML 

estimation requires a model, we apply the model of equation (3) with elements of 

probabilities 
B
jW  and 

|
|

C B
k jW  as parameters by assuming the multinomial distribution for 

each set of response probabilities.  We then obtain /
B B B
j j jW w w N   and 

| |
| | /

C B C B BC B
k j k j jk jW w w w   and, therefore, 

            ( ) /ABC A BC
ijk i ijW ML w w N .                                               (7) 
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     It is noteworthy that the adjusted BC marginal frequencies, BC
jkW , are the same as 

the unadjusted BC marginal frequencies, BC
jkw .   Thus, even though the indirect 

association between B and C due to their common association with A is eliminated under 

the independence of A from B and C, the newly realized situation that minimizes the 

deviation from the existing structure fully recovers the association between B and C. 

      The second mechanism that eliminates a particular effect while retaining other 

effects is related to standardization in demography.  We consider adjusted conditional 

probabilities 
|
|

C B
k jW that retain the unique effects of B on C in 

|
|

C AB
k ijw while eliminating the 

unique effects of A on C from 
|
|

C AB
k ijw .  By “unique effects” we mean the set of partial odds 

ratios in the loglinear or logit (multinomial logit) characterization among categorical 

variables.   However, “retaining the unique effects of B on C” has an unambiguous 

meaning only when there are no interaction effects of A and B on C. 

         Suppose that the observed conditional probabilities 
|
|

C AB
k ijw have only additive effects 

of A and B on C in the multinomial logit equation, such that 

         
| |
| 1|log( / ) f.or 1,..., 1,

C AB C AB C AC BC
k ij ij k ik jkw w k K                                            (8) 

where 0AC BC
ik jki j
    , and the (K-1) parameters of C

k characterize the odds 

among categories of C, the set of (I-1)(K-1) parameters of AC
ik  characterizes the partial 

odds ratios between A and C, and  the set of (J-1)(K-1) parameters of BC
jk  characterizes 

the partial odds ratios between B and C , when variables A, B, and C have I, J, and K 

categories, respectively. 

         From equation (8), we obtain 
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         1 1 2 2 1 2

| | | |
| 1| | 1|log( / ) log( / )

C AB C AB C AB C AB BC BC
k ij ij k ij ij j k j kw w w w     .                  (9) 

This implies that the log odds ratio between B and C in 
|
|

C AB
k ijw  for each given level of A is 

characterized by
1 2

BC BC
j k j k   and does not depend on the category of A.    

         Hence, if we obtain the adjusted conditional probabilities 
|
|

C B
k jW that satisfy the 

equation 

         1 1 2 2 1 2

| | | |
| 1| | 1|log( / ) log( / )

C B C B C B C B BC BC
k j j k j j j k j kW W W W     ,                     (10) 

such conditional probabilities satisfy the condition that they retain the unique effects of B 

on C in 
|
|

C AB
k ijw while eliminating the unique effects of A on C. 

         The method that Xie (1989) introduced as “partial CD purging,” where C stands for 

the compositional variable and D stands for the dependent variable, yields such adjusted 

conditional probabilities. Generally, the lambda parameters in equation (8) require sets of 

normalizing constraints to be individually identifiable,  and if we employ the deviation 

contrast for AC
ik  such that 0AC

iki
  , as Xie did, we obtain, by taking the arithmetic 

mean of equation (8) over the categories of A, that       

               | | | | 1/
| 1| | 1|log( / ) / log ( / )

C AB C AB C AB C AB I C BC
k ij ij k ij ij k jki i

w w I w w      ,     (11) 

and therefore 

            
| | || | | 1/
| | 1|| | |, where ( / )

C B C AB C ABC B C B C B I
k j k ij ijk j k j k jk i

W w w     ,                    (12) 

satisfy equation (10) because 1 1 2 2 1 2

| | | | | |
| 1| | 1| | |log( / ) log( / ) log( ) log( )

C B C B C B C B C B C B
k j j k j j k j k jW W W W     .  

These adjusted probabilities are equivalent to the standardized probabilities based on the 
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method introduced by Teachman (1977), satisfy equation (10), and retain the effects of B 

on C, BC
jk , while eliminating the effects of A on C, AC

ik . 

          This method can be extended to cases where interaction effects of A and B on C 

exist, even though the meaning of the unique effects of B on C becomes somewhat 

ambiguous in such cases, because the method “purges” factor ABC
ijk by assuming the 

deviation contrast for this factor, 0ABC
ijki
  , or the uniform distribution of A as the 

standard distribution in purging the interaction effects, for the saturated model 

              
| |
| 1|log( / )

C AB C AB C AC BC ABC
k ij ij k ik jk ijkw w         .            

