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1 Introduction

Recent empirical studies have found that individuals face highly persistent idiosyncratic income

shocks and that the variance of these shocks is countercyclical (Storesletten, Telmer, Yaron,

2004; Meghir and Pistaferri, 2004). If asset markets are incomplete and these income shock are

not insurable, then the welfare cost of business cycles can be very large as shown, for instance,

by Krebs (2003) and De Santis (2007). In this paper, we investigate how monetary policy

should be conducted in the presence of persistent and countercyclical idiosyncratic risk.

We consider a New Keynesian model with Calvo-style price rigidity, augmented with unin-

sured idiosyncratic income shocks.1 As shown, for instance, by Schmitt-Grohé and Uribe (2007),

the optimal monetary policy obtained in the standard New Keynesian model calls for (nearly)

complete inflation stabilization. That is, in the context of the classical trade-off between in-

flation and output fluctuations, the monetary authority should almost exclusively focus on the

stabilization of inflation. This result, however, is produced in the representative-agent frame-

work, in which the welfare cost of business cycles is negligible, as is originally shown by Lucas

(1987). Our model with persistent and countercyclical idiosyncratic risk yields a sizable cost of

business cycles, and it is interesting to see how this alters the trade-off between inflation and

output stabilization.

Our model builds on the exchange economy studied by Constantinides and Duffie (1996)

and extends it to a production economy with endogenous labor supply. We assume that the

labor productivity of each individual follows a geometric random walk, and there are no insur-

ance markets for that risk. Assuming such idiosyncratic shocks would in general require that

the wealth distribution, an infinite-dimensional object, be included as a state variable, which

causes a “curse of dimensionality” problem. In order to maintain tractability, we assume that

the return to savings of each individual is also subject to idiosyncratic risk. Under these as-

sumptions we can show that the no-trade theorem of Constantinides and Duffie (1996) extends

to a production economy with endogenous labor supply.2

We also demonstrate that there exists a representative-agent economy with preference shocks

that yields the same aggregate quantities and prices in equilibrium as the original heterogeneous-

agents economy with incomplete markets.3 We show that an increase in the variance of idiosyn-

cratic income shocks in our incomplete-markets economy has the same effect as an increase

(resp. decrease) in the discount factor in the corresponding representative-agent economy if the

elasticity of intertemporal substitution of consumption is less (resp. greater) than unity.

We then embed this incomplete-markets model into an otherwise standard New Keynesian

model with monopolistic competition and the Calvo price setting. Calvo price setting makes
1There is large literature on New Keynesian models. Useful overviews are provided by, for instance, Woodford

(2003) and Gaĺı (2008).
2Papers that apply the no-trade result of Constantinides and Duffie (1996) include, among others, Saito

(1998), Krebs (2003, 2007), De Santis (2007). Angeletos (2007) considers a model with idiosyncratic shocks to

the return to individual savings. None of these consider endogenous labor-leisure decision.
3For a general discussion on the correspondence between incomplete-markets economies and representative-

agent economies, see Nakajima (2005).
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profit maximization of each firm an intertemporal problem. When the financial markets are

incomplete, shareholders, in general, do not agree on how to value future dividends.4 In the

context of the Calvo model, this would imply that when a firm obtains an opportunity to adjust

the price of its product, its shareholders do not agree upon what price it should charge. For-

tunately, however, under our assumptions, we establish that there is no disagreement problem

and that all shareholders value future dividends in the same way.

We consider two kinds of aggregate shocks: a shock to the level of aggregate productivity

and a shock to the variance of idiosyncratic income shocks. We are particularly interested in

the case where the variance of idiosyncratic shocks is negatively correlated with the shock to the

aggregate productivity level, so that idiosyncratic risk is countercyclical. For the productivity

shock process, we consider two laws of motion, a geometric random walk, and a stationary,

autoregressive process. We start by showing that the welfare cost of business cycles can be

large in our economy. Consistent with the previous finding on the exchange economy (De

Santis, 2007), with countercyclical idiosyncratic risk, the welfare cost of business cycles can

be sizable (around 10% permanent decline in consumption) with a reasonable coefficient of

relative risk aversion, regardless of whether the aggregate productivity shock is permanent or

temporary.

We then use our model to answer the following question. How does such a large welfare cost

of business cycles affect the trade-off between output and inflation stabilization? To examine

this question, we compare two policy regimes: the Ramsey regime and the inflation-targeting

regime. In the Ramsey regime, the monetary authority sets (with commitment) the state-

contingent path of the inflation rate so as to maximize the average utility level. In the inflation-

targeting regime, the monetary authority sets the inflation rate at zero at all times. Schmitt-

Grohé and Uribe (2007) show in a representative-agent economy that the equilibrium obtained

under the Ramsey regime is nearly identical to the equilibrium obtained under the inflation-

targeting regime. Thus, the question here is how much the equilibria under these two policy

regimes would differ in the presence of countercyclical idiosyncratic risk. We find that a similar

result arises in our model. Optimal monetary policy is essentially given by complete price

stabilization even with countercyclical idiosyncratic risk.

The rest of the paper is organized as follows. In Section 2, we describe our heterogeneous-

agents economy with incomplete markets, and then construct a corresponding representative-

agent economy which yields the same equilibrium as the original economy. In Section 3, we

present our numerical results. In Section 4, we conclude.