While uniform distribution is a very strong assumption, this purging of the ABC 

interaction effects has one very desirable characteristic: it makes the estimates of 
|
|

C B
k jW , 

on which the decomposition in 1 2

A A
y y  depends, independent of the distribution of A.   

       Hence, this method seems quite promising. There is one important additional 

consideration, however.  While the effects of B on C characterized by equation (10) are 

invariant for the normalizing constraints we make among lambda parameters under the 

absence of interaction effects of A and B on C, because partial odds ratios are 

independent of the choice on the normalizing constraints, the values of adjusted 

conditional probabilities depend on the choice of the normalizing constraints, because the 

values of C BC
k jk   in equation (11) depend on them.  Yamaguchi (2009) points out, 

however, that giving categories A with different size the same weights by assuming the 

uniform distribution of A can make the average adjusted probability determined by the 

CD-purging method very different from the unadjusted average probability, thereby 

possibly causing a great change in the marginal distribution of C.  In particular, if 
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categories of A with smaller sizes than others have larger conditional probabilities for C, 

the average adjusted conditional probability tends to be greater than the average 

unadjusted conditional probability, and the opposite holds true if categories of A with 

smaller sizes than others have smaller conditional probabilities for C.   Conceptually, 

however, the retention of the effects of B on C, while eliminating the effects of A on C, 

does not imply any specific change in the marginal distribution of C, because relations 

here imply the characteristics of odds ratios among variables.  

         Then the question is whether we can modify Xie’s CD-purging method to readjust 

the adjusted conditional probabilities of equation (12) to preserve the marginal 

probability of C while retaining the same unique effects of B on C characterized by 

equation (10).   The answer is affirmative, because this leads to the adjustment of 

C
k parameters while retaining the same BC

jk  parameters.  If we denote by *C
k  the 

adjusted parameters that preserve the marginal probability of C, and exp( * )C C C
k k k    , 

then | C C |
| k k |* exp( *+ )= exp( + )=C B C BC C BC C B

k j k jk k jk k j        , where 
| || 1/
| 1|| ( / )

C AB C ABC B I
k ij ijk j i

w w    .  

Hence, since 
| | |
| | |* * *

C B C B C B
k j k j k jk

W    , where the asterisk indicates the quantity after the 

readjustment, and the set of K gamma parameters satisfies the set of K equations 

|
|*

B C B C
j k j kj

w W w , we obtain the following set of equations:    

           | |
| |

B CC C B C C B
j kk k j k k jj k

w w      , for k=1,…,K,                      (13)                         

where 
| | |
| | |*

B C C B C C B C
k j k k j k k jk

W      .    
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         Here, the joint readjusted probability distribution,  | |
| |* /

BC B C C B C B C
ij j k k j k k jk

W w      , 

has odds ratios | | | |
| | | |( * * ) /( * * ) ( ) /( )

BC BC BC BC C B C B C B C B
jk mn jn mk k j n m n j k mW W W W      that do not depend on  

the values of C
k .   Hence, the solution to the nonlinear equation (13) of C

k can be easily 

obtained by the Stephen-Deming iterative proportional adjustment by adjusting the 

marginal distributions of B and C to become equal to 
B
jw  and  

C
kw , respectively, starting 

from  | |
| |/

BC B C B C B
ij j k j k jk

W w    .   The adjustment multiples we obtain for categories of C 

are the estimates for C
k .  We will refer to this method as the modified CD-purging 

method of standardization with rescaling and employ it as the method that realizes 

counterfactual situations by the second mechanism we consider.     

        By applying the same procedure of adjustment and readjustment to obtain *
B
jW by 

eliminating the effects of A on B from 
|
|

B A
j iw , we simply obtain *

B B
j jW w .  Below, we 

denote readjusted probabilities *W  simply as W . 

         It follows that the adjusted three-way frequency that makes A independent of both B 

and C under this standardization mechanism, which we denote by ( )ABC
ijkW ST , is given as 

            
 

| | 1/
| 1|

| | 1/
| 1|

( / )
( ) ( / )

( / )

C AB C ABC I
k ij ijkABC A B i

ijk i j C AB C ABC I
k ij ijkk i

w w
W ST w w N

w w




 

 
 ,            (14) 

where the set of C
k satisfies the set of equations (13).  Note that unlike the ML estimates 

of adjusted frequencies ( )ABC
ijkW ML  given by equation (7), values of ( )ABC

ijkW ST  depend 

on the temporal order we assume between B and C.   
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2.5   When A Becomes Independent of B 

      For another counterfactual situation, let us consider a situation where variable B 

becomes independent of variable A, while A’s effects on C remain.  Then we obtain 

      
|
| ,

B C ABABC A
j k ijijk iW w W W                                                           (15) 

         The ML estimate for this model made by assuming probability elements of 
B
jW  and 

|
|

C AB
k ijW as parameters, is 

         
|
|( ) ( / )( / ).