2 The model economy

In this section we describe our model economy. It is a version of the neoclassical growth

model with uninsurable idiosyncratic income shocks studied in Braun and Nakajima (2008),

augmented with monopolistic competition and nominal price rigidities as in Calvo (1983). For

4For the overview on the theory of incomplete markets, see, for instance, Magill and Quinzii (1996).
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simplicity we consider a cashless economy as in Woodford (2003).

2.1 Individuals

The economy is populated by a continuum of individuals of unit measure, indexed by i ∈ [0, 1].

They are subject to both idiosyncratic and aggregate shocks. We assume that idiosyncratic

shocks are independent across individuals, and a law of large numbers applies. All individuals

are assumed to be identical ex ante, that is, prior to period 0.

Individuals consume and invest a composite good, which is produced by a continuum of

differentiated products, indexed by j ∈ [0, 1]. If the supply of each variety is given by Yj,t, for

j ∈ [0, 1], the aggregate amount of the composite good, Yt, is given by

Yt =
(∫ 1

0

Y
1− 1

ζ

j,t dj

) 1
1− 1

ζ

(1)

where ζ > 1 denotes the elasticity of substitution across different varieties. This composite

good is used for consumption and investment:

Yt = Ct + It (2)

where Ct and It denote the aggregate amounts of consumption and investment in period t,

respectively. Let Pj,t denote the price of variety j in period t. It then follows from cost

minimization that the demand for each variety is given by

Yj,t =
(
Pj,t
Pt

)−ζ
Yt (3)

where Pt is the price index defined by

Pt =
(∫ 1

0

P 1−ζ
j,t dj

) 1
1−ζ

(4)

Preferences of each individual are described by the utility function defined over stochastic

processes of consumption and leisure:

ui,0 = Ei0

∞∑
t=0

βt
1

1− γ
[
cθi,t(1− li,t)1−θ

]1−γ
(5)

where β is a subjective discount factor, ci,t is individual i’s amount of consumption of the

composite good in period t, and li,t is her labor supply in period t. We use Eit to denote the

expectation operator conditional on the history of idiosyncratic shocks to individual i up to and

including period t as well as the history of aggregate shocks over the same time period. The

expectation operator conditional on the history of aggregate shocks up to and including period

t is denoted by Et. For later reference, we define γc as

γc ≡ 1− θ(1− γ) (6)
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Thus, 1/γc is the intertemporal elasticity of substitution of consumption with a constant level

of leisure.

The idiosyncratic risk faced by individual i is represented by a geometric random walk {ηi,t}:

ln ηi,t = ln ηi,t−1 + ση,tεη,i,t −
σ2
η,t

2
(7)

where εη,i,t is N(0, 1) and i.i.d. across individuals and over time. The standard deviation,

ση,t, is allowed to fluctuate over time, in a way whose evolution is specified below. All agents

are assumed to start with the same initial realization of η, i.e., ηi,−1 = η−1, for all i. The

process {ηi,t} affects individual i’s income in two ways. First, ηi,t represents the productivity

of individual i’s labor (her efficiency units of labor). Thus, if wt is the real wage rate per

efficiency unit of labor, the labor income of individual i in period t is given by wtηi,tli,t. If the

idiosyncratic risk only affects individuals’ labor income, then the distribution of wealth would

have to be included in the vector of aggregate state variables, which would make the numerical

evaluation of optimal monetary policy very costly to undertake. We circumvent this problem

in the following way. Following Braun and Nakajima (2008), we assume that the rate of return

to individuals’ savings is also subject to idiosyncratic risk, ηi,t.

Suppose that claims to the ownership of physical capital and the ownership of firms are

traded separately. We abstract from government bonds. Let qj,t be the period-t price of a share

in firm j ∈ [0, 1], and ei,j,t be the share in firm j held by individual i at the end of period t.

Below we look for an equilibrium in which all individuals choose the same portfolio weights,

and hence they hold equal shares of all firms, that is, ei,j,t = ei,t for all j ∈ [0, 1]. Let si,t
be the value of stocks held by individual i: si,t ≡

∫ 1

0
qj,tei,j,t dj = ei,t

∫ 1

0
qj,t dj, and let Rs,t

be the gross rate of return on equities: Rs,t ≡
∫ 1

0
(qj,t + dj,t) dj/

∫ 1

0
qj,t−1 dj. Then, without

idiosyncratic shocks to the return on savings, the flow budget constraint for each individual

would be given by

ci,t + ki,t + si,t = Rk,tki,t−1 +Rs,tsi,t−1 + ηi,twtli,t

where ki,t is the amount of physical capital obtained by individual i in period t, and Rk,t is the

gross rate of return on physical capital, that is,

Rk,t = 1− δ + rk,t (8)

where rk,t is the rental rate of capital and δ is its depreciation rate. Instead we will assume that

the return to savings is also subject to the idiosyncratic risk, so that the flow budget constraint

becomes

ci,t + ki,t + si,t =
ηi,t
ηi,t−1

(Rk,tki,t−1 +Rs,tsi,t−1) + ηi,twtli,t (9)

Since individuals are identical ex ante,

ki,−1 = K−1, and si,−1 = S−1 (10)
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for all i ∈ [0, 1]. To rule out Ponzi schemes, we impose ki,t ≥ 0 and si,t ≥ 0. These last two

constraints will not bind in equilibrium.