B C ABABC A A B ABC AB
j k ijijk i i j ijk ijW ML w w w w w N w w                (16) 

         For the standardization-method estimate, we obtain 
| |
| |

C AB C AB
k ij k ijW w  from the 

assumption that this method retains unmodified effects. Since 
B B
j jW w  for this method, 

we also obtain 

         
|
|( ) ( )

B C ABABC A ABC
j k ijijk i ijkW ST w w w W ML                                      (17) 

         The difference in Y between A = 1 and A = 2 under this assumption in the 

mechanism of realizing independence between A and B is given as 

 

| |
|1 |21 1 2 2

1 2 | |
|1 |21 2

| ||
|1 |21 2

( ) ( )

| ( )( )

. (18)

B C AB ABC B C AB ABCA A
j k j j k jjk jk

A A j k j k
B C AB B C ABA A
j k j j k j

j k
j k

B C AB ABC C AB ABC
j k j k jjk jkj k

w w w y w w w y

y y A B
w w w w w w

w w y w y

  

 

 

  

 

 

    Hence, weights for variable B are “standardized,” that is, common across categories 

of A, and are equal to proportions in B’s marginal distribution.  On the other hand, 

weights for categories of C differ among categories of A.  We can regard the difference 

between 1 2

A A
y y  of equation (1) and 1 2 | ( )( )

A A
y y A B  of equation (18) as representing 
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the extent of reduction in the inequality by the elimination of the association between A 

and B.   This is a subcomponent of the between-group component 

   1 2 1 2 | ( )( )
A A A A

y y y y A BC   .   On the other hand, the difference between 

1 2 | ( )( )
A A

y y A B  of equation (18) and 1 2 | ( )( )
A A

y y A BC  of equation (4) represents the 

extent of reduction in the inequality by the elimination of the association between A and 

C, after having eliminated the AB association.  This is the other subcomponent of 

   1 2 1 2 | ( )( )
A A A A

y y y y A BC   .    We can regard 1 2

1 2

| ( )( )
A A

A A

y y A BC

y y




, 

   1 2 1 2

1 2

| ( )( )
A A A A

A A

y y y y A B

y y

  


, and 

   1 2 1 2

1 2

| ( )( ) | ( )( )
A A A A

A A

y y A B y y A BC

y y

  


 as 

representing the relative proportion of the within-group and the two between-group 

components in 1 2

A A
y y . 

 

2.6    When A Becomes Conditionally Independent of C 

      Suppose now that we consider another counterfactual situation, where A becomes 

conditionally independent of C by holding B constant.  Then we obtain 

      
| |
| | .

B A C BABC A
j i k jijk iW w w W                                                               (19) 

        The ML estimate made for this model by assuming the probability elements of 
|
|

C B
k jW  

as parameters is given as 

          ( ) ( / )( / ) /ABC A AB A BC B AB BC B
ijk i ij i jk j ij jk jW ML w w w w w w w w                 (20) 

     On the other hand, the standardization-method estimate is given as 
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 

| | 1/
| 1|

| | 1/
| 1|

( / )
( )

( / )

C AB C ABC I
k ij ijkABC AB i

ijk ij C AB C ABC I
k ij ijkk i

w w
W ST w

w w




 

 
                         (21) 

where the set of C
k satisfies the set of equations (13).  

         The difference in the mean of Y between A = 1 and A = 2 in this situation becomes 

      

 

| |
| |1 1 2 2

1 2 | |
| |1 2

| | |
| |1 |21 2

| ( )( )

, (22)

C B ABC C B ABCAB AB
k j k jj jk j jk

A A j k j k
C A C BAB AB
k j k jj j

j k j k

C B B A ABC B A ABC
k j j jjk jkj k

w W y w W y

y y AB BC
w W w W

W w y w y

  

 

 

 

 

 

where 
|
| /

C B BC B
k j jk jW w w  for the ML estimates and 

 | | | | |1/ 1/
| | 1| | 1|( / ) ( / )

C B C AB C AB C AB C ABC I C I
k j k ij ij k ij ijk ki k i

W w w w w     for the standardization-

method estimates. 

         Hence, while the conditional distribution of B depends on A, the conditional 

distribution of C for each category of B is independent of A and is “standardized” in this 

respect.  We can regard the difference between 1 2

A A
y y  of equation (1) and 

1 2 | ( )( )
A A

y y AB BC  of equation (22) as representing the extent of reduction in the 

inequality by the elimination of the unique effect of A on C.  This is a subcomponent of 

the between-group component    1 2 1 2 | ( )( )
A A A A

y y y y A BC   .   On the other hand, the 

difference between 1 2 | ( )( )
A A

y y AB BC  of equation (22) and 1 2 | ( )( )
A A

y y A BC  of 

equation (4) represents the extent of reduction in the inequality by the elimination of the 

association between A and B, after having eliminated the unique effects of C on A.  This 
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is the other subcomponent of    1 2 1 2 | ( )( )
A A A A

y y y y A BC   .    We can regard 

1 2

1 2

| ( )( )
A A

A A

y y A BC

y y




, 
   1 2 1 2

1 2

| ( )( )
A A A A

A A

y y y y AB BC

y y

  


, and 

   1 2 1 2

1 2

| ( )( ) | ( )( )
A A A A

A A

y y AB BC y y A BC

y y

  


 as representing the relative proportion of the 

within-group and the two between-group components in 1 2

A A
y y . 

 

2.7    Change of Relationship between Intermediary Variables 

         As another counterfactual situation, we can consider the situation where the effects 

of B on C, with A held constant, becomes absent.  Generally,  

        
| | |
| | |

B A C A C AABC A AB
j i k ij k ijijk i ijW w w W w W                                             (23)  

holds, and its ML estimate and the standardization estimate are given, respectively, as 

       ( ) ( / ) /ABC AB AC A AB AC A
ijk ij ik i ij ik iW ML w w w w w w                         (24)  

and               

       
 

| | 1/
| 1|

| | 1/
| 1|

( / )
( ) ,

( / )

C AB C ABC J
k ij ijk jABC AB

ijk ij C AB C ABC J
k ij ijkk j

w w
W ST w

w w







 

                    (25) 

where the set of C
k satisfies 

        | |
| |/

A CC C A C C A
i kk k i k k ii k

w w      , for k=1,…,K, and 
| || 1/
| 1|| ( / )

C AB C ABC A J
k ij ijk i j

w w  .   

(26)                                
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       Like the solution for equation (13) the estimates of C
k that satisfy the set of 

equations (26) can be easily obtained by applying the Stephen-Deming proportional 

adjustment for the joint probability distribution of A and C.   

 

3.  A GENERALIZATION OF THE METHOD 

         This section generalizes the decomposition analysis.  As an illustration, Figure 2 

adds one more intermediary categorical variable, D. As was Figure 1, this figure is 

simplified, because there can be many interaction effects.  Even though the method is 

described for the case with three intermediary variables, it is easy to extend it to a general 

case with an unspecified number of intermediary categorical variables. 

                                                 (Figure 2 About Here) 

 

3.1  Backward Sequential Decomposition 

          Backward sequential decomposition considers the following three counterfactual 

situations in sequence: 

   (B1) What would happen to the effect of A on Y if the direct effect of A on D 

became absent?  

   (B2) What would happen to the effect of A on Y if the direct effects of A on C and D 

became absent? 

   (B3) What would happen to the effect of A on Y if the direct effects of A on B, C, 

and D became absent?  

         Generally, we have 
| | |
| | |

B A C AB D ABCABCD A
j i k ij m ijkijkm iw w w w w , and the counterfactual situations 

(B1), (B2), and (B3)  imply that we have models 
| | |
| | |

B A C AB D BCABCD A
j i k ij m jkijkm iW w w w W ,    
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| | |
| | |

B A C B D BCABCD A
j i k j m jkijkm iW w w W W , and 

| |
| |

B C B D BCABCD A
j k j m jkijkm iW w W W W .   We can easily prove that 

the ML estimate for the models of (B1), (B2), and (B3) becomes, respectively,  

   
| |
| |( ) ( / ) /

B A C ABABCD A BCD BC ABC BCD BC
j i ijk ijijkm i jkm jk ijk jkm jkW ML w w w w w w w w  ,                  (27)   

   
|
|( ) ( / )( / ) /

B AABCD A BC B BCD BC AB BCD B
j iijkm i jk j jkm jk ij jkm jW ML w w w w w w w w w  ,             (28)  

And 

    ( ) ( / )( / )( / ) /ABCD A B BC B BCD BC A BCD
ijkm i j jk j jkm jk i jkmW ML w w N w w w w w w N  .          (29) 

         On the other hand, by using the standardization method we employed in the 

previous section, we obtain adjusted frequencies for situations (B1), (B2), and (B3) by 

applying 
 

| | 1/
| 1||

| | | 1/
| 1|

( / )
, and

( / )

C AB C ABC I
k ij ijB B C B k i

j j k j C AB C ABC I
k ij ijkk i

w w
W w W

w w




  

 
 

 
| | 1/
| 1||

| | | 1/
| 1|

( / )
.