In equation (9), ηi,t/ηi,t−1 is an idiosyncratic shock to the return on savings. This assump-

tion is purely a technical requirement that makes it possible for us to extend the result obtained

by Constantinides and Duffie (1996) in an exchange economy to our production economy. Under

this assumption “permanent income” of individual i, which is defined as the sum of human and

financial wealth, is proportional to ηi,t. Under our assumption shocks to ηi,t magnify the effect

of idiosyncratic risk on wealth as compared to the specification where they affect labor income

only. As we shall see below, however, our main finding is that the presence of idiosyncratic

shocks does not matter much for the conduct of monetary policy. Therefore, this feature of our

model strengthens our conclusions.

At date 0, each individual chooses a contingent plan {ci,t, li,t, ki,t, si,t} so as to maximize her

utility (5) subject to the sequence of flow budget constraints (9) and the short-selling constraint

on {ki,t, si,t}. The Lagrangian for the household’s problem is

L = E0

∞∑
t=0

βt

{
1

1− γ
[
cθi,t(1− li,t)1−θ

]1−γ
+ λi,t

[
ηi,t
ηi,t−1

(Rk,tki,t−1 +Rs,tsi,t−1) + ηi,twtli,t − ci,t − ki,t − si,t
]}

Then the first-order conditions are

θc−γci,t (1− li,t)(1−θ)(1−γ) = λi,t (11)

1− θ
θ

ci,t
1− li,t

= wtηi,t (12)

λi,t = βEitλi,t+1
ηi,t+1

ηi,t
Rk,t+1 (13)

λi,t = βEitλi,t+1
ηi,t+1

ηi,t
Rs,t+1 (14)

and the flow budget constraint (9). The transversality conditions for ki,t and si,t are given

respectively as

lim
t→∞

Ei0β
tλi,tki,t = 0 (15)

lim
t→∞

Ei0β
tλi,tsi,t = 0 (16)

Given a vector stochastic process {Rk,t, Rs,t, wt}, a solution to the utility maximization problem

of each individual is a state-contingent plan {ci,t, li,t, ki,t, si,t, λi,t} that satisfies the first-order

conditions (9)-(14), as well as the transversality conditions (15)-(16) and the initial conditions

(10).

2.2 Aggregation

Here we show that the utility maximization problem of heterogeneous agents under incomplete

markets described in the previous subsection can be aggregated into a utility maximization
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problem of a representative agent. The key is to allow for stochastic shocks to the utility

function of the representative individual as in Nakajima (2005).

Consider a representative agent with preferences defined by the utility function:

U0 = E0

∞∑
t=0

βt
1

1− γ
νt
[
Cθt (1− Lt)1−θ

]1−γ
(17)

where Ct is the amount of consumption of the composite good defined in (1) in period t, and L

is the amount of labor supply in period t. Here, νt is the preference shock to the representative

agent’s utility in period t defined by

νt ≡ exp

[
1
2
γc(γc − 1)

t∑
s=0

σ2
η,s

]
(18)

where γc is defined in (6), and ση,t is the standard deviation of the idiosyncratic shocks in

period t, as in (7). Note that νt is the cross-sectional average of η1−γc
i,t :

νt = Et[η
1−γc
i,t ]

where Et denotes the expectation operator conditional on the history of aggregate shocks up

to and including period t.

Suppose that the representative agent faces the following flow budget constraint:

Ct +Kt + St = Rk,tKt−1 +Rs,tSt−1 + wtLt (19)

and initial conditions K−1, S−1 > 0. Here Kt and St are the amount of physical capital and

the value of stocks held by the representative agent in period t. We assume the short-selling

constraints: Kt, St ≥ 0. These two constraints do not bind in equilibrium. Given prices and

the initial condition, the representative agent chooses a contingent plan {Ct, Lt,Kt, St} so as

to maximizes the lifetime utility U0 in (17) subject to the sequence of flow budget constraints

(19) and the short-selling constraints. Let us form the Lagrangian as

L = E0

∞∑
t=0

βtνt

{
1

1− γ
[
Cθt (1− Lt)1−θ

]1−γ
+ λt [Rk,tKt−1 +Rs,tSt−1 + wtLt − Ct −Kt − St]

}
The first-order conditions are given by

θC−γct (1− Lt)(1−θ)(1−γ) = λt (20)

1− θ
θ

Ct
1− Lt

= wt (21)

λt = Etβ
νt+1

νt
λt+1Rk,t+1 (22)

λt = Etβ
νt+1

νt
λt+1Rs,t+1 (23)
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and the flow budget constraint (19). The transversality condition for Kt and St are, respectively,

E0β
tνtλtKt = 0 (24)

E0β
tνtλtSt = 0 (25)

Given the initial conditions K−1 and S−1, a solution to the utility maximization problem of

the representative agent is given by {Ct, Lt,Kt, St, λt} that satisfies the first-order conditions

(19)-(23), as well as the transversality conditions (24)-(25). The next proposition establishes

the relationship between the solution to the utility maximization problem of the representative

agent, and the solution to the utility maximization problem of each individual described in the

previous subsection.

Proposition 1. Given stochastic processes {Rk,t, Rs,t, wt, ση,t} and initial conditions {K−1, S−1},
consider the utility maximization problem of individual i described in the previous subsection

and the utility maximization problem of the representative agent described in this subsection.

Suppose that {C∗t , L∗t ,K∗t , S∗t , λ∗t }∞t=0 is a solution to the representative agent’s problem. For

each i ∈ [0, 1], let c∗i,t = ηi,tC
∗
t , l∗i,t = L∗t , k∗i,t = ηi,tK

∗
t , s∗i,t = ηi,tS

∗
t , and λ∗i,t = η−γci,t λ∗t . Then

{c∗i,t, l∗i,t, k∗i,t, s∗i,t, λ∗i,t}∞t=0 is a solution to the problem of individual i.