( / )

D ABC D ABCD I
m ijk ijkmD BC i

m jk D ABC D ABCD I
m ijk ijkmm i

w w
W

w w




 
 

 The set of C
k parameters in 

|
|

C B
k jW satisfy 

equation (13), and the set of D
m parameters in 

|
|

D BC
m jkW satisfy 

     | |
| |,

/
BC DD D BC D D BC
jk mm m jk m m jkj k m

w w       for 
| || 1/
| 1|| ( / )

D ABC D ABCD BC I
m ijk ijkm jk i

w w  .     (30) 

         By using one set of these adjusted frequencies as weights, we obtain 

1 2 | ( )( )A Ay y ABC BCD ,  1 2 | ( )( )A Ay y AB BCD  , and 1 2 | ( )( )A Ay y A BCD  as the extent of 

inequality in Y between A = 1 and A = 2.   The outcome 1 2 | ( )( )A Ay y A BCD  represents 

the within-BCD-group component, and the between-BCD-group component can be 

decomposed into three components, namely,    1 2 1 2 | ( )( )A A A Ay y y y ABC BCD   ,   

   1 2 1 2| ( )( ) | ( )( )A A A Ay y ABC BCD y y AB BCD   , and   
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   1 2 1 2| ( )( ) | ( )( )A A A Ay y AB BCD y y A BCD    , that indicate, respectively, the reduction 

in between-group inequality when the AD association, the AC association, and the AB 

association are eliminated in that order. 

 

3.2   Forward Sequential Decomposition    

         Forward sequential decomposition considers the following three counterfactual 

situations in sequence: 

   (F1) What would happen to the effect of A on Y if the direct effect of A on B 

became absent? 

   (F2) What would happen to the effect of A on Y if the direct effects of A on B and C 

became absent? 

   (F3) What would happen to the effect of A and Y if the direct effects of A on B, C, 

and D became absent? 

        The counterfactual situations (F1), (F2), and (F3) imply that we have models 

| |
| |

B C AB D ABCABCD A
j k ij m ijkijkm iW w W w w ,  

| |
| |

B C B D ABCABCD A
j k j m ijkijkm iW w W W w , and 

| |
| |

B C B D BCABCD A
j k j m jkijkm iW w W W W .   

We can easily prove that the ML estimates for the models of (F1) and (F2) become, 

respectively,  

( ) ( / )( / )( / ) ( / )( / )ABCD A B ABC AB ABCD ABC A B ABCD AB
ijkm i j ijk ij ijkm ijk i j ijkm ijW ML w w N w w w w w w N w w    (31) 

and   

 ( ) ( / )( / )( / ) ( / )( / ),ABCD A B BC B ABCD ABC A BC ABCD ABC
ijkm i j jk j ijkm ijk i jk ijkm ijkW ML w w N w w w w w w N w w   (32) 

while while the formula for (F3) is the same as that for (B3),  
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        For the standardization-method estimates, the outcome of (F1) is the same as the ML 

estimate, the outcome for (F2) is obtained by applying the formula for
|
|

C B
k jW  described 

before, and the outcome for (F3) is similar to that of (B3) except that we have to employ 

the adjusted joint distribution of B and C, 
BC
jkW , in solving equation (30).  

         By using these adjusted frequencies as weights, we obtain 1 2 | ( )( )A Ay y A B ,  

1 2 | ( )( )A Ay y A BC  , and 1 2 | ( )( )A Ay y A BCD  as the extent of inequality in Y between A = 1 

and A = 2.   The differences    1 2 1 2 | ( )( )A A A Ay y y y A B   ,   

   1 2 1 2| ( )( ) | ( )( )A A A Ay y A B y y A BC   , and    1 2 1 2| ( )( ) | ( )( )A A A Ay y A BC y y A BCD   , 

respectively, indicate the reduction in inequality when the AB association, the AC 

association, and the AD association are eliminated in that order. 

 

3.3   Change of Relationship between Intermediary Variables 

         We can also consider counterfactual situations where conditional independence is 

attained between two intermediary variables.  We can consider three cases. 

         First, when variables C and D become conditionally independent by holding A and 

B constant, the model can be written as 
|
|

D ABABCD ABC
m ijijkm ijkW w W . 

        Their ML estimates and the standardization-method estimates are, respectively, 

given as 

        ( ) /ABCD ABC ABD AB
ijkm ijk ijm ijW ML w w w ,                                                       (33) 

and 



 

 29

        
 

| | 1/
| 1|

| | 1/
| 1|

( / )
( ) ,

( / )

D ABC D ABCD K
m ijk ijkmABCD ABC k

ijkm ijk D ABC D ABCD K
m ijk ijkmm k

w w
W ST w

w w




 

 
                    (34) 

where the set of D
m parameters satisfy equation (30). 

         Second, when variables B and C become conditionally independent by holding A 

constant, the model can be written as 
| |
| |

C A D ABCABCD AB
k i m ijkijkm ijW w W W .  Then the ML estimates 

and the standardization-method estimates are, respectively, given as 

         ( ) ( / )( / )ABCD AB AC A ABCD ABC
ijkm ij ij i ijkm ijkW ML w w w w w                                     (35) 

and 
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


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
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,       (36) 

where the set of C
k  parameters satisfies equation (26).  