Proof. Take stochastic processes {Rk,t, Rs,t, wt, ση,t} and initial conditions {K−1, S−1} as given.

Suppose that {C∗t , L∗t ,K∗t , S∗t , λ∗t }∞t=0 is a solution to the representative agent’s problem. Then

it satisfies the first-order conditions, (19)-(23), as well as the transversality conditions, (24)-(25).

For each i ∈ [0, 1], let c∗i,t = ηi,tC
∗
t , l∗i,t = L∗t , k

∗
i,t = ηi,tK

∗
t , s∗i,t = ηi,tS

∗
t , and λ∗i,t = η−γci,t λ∗t .

Then it is straightforward to see that these satisfy the first-order conditions, (9), (11)-(14),

and the transversality conditions, (15)-(16), for the problem of individual i. This complete the

proof.

In what follows we derive the equilibrium conditions for our incomplete-markets economy

using the first-order conditions for the representative agent, (19)-(23) and the transversality

conditions (24)-(25). Note that in equilibrium the utility of the representative agent (17) equals

the cross-sectional average of individual utility (5):

E0[ui,0] = E0

∞∑
t=0

βt
1

1− γ
c1−γci,t (1− li,t)(1−θ)(1−γ)

= E0

∞∑
t=0

βt
1

1− γ
η1−γc
i,t C1−γc

t (1− Lt)(1−θ)(1−γ)

= E0

∞∑
t=0

βt
1

1− γ
Et[η

1−γc
i,t ]C1−γc

t (1− Lt)(1−θ)(1−γ)

= E0

∞∑
t=0

βt
1

1− γ
νtC

1−γc
t (1− Lt)(1−θ)(1−γ)

= U0
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To see how the size of idiosyncratic shocks, ση,t, affects the economy, define the “effective

discount factor” between periods t and t+ 1, β̃t,t+1, as

β̃t,t+1 ≡ β
νt+1

νt
(26)

= β exp
[

1
2
γc(γc − 1)σ2

η,t+1

]
where the second equality follows from (18). This expression illustrates that the presence of

idiosyncratic shocks (ση,t > 0) makes the effective discount factor higher if γc > 1 and lower

if γc < 1. Moreover, cyclical fluctuations in the variance of idiosyncratic shocks, σ2
η,t, induce

cyclical variations in the effective discount factor β̃t,t+1.

A special feature of our economy is that, in spite of market incompleteness, there is agree-

ment among individuals on the present value of future dividends of each firm. To see this, note

that the stochastic discount factor used by individual i is

β
λi,t+1

λi,t
= β

λt+1

λt

(
ηi,t+1

ηi,t

)−γc
= β

λt+1

λt
exp

(
−γcση,t+1εη,i,t+1 +

γc
2
σ2
η,t+1

)
Since εη,i,t+1 is i.i.d. across individuals and independent of the stochastic shocks faced by each

firm, all individuals evaluate a given future payoff in the same way. In particular, we can use

the stochastic discount factor of the representative agent, βλt+1νt+1/(λtνt), to value future

dividend streams of firms.

2.3 Firms

The production side of our economy is standard in the New Keynesian literature and similar

to the one considered by Schmitt-Grohé and Uribe (2007). Each differentiated product is

produced by a single firm in a monopolistically competitive environment. Firm j ∈ [0, 1] has

the production technology:

Yj,t = z1−α
t Kα

j,tL
1−α
j,t − Φt (27)

where zt is the aggregate productivity shock, Kj,t is the physical capital used by firm j in period

t, Lj,t is its labor input, and Φt is the fixed cost of production. The market clearing conditions

for capital and labor are∫ 1

0

Kj,t dj = Kt−1, and
∫ 1

0

Lj,t dj = Lt

Here, note that the stock of capital available for the production in period t is Kt−1. The

processes for zt and Φt are specified in the next subsection.

Consider the cost minimization problem of firm j:

min
Kj,t,Lj,t

wtLj,t + rtKj,t

9



subject to

z1−α
t Kα

j,tL
1−α
j,t − Φt = Yj,t

Let mcj,t be the Lagrange multiplier, which will be interpreted as the marginal cost of produc-

tion of firm j. Then the first-order conditions read

wt = mcj,t(1− α)z1−α
t Kα

j,tL
−α
j,t

rt = mcj,t αz1−α
t Kα−1

j,t L1−α
j,t

It follows that all firms choose the same capital-labor ratio:

Kj,t

Lj,t
=

α

1− α
wt
rt

and that the marginal cost is identical for all firms:

mcj,t = α−α(1− α)−1+αzα−1
t w1−α

t rαt

≡ mct

The first-order conditions for the cost-minimization problem of firm j can now be rewritten as

wt = mct(1− α)z1−α
t Kα

t−1L
−α
t (28)

rt = mct αz1−α
t Kα−1

t−1 L
1−α
t (29)

Firm j’s profit in period t is then given as

Pj,t
Pt

Yj,t − wtLj,t − rtKj,t =
Pj,t
Pt

Yj,t −mct(Yj,t + Φt)

=
(
Pj,t
Pt

)1−ζ

Yt −mct

{(
Pj,t
Pt

)−ζ
Yt + Φt

}
The price of each variety is adjusted in a sluggish way as in Calvo (1983) and Yun (1996). For

each firm, the opportunity to change the price of its product arrives with probability 1 − ξ in

each period. This random event occurs independently across firms (it is also independent of all

other stochastic shocks in our economy). Without such an opportunity, a firm must charge the

same price as in the previous period. Suppose that firm j obtains an opportunity to change its

price in period t. It chooses Pj,t to maximize the present discounted value of profits:

max
Pj,t

Et

∞∑
s=0

βs
λt+sνt+s
λtνt

ξs

[(
Pj,t
Pt+s

)1−ζ

Yt+s −mct+s

{(
Pj,t
Pt+s

)−ζ
Yt+s + Φt+s

}]
where βsλt+sνt+s/(λtνt) is the stochastic discount factor used to evaluate (real) payoffs in

period t+ s in units of consumption in period t.