        Finally, when variables  B and D become conditionally independent by holding A 

and C constant, or in other words, if B affects D only through C by holding A constant, 

the model can be written as 
|
|

D ACABCD ABC
m ikijkm ijjW w W , and its ML estimates and the 

standardization-method estimates are given, respectively, as    

        ( ) /ABCD ABC ACD AC
ijkm ijj ikm ikW ML w w w                                                 (37) 

and 

       
 

| | 1/
| 1|

| | 1/
| 1|
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( / )

D ABC D ABCD J
m ijk ijkm jABCD ABC
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
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
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 ,            (38) 

where the set of D
m  parameters satisfy  | |

| |,
/

AC DD D AC D D AC
ik mm m jk m m jki k m

w w       
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for 
| || 1/
| 1|| ( / )

D ABC D ABCD AC J
m ijk ijkm ik j

w w  . 

 

3.4  Notes on the Zero-Frequency Observation 

          If the cross-classification of covariates reveals a combination of states with zero 

sampling observation, the standardization method that takes a geometric mean of 

conditional probabilities generates adjusted conditional probabilities that are inefficient 

as statistics because an adjusted conditional probability that involves a zero observation 

becomes zero regardless of other values involved (Yamaguchi 2009).  Hence, if a zero 

observation exists, it is highly desirable to use the set of expected frequencies from a 

loglinear model of covariates that fits the data rather than observed frequencies. The 

loglinear model that fits the data normally eliminates zero-frequency observations 

without distorting the outcome, and the use of the model’s expected frequencies that do 

not involve zero values provides much more efficient statistics.   

 

4.  APPLICATION 

4.1 Data 

         The application employs data from 2005 Japan’s Basic Census of Wage Structure. 

This is a government census of Japan and collects wage data from all employees in Japan 

except for nonresponses.  The present analysis is based on the class-classified mean of 

hourly wages for employees by gender, age, the distinction between full-time and part-

time employment, and the distinction between regular employees (with an unspecified 

term employment contract) and irregular employees (with a term employment contract), 

and cross-classified frequencies of those four covariates of hourly wage.  I assume below 
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that gender affects age composition during the period of labor-force participation first, 

and both gender and age affect the choice between full-time and part-time jobs, and these 

three variables affect the choice between regular and irregular employments, and these 

four affect hourly wages.  The causal order between the third and fourth variables may be 

debatable, however.   The ML estimates of decomposition shown below in Table 2 do not 

depend on this order – while the standardization-method estimates do.  It is well known 

that the average hourly wage of women is lower than that of men in Japan partly because 

female workers are disproportionately represented in irregular employment and part-time 

work, and this study identifies the magnitude of the within-group and between-group 

components of gender differences in the hourly wage for four groups of employment 

types defined below, and assesses the effectiveness of alternative strategies to reduce the 

between-group component. 

 

4.2   Descriptive Statistics 

         Table 1 gives for each sex the proportion of four employment types classified by a 

combination of regular-versus-irregular employment distinction and full-time-versus-

part-time work distinction, and hourly wage for each combination.  The last row in Table 

1 gives the wage ratio between women and men.   

      There are several noteworthy facts in Table 1.  First, women are underrepresented in 

regular full-time employment, for which the hourly wage is the highest among the four 

employment types, and they are overrepresented in irregular part-time employment, for 

which the hourly wage is the lowest.   Second, regular part-time employment is nearly 

absent and applies to less than 1% of the labor force, regardless of gender.  In other 
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words, almost all regular employees are full-time workers.   Third, for each of the 

employment types, the wage ratio indicates that women’s hourly wage is lower than 

men’s hourly wage, and the women-to-men wage ratio is lowest among regular full-time 

workers (0.698) and highest among irregular part-time workers (0.887).  Since women 

are underrepresented in the most advantaged employment type, and overrepresented in 

the most disadvantaged employment type, the women-to-men wage ratio for the total 

labor force becomes lower (0.617) than the type-specific wage ratio. 

         Figure 3 describes how hourly wage changes as a function of age for three major 

employment types for men and women.  As shown in the figure, average hourly wages do 

not differ greatly between men and women and across employment types among people 

under age 20, but as age increases, regular workers get higher wage returns for age 

because many Japanese firms adopt wage system with tenure-based wage premiums, 

called nenko-wage system, among regular employees.  And yet there is a big difference 

between men and women in the slope of increase in wages with age among full-time 

regular employees.  On the other hand, the extent of increase in the hourly wage with age 

is relatively small among irregular employees, especially among part-time irregular 

employees.  While gender inequality in the hourly wage still tends to become larger as 

age increases among irregular employees, the extent of gender inequality generated 

among them is much smaller than that among regular employees. 