All firms with the opportunity to change their prices will choose the same price, so denote

it by P̃t. Then the first-order condition for the above profit-maximization problem is given by

Et

∞∑
s=0

(ξβ)s
λt+sνt+s
λtνt

{
(1− ζ)P̃−ζt P ζ−1

t+s Yt+s + ζ mct+s P̃
−ζ−1
t P ζt+sYt+s

}
= 0

10



Define ν̃t+s as

ν̃t+s ≡
νt+s
νt

= exp

{
1
2
γc(γc − 1)

t+s∑
u=t+1

σ2
η,u

}
Then, after some algebra, we can reexpress the first-order condition for P̃t as

x1
t =

ζ − 1
ζ

p̃tx
2
t (30)

where

p̃t ≡
P̃t
Pt

x1
t ≡ Et

∞∑
s=0

(ξβ)sλt+sν̃t+s

(
Pt+s
Pt

)ζ
Yt+s mct+s

x2
t ≡ Et

∞∑
s=0

(ξβ)sλt+sν̃t+s

(
Pt+s
Pt

)ζ−1

Yt+s

It is convenient to express x1
t and x2

t in a recursive fashion:

x1
t = λtYt mct +ξβEtν̃t+1π

ζ
t+1x

1
t+1 (31)

x2
t = λtYt + ξβEtν̃t+1π

ζ−1
t+1 x

2
t+1 (32)

where πt+1 is the gross inflation rate between periods t and t+ 1:

πt+1 ≡
Pt+1

Pt

Since all firms that adjust their prices in a given period choose the same new price, P̃t,

equation (4) implies that the price index, Pt, evolves as

P 1−ζ
t = ξP 1−ζ

t−1 + (1− ξ)P̃ 1−ζ
t

which can be rewritten as

1 = ξπ−1+ζ
t + (1− ξ)p̃1−ζ

t (33)

To derive the aggregate production function, rewrite the production function of individual

firms (27) as

z1−α
t Kα

j,tL
1−α
j,t − Φt =

(
Pj,t
Pt

)−ζ
Yt

Using the fact that Kj,t/Lj,t is the same for all j, and integrating both sides of this equation

yields

ςtYt = z1−α
t Kα

t−1L
1−α
t − Φt (34)

where ςt ≤ 1 measures the inefficiency due to price dispersion:

ςt =
∫ 1

0

(
Pj,t
Pt

)−ζ
dj

The evolution of ςt can be written as

ςt = (1− ξ)p̃−ζt + ξπζt ςt−1 (35)
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2.4 Aggregate shocks

The aggregate productivity shock is either permanent or temporary. For the case where the

productivity shock is permanent, we assume that zt is a geometric random walk:

ln zt = ln zt−1 + µ+ σzεz,t −
σ2
z

2
(36)

and the fixed cost of production, Φt, grows at the rate µ:

Φt = Φ exp(µt) (37)

where µ and σz are constant parameters, and εz,t is N(0, 1) and i.i.d. across periods. For the

case where the productivity shock is temporary, we assume that zt follows an AR(1) process:

ln zt = ρz ln zt−1 + σzεz,t −
σ2
z

2(1 + ρz)
(38)

and that the fixed cost is constant:

Φt = Φ (39)

In both cases, the constant Φ is calibrated so that the aggregate profit is zero in the non-

stochastic steady state (balanced growth path) with zero inflation.

The standard deviation of innovations to individual labor productivity, ση,t, is also an ag-

gregate shock. Evidence provided by Storesletten, Telmer and Yaron (2004) and Meghir and

Pistaferri (2004) suggests that it fluctuates countercyclically. Krebs (2003) and De Santis

(2007) have found that the welfare cost of business cycles can be sizable with countercyclical

idiosyncratic risk. Following this literature, we allow ση,t to covary with the aggregate technol-

ogy shock. Specifically, when the evolution of the aggregate productivity is given by (36), we

assume that the variance of idiosyncratic shocks evolves as

σ2
η,t = σ̄2

η + bσzεz,t (40)

and when zt follows the temporary process given by (38), we assume that

σ2
η,t = σ̄2

η + b ln zt (41)

An important difference between these two specifications is that σ2
η,t is serially correlated in

(41) but not in (40).

2.5 Government

Government policy is very simple in our economy. First we abstract from fiscal policy: the

government does not consume, and there are no government bonds nor taxes. We assume

that the monetary authority can directly control the inflation rate. Thus, monetary policy is

specified as a state contingent path of the inflation rate, {πt}∞t=0. We consider two regimes for

the monetary policy. The first regime is “inflation targeting,” where the monetary authority

sets the inflation rate to zero at all times and in all contingencies, that is, πt = 1, for all t. The

second regime is “Ramsey,” where the monetary authority precommits to the state-contingent

path of the inflation rate so as to maximize the average utility of individuals U0 = E0[ui,0].
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3 Optimal monetary policy

In this section we analyze how the presence of idiosyncratic shocks affects the properties of the

optimal monetary policy. We are particularly interested in the case where the idiosyncratic

risk, ση,t, fluctuates countercyclically. We show that even though countercyclical idiosyncratic

risk makes the welfare cost of business cycles sizable, properties of the optimal monetary policy

are little affected by the presence of idiosyncratic shocks. Namely, the optimal monetary policy

is roughly characterized as the zero-inflation policy.

3.1 Qualitative result

Let us first consider a special case where a fiscal policy eliminates the monopoly distortion at the

zero-inflation steady state. Specifically, suppose that each monopolist’s revenue is subsidized

at a rate τ , that those subsidies are financed by lump-sum taxes, Tt, on monopolists, and that

there are no fixed costs, Φ = 0. Then, net of those tax and subsidy, each monopolist’s profit is

(1 + τ)
Pj,t
Pt

Yj,t − wtLj,t − rtKj,t − Tt

where Tt =
∫
τ
Pj,t
Pt
Yj,t dj to balance the government’s budget. If we assume that

τ =
1

ζ − 1
(42)

then the monopoly distortion is eliminated at the zero-inflation steady state. Let the stochastic

processes for {zt} and {σ2
η,t} be given either by (36) and (40), or by (38) and (41), respectively.

Now consider our model with a representative agent whose preferences are given by (17).

When the monopolists’ revenue is subsidized at the rate (42), the flexible-price equilibrium

is clearly Pareto optimal in such an economy. Then, with sticky prices, the Ramsey optimal

monetary policy is setting πt = 0 at all dates under all contingencies, if the economy starts

from the zero-inflation steady state.

Now consider our model with heterogeneous agents under incomplete markets. Because of

the market incompleteness, the flexible-price equilibrium is not Pareto optimal. Nevertheless,

the Ramsey policy is still given by the zero inflation policy, because of Proposition 1. Thus we

have the following result.

Proposition 2. Assume that subsidies to the monopolists are given at the rate τ = 1
ζ−1 , which

are financed by lump-sum taxes on the monopolists. Suppose also that the economy is initially

at the zero-inflation steady state. Then the solution to the Ramsey problem is given by

πt = 1,

at all dates under all contingencies.
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3.2 Quantitative result

Now let us turn back to a general case with a monopoly distortion: τ = Tt = 0. With the

monopoly distortion, setting the inflation rate to zero at all dates is no longer strictly optimal.

The question asked in this subsection is how different the optimal monetary policy is from the

zero-inflation policy.

The parameter values of our model are calibrated as follows. One period in the model

corresponds to a quarter. The share of capital is α = 0.36, and the depreciation rate is

δ = 0.02. These are taken from Boldrin, Christiano and Fisher (2001). The probability of

price adjustment is set to 0.2, i.e., ξ = 0.8 and the elasticity of substitution across different

varieties of products is ζ = 5, following Schmitt-Grohé and Uribe (2007). The fixed cost of

production, Φ̄, is set so that the profit of each firm at the non-stochastic steady state under

optimal monetary policy is zero. The discount factor β is chosen so that the real interest rate

at the non-stochastic steady state is four percent a year. For the preference parameter, we

consider two values for γc, 0.7 and 2. For each value of γc, another preference parameter θ is

set so that the labor supply at the stochastic steady state is one third (then, γ is determined

as γ = 1− (1− γc)/θ). For the case of permanent productivity shock (36), we follow Boldrin,

Christiano and Fisher (2001) and set µ = 0.004, and σz = 0.018. For the case of temporary

productivity shock (38), we follow Schmitt-Grohé and Uribe (2007)5 and set ρz = 0.8556 and

σz = 0.0064/(1 − α). For the idiosyncratic shock process, we follow De Santis (2007) and set

σ̄η = 0.1/2 and b = 0 or b = −0.8. As it turns out, as long as we adjust β so as to make the

steady state interest rate equals to a fixed rate (i.e., four percent a year), the value of ση does

not matter. When b = 0, the idiosyncratic risk is acyclical; when b = −0.8, it is countercyclical.

De Santis (2007) chooses b = −0.8 based on the evidence provided by Storesletten, Telmer and

Yaron (2004).

In what follows, we compare dynamics of different versions of our model economy, which

differ in terms of the risk aversion parameter, γc ∈ {0.7, 2}; the cyclicality of the idiosyncratic

risk, b ∈ {0,−0.8}; the persistence of the aggregate productivity shock, (36) and (38); or the

policy regime, the Ramsey and the inflation-targeting regimes. In addition, for each values of

γc and b, and for each process for zt, we compute two normative measures.

The first one is the welfare cost of business cycles as originally estimated by Lucas (1987).