 

4.3  Decomposition Analysis 

          Suppose we refer to gender as variable A, age as variable B, the distinction of full-

time and part-time workers as variable C, and the distinction of regular and irregular 
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employees as variable D. Then, using backward decomposition analysis, we consider (a) 

the situation where gender (variable A) is conditionally independent of D when B and C 

are held constant, (b) the situation where gender  is conditionally independent of C and D 

when B is held constant, and (c) the situation where gender is independent of B, C, and D.  

Then we obtain 1 2 | ( )( )A Ay y ABC BCD , 1 2 | ( )( )A Ay y AB BCD  , and 1 2 | ( )( )A Ay y A BCD  

as the extent of inequality remaining in Y between A = 1 and A = 2 in these three 

situations for both the ML and the standardization method of decomposition.  The 

outcome 1 2 | ( )( )A Ay y A BCD  represents the within-BCD-group component, and the 

differences    1 2 1 2 | ( )( )A A A Ay y y y AB BCD    and 

   1 2 1 2| ( )( ) | ( )( )A A A Ay y AB BCD y y A BCD   , respectively, indicate the reduction in 

between-group inequality when both AC and AD associations are eliminated, and when 

the AB association is eliminated, in that order.  Substantively, 

   1 2 1 2 | ( )( )A A A Ay y y y AB BCD    represents the gender wage gap due to the 

compositional difference of men and women in four employment types, and  

   1 2 1 2| ( )( ) | ( )( )A A A Ay y AB BCD y y A BCD    represents the gender wage gap due to age 

differences between male and female employees that remains after the gender wage gap 

due to gender differences in the composition of employment types is eliminated.   

      A further decomposition of     1 2 1 2 | ( )( )A A A Ay y y y AB BCD    into 

   1 2 1 2 | ( )( )A A A Ay y y y ABC BCD    and 

   1 2 1 2| ( )( ) | ( )( )A A A Ay y ABC BCD y y AB BCD    yields, respectively, the decomposition 

of gender wage gap due to gender differences in the composition of employment types 
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into a component that will be eliminated when only the gender difference in the 

composition of regular and irregular employment is eliminated, and the remaining gender 

wage gap due to gender difference in the composition of full-time and part-time work 

combined with the difference in the hourly wage between full-time and part-time workers.   

On the other hand,  the within-BCD gender gap, 1 2 | ( )( )A Ay y A BCD , contains the 

element for each combined state of variables B, C , and D, and therefore, when they are 

summed with weights across categories of age (B), we obtain the contribution of the 

gender wage gap within each of the four employment types.   

           Table 2 presents a decomposition of the gender wage gap obtained by this 

procedure.  The contribution of each element is expressed in proportion by dividing each 

element by the overall gender difference in the hourly wage, 1 2
A Ay y . 

          The table indicates that the largest component of the gender wage gap, about 

51%~52%, is explained as the result of the within-group gender wage gap among regular 

employees, and the second largest component, about 36%~37%, is explained as the result 

of gender differences in the composition of employment types.  Together, they explain 

about 88% of the gender wage gap.  It is noteworthy that despite differences in the 

method of estimation based on very different underlying mechanisms, the two estimates 

are very close.   

        Hence, in order to reduce gender inequality in the hourly wage, it is most important 

to abolish certain institutions such as the distinction of sogo shoku (comprehensive-task 

jobs), which nearly all men and less than 5% of women are believed to hold, and ippan 

shoku (general-task jobs), which almost no men and more than 95% of women are 

believed to hold, among white-collar workers, because such institutions classify men and 
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women in many Japanese firms largely into different wage-tracking and nenko-wage 

premiums among regular employees.  

       Second, it is important to equalize the opportunity for regular employment between 

men and women. Since the inequality is largely generated by the fact that women can 

obtain only irregular employment at reentry into the labor market after leaving their jobs 

for either marriage or child rearing because Japanese firms recruit regular employees 

mostly from among recent graduates from schools, it is important to make workplaces 

more flexible in time so that women during child-rearing periods need not leave their jobs. 

It is also important to expand opportunities for regular employment for reentrants in the 

labor market. 

           Table 2 also shows that if the difference in men and women’s composition of full-

time and part-time work is maintained, and only the gender inequality in the regular 

versus irregular employment is eliminated, the gender wage gap will be reduced by only 

about 9%. This reduction in the gender wage gap is small because women have more 

part-time jobs than men do: a large gender difference in the proportion of full-time 

regular workers remains if only the gender inequality in the composition of regular and 

irregular employment is eliminated within full-time workers and within part-time workers.   