Specifically, we consider the real-business-cycle version of our model, in which there are no

nominal rigidities, and compare the economy with positive aggregate shocks, σz > 0, and the

economy without aggregate shocks, σz = 0. In both cases we assume that there are idiosyncratic

shocks, σ̄η > 0. We also assume that both economies are at the non-stochastic steady state

prior to date 0 and compare the welfare conditional on the state vector at t = −1.6 Let Xt

denote the vector of the state variables, and let X̄ denote its value at the non-stochastic steady

5Note that the productivity level zt in Schmitt-Grohé and Uribe (2007) corresponds to our z1−αt , so that

their standard deviation must be adjusted by 1/(1− α).
6In this sense, our welfare cost measures are the conditional welfare cost, as opposed to the unconditional

one. Schmitt-Grohé and Uribe (2007) discuss a related issue.
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state. Further, let {Crbc
t , Lrbc

t } denote the equilibrium process of aggregate consumption and

labor supply in the RBC version of our economy, and let {C̄, L̄} denote their values in the

steady state. Then, define the lifetime utility evaluated at period t = −1 by

V (X̄, σz; rbc) ≡ E−1

∞∑
t=0

βtνt
1

1− γ
[
(Crbc

t )θ(1− Lrbc
t )1−θ

]1−γ
where νt is given by (18). The corresponding value for the non-stochastic economy is given by

V (X̄, 0; rbc) =
∞∑
t=0

βtν̄t
1

1− γ
[
(C̄)θ(1− L̄)1−θ

]1−γ
where ν̄t is defined by

ν̄t ≡ exp
[

1
2
γc(γc − 1)σ̄2

ηt

]
The welfare cost of business cycles is defined by ∆bc that solves

∞∑
t=0

βtν̄t
1

1− γ
[
((1−∆bc)C̄)θ(1− L̄)1−θ

]1−γ
= V (X̄, σz; rbc)

that is,

∆bc = 1−
{
V (X̄, σz; rbc)
V (X̄, 0; rbc)

} 1
1−γc

The second normative measure is the cost of adopting a non-optimal policy regime (the

inflation-targeting regime) as opposed to the optimal policy regime (the Ramsey regime). Some-

what abusing notation, we again use X̄ to denote the non-stochastic steady state under the

Ramsey regime. As it turns out, the steady-state inflation rate under the Ramsey regime is

zero. Therefore, X̄ is also the non-stochastic steady state associated with the inflation-targeting

regime. Suppose that the economy is at the steady state X̄ prior to date 0. Then the welfare

cost of the inflation-targeting regime, ∆inf, is given as

∆inf = 1−
{
V (X̄, σz; inf)
V (X̄, σz; ram)

} 1
1−γc

where V (X̄, σz; inf) and V (X̄, σz; ram) are the lifetime utility associated with the inflation-

targeting and Ramsey regimes, respectively.

3.2.1 The case with permanent productivity shock

Let us first look at the case where the aggregate productivity level zt follows the process given

by (36) and the variance of idiosyncratic shocks follows the process given by (40). Then how do

cyclical fluctuations in ση,t affect the economy? Recall that, given our aggregation result, the

idiosyncratic risk affects the aggregate dynamics through its effect on νt, and hence, through

its effect on the effective discount factor, β̃t,t+1, which is defined in (26). When the processes

for zt and ση,t are given, respectively, by (36) and (40), the effective discount factor becomes

ln β̃t,t+1 = ln β̄ +
1
2
γc(γc − 1)bσzεz,t+1
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where

β̄ ≡ β exp
[

1
2
γc(γc − 1)σ̄2

η

]
Since εz,t+1 is i.i.d. and standard normal, the effective discount factor in this case is also i.i.d.

and it is log-normal:

ln β̃t,t+1 ∼ N

(
ln β̄,

[
1
2
γc(γc − 1)bσz

]2)
(43)

Thus, under the specification given by (36) and (40), the effect of cyclical idiosyncratic risk is

to make the effective discount factor an i.i.d. random variable with the distribution given by

(43).

Table 1 shows the welfare cost of business cycles, ∆bc, for γc = 0.7, 2 and for b = 0,−0.8.

When the risk aversion is relatively low, γc = 0.7, the welfare cost of business cycles is negative,

that is, the expected utility is higher when σz > 0 than when σz = 0. This result is consistent

with the finding by Cho and Cooley (2005).7 Furthermore, in this case, making the idiosyncratic

risk countercyclical decreases the welfare cost of business cycles (that is, it increases the welfare

gain of business cycles). On the other hand, when the relative risk aversion is higher, γc = 2,

the welfare cost of business cycles is positive and is magnified by cyclical fluctuations in ση,t.

Indeed, when γc = 2 and b = −0.8, the welfare cost of business cycles is about 7.3 percent of

consumption, which is a sizable amount.

Figures 1-4 show impulse response functions to a one-standard deviation shock to the pro-

ductivity growth under the policy regimes and for γc = 0.7, 2 and b = 0,−0.8. These figures

show that, regardless of the policy regime, changing b does not affect the impulse response

functions. In other words, changing β̃t,t+1 from a constant to an i.i.d. random variable does

not change the impulse response functions. In addition, for each value of γc and b, the impulse

response functions are the same between the two policy regimes.

Turning back to Table 1, we see that the welfare cost of adopting the inflation-targeting

regime is negligible for all values of γc and b considered here. Even when γc = 2 and b = −0.8,

it is only 0.0006 percent (recall that the welfare cost of business cycles is 7.3 percent for that

case). Thus we conclude that, under permanent productivity shocks, cyclical fluctuations in

the idiosyncratic risk do not affect how the monetary policy should be conducted, even if it

makes the welfare cost of business cycles very large.