This occurs mainly because since part-time regular workers are scarce, women’s choice 

of part-time jobs necessarily leads to irregular employment.  Indeed, during child-rearing 

periods, many women  in Japan change jobs from those in regular employment to those in 

irregular employment, despite the fact that irregular employment is much more 

disadvantageous in job security and hourly wage, because part-time regular employment 

is not available.      
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          This leads to an expectation that in a hypothetical society where regular 

employment becomes available regardless of the choice in the hours of work, and 

therefore there is no statistical association between the distinction between regular and 

irregular employment and the distinction between full-time and part-time work, women’s 

choices of part-time work will not put them at as great a disadvantage as the present 

situation with a high crystallization between part-time work and irregular employment. 

         Table 3 gives the decomposition, for the situation where variables C and D become 

independent, of the proportion of the between-B-and-C inequality 

   1 2 1 2 | ( )( )( )A A A Ay y y y AB BC BD    and its two components, 

   1 2 1 2 | ( )( )( )A A A Ay y y y ABC BC BD     and 

   1 2 1 2| ( )( )( ) | ( )( )( )A A A Ay y ABC BC BD y y AB BC BD   .   

        The table indicates that when women’s choice of part-time work does not lead to 

their overrepresentation in irregular employment because no association between the two 

dimensions of employment status exists, the realization of gender equality in the 

opportunity for regular employment can reduce the gender wage gap by about 20%~21%, 

which is more than twice as much as the estimates in Table 2.  This indicates the 

importance of making regular part-time employment available widely so that we 

eliminate the societal condition where women’s preference for part-time employment 

because of the incompatibility of full-time employment with their family roles, especially 

during child-rearing periods, does not deprive them of the opportunity for regular 

employment.  Needless to say, it is also important to equalize the household division of 

labor between husbands and wives to reduce the extent of this incompatibility, so that 

women who wish to retain full-time employment can do so, because the traditional 
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gender division of household labor that still persists strongly in Japan even among dual-

earner families makes it very difficult for women to retain full-time jobs during child-

rearing periods. 

 

CONCLUSION 

       This paper introduces a new decomposition analysis of group differences. The major 

objective of the paper, however, is not just to introduce the method for its own sake, but 

also to stimulate discussion on how we can model counterfactual situations where, in the 

“causal” diagram, a particular path or a particular set of paths is eliminated.  The 

modeling of such counterfactual situations is important because, as illustrated in the 

application to an analysis of gender inequality in the hourly wage in Japan, the analysis 

gives numerical measurements about which aspects of inequality are causing more of the 

overall inequality and about how a particular aspect of inequality may be reduced by 

changing the societal situation where variables that play intermediary roles may be 

modified in their relationships to one another. As is well known from the classical study 

of Blau (1977), structural constraints imposed by the macro association of variables 

reduce social opportunities.  A difficulty of assessing the consequence of a macrosocietal 

change, however, is that people may not simply accept different social conditions but 

may rather utilize new situations for their benefit.  A juxtaposition of the ML method, by 

which I represent the principle of resistance to change due to people’s change of choices 

to recover their lost benefit under the new situation imposed externally, and the 

standardization method, by which I represent the principle of ceteris paribus, as well as 
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the consistency of the two predictions, demonstrate the usefulness of the new method in 

describing what would happen in macrosocietal counterfactual situations.  
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Table 1．Average Hourly Wage by Gender and Employment Pattern   
 
         
   

  Full-time, 
regular 

Full-time, 
nonregular 

Part-time, 
regular 

Part-time, 
nonregular 

Total/ 
average 

Population proportion Male 0.840 0.075 0.003 0.082 1.000
Female 0.474 0.146 0.009 0.371 1.000

Hourly wage (in yen) Male 2,094 1,324 1,342 1,059 1,949
Female 1,462 1,041 1,068    939 1,203

Ratio of wage  
(female vs. male) 

 0.698 0.786 0.796 0.887 0.617

 
                    

{  
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          Table 2 Decomposition of Gender Wage Gap 

 ML method Standardization

method 

Gender difference in the composition of 

employment types 

36.5   35.8 

(a) due to regular-irregular composition  
within full-time work and within part-time work  

(9.1)   (9.4)  

(a) remaining difference   (27.4)  (26.4) 

Within-group gap among regular full-time workers    51.0   51.8 

Within-group gap among irregular full-time workers     4.0     4.1 

Within-group gap among regular part-time workers     0.2    0.2 

Within-group gap among irregular part-time workers     4.6    4.4 

Gender differences in age distribution     3.7    3.7 
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Table 3.  Decomposition under Independence of the Regular-Irregular Employment 

Distinction and the Full-Time-versus-Part-Time Work Distinction 

 ML method Standardization

method 

Gender difference in the composition of 

employment types 

40.4     39.3 

(b) due to regular-irregular composition  
within full-time work and within part-time work

  (21.3)   (20.4)  

(c) remaining difference   (19.1)   (18.9) 
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               Figure  1:  Path-Analytic Diagram 1  
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                                    Figure 2.  Path-Analytic Diagram 2 
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Figure 3.  Hourly wage by age in 2005
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