3.2.2 The case with temporary productivity shock

Now consider the case where the productivity shock follows the process given by (38), and the

variance of idiosyncratic shocks follows the process given by (41). This specification differs

from the specification in the previous subsection in two important ways. First, the productivity

process (38) is stationary. Second, since ln zt is autocorrelated, so is ση,t. This introduces

7Note that our welfare measure is conditional on the initial state variable. It turns out that the unconditional

welfare cost of business cycles is positive for γc = 0.7.
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predictable variability to the idiosyncratic risk, and thus, to the effective discount factor, which

was i.i.d. in the previous subsection. Specifically, the effective discount factor is now given by

ln β̃t,t+1 = ln β̄ +
1
2
γc(γc − 1)b ln zt+1

Its conditional expectation then becomes

Et[ln β̃t,t+1] = ln β̄ +
1
2
γc(γc − 1)b

(
ρz ln zt −

σ2
z

2(1 + ρz)

)
which fluctuates over time. Indeed, when γc < 1 and b < 0, the productivity shock today

increases zt as well as the expected value of the effective discount factor, Et[ln β̃t,t+1]. On the

other hand, when γc > 1 and b < 0, the shock increasing zt decreases Et[ln β̃t,t+1].

Table 2 shows the welfare costs of business cycles, ∆bc, for γc = 0.7, 2 and for b = 0,−0.8.

As opposed to the case of permanent shocks in the previous subsection, when b = 0, ∆bc is

negative for the both values of γc. In addition, its absolute value is much smaller. As in the

permanent-shock case, countercyclical idiosyncratic risk increases the welfare gain of business

cycles for γc = 0.7, and magnifies the welfare cost of business cycles when γc = 2. When γc = 2

and b = −0.8, the welfare cost of business cycles is sizable (12.2 percent), even though the

productivity process is stationary.

Figures 5-8 show impulse response functions to a one-standard deviation shock. In contrast

to the previous subsection, now the impulse response functions under b = 0 and b = −0.8

differ significantly. When γc < 1, countercyclical idiosyncratic risk tends to magnify the effect

of a productivity shock: the responses of output, investment, and labor are all greater when

b = −0.8 than when b = 0. This is because when γc < 1, a current productivity increase

tends to increase the discount factor between the current and the next periods, which tends

to increase the investment demand and the labor supply. The opposite would happen when

γc > 1, where a productivity increase in the current period tends to reduce the effective discount

factor between the current and the next periods, which tends to lower investment and labor

supply. Thus, now the cyclicality of the idiosyncratic risk affects how the aggregate economy

responds to a productivity shock. But, as these figures show, again, the difference in the impulse

response functions between the two policy regimes is minimal. And as Table 2, the difference

is negligible from the viewpoint of welfare. The welfare cost of adopting the inflation-targeting

regime remains to be very small: ∆inf is merely 0.0024 percent for γc = 2 and b = −0.8, even

though ∆bc = 12.2 percent in that case.

To summarize, with countercyclical idiosyncratic shocks, the welfare cost of business cycles

can be sizable, and also, it may amplify or dampen the responses of the aggregate variables to

a productivity shock, depending on the value of γc (inverse of the elasticity of intertemporal

substitution of consumption). However, it does not affect how monetary policy should be

conducted. Even with countercyclical idiosyncratic shocks, the optimal monetary policy is

essentially given by the one that keeps the inflation rate at zero.
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4 Conclusion

In this paper we have developed a New Keynesian model with uninsured idiosyncratic income

shocks, and analyzed the optimal monetary policy. We are particularly interested in the case

where the variance of idiosyncratic income shocks fluctuate countercyclically over time. Our

calibration exercise shows that, although the existence of such idiosyncratic income shocks

implies a large welfare cost of business cycles, it does not affect much how monetary policy

should be conducted. Specifically, the optimal monetary policy remains to be very close to the

complete price-level stabilization even in the presence of countercyclical idiosyncratic shocks.

Note that our assumption that idiosyncratic shocks hit both labor and capital income tends

to overemphasize the effect of idiosyncratic shocks. In a model where idiosyncratic shocks only

affect the labor income, the optimal conduct of monetary policy would be even less affected by

the presence of countercyclical idiosyncratic risk.
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γc 0.7 0.7 2 2

b 0 -0.8 0 -0.8

∆bc (%) -0.8191 -1.2983 2.0938 7.3301

∆inf (%) 0.0000 0.0000 0.0002 0.0006

Table 1: Welfare measures with permanent technology shocks

γc 0.7 0.7 2 2

b 0 -0.8 0 -0.8

∆bc (%) -0.0171 -0.6191 -0.0073 12.2258

∆inf (%) 0.0000 0.0001 0.0000 0.0024

Table 2: Welfare measures with temporary technology shocks
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Figure 1: Impulse responses to a permanent productivity shock when γc = 0.7 and b = 0. Solid

lines = Ramsey policy; dashed lines = inflation targeting.
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Figure 2: Impulse responses to a permanent productivity shock when γc = 0.7 and b = −0.8.

Solid lines = Ramsey policy; dashed lines = inflation targeting.
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Figure 3: Impulse responses to a permanent productivity shock when γc = 2 and b = 0. Solid

lines = Ramsey policy; dashed lines = inflation targeting.
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Figure 4: Impulse responses to a permanent productivity shock when γc = 2 and b = −0.8.

Solid lines = Ramsey policy; dashed lines = inflation targeting.
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Figure 5: Impulse responses to a temporary productivity shock when γc = 0.7 and b = 0. Solid

lines = Ramsey policy; dashed lines = inflation targeting.
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Figure 6: Impulse responses to a temporary productivity shock when γc = 0.7 and b = −0.8.

Solid lines = Ramsey policy; dashed lines = inflation targeting.
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Figure 7: Impulse responses to a temporary productivity shock when γc = 2 and b = 0. Solid

lines = Ramsey policy; dashed lines = inflation targeting.
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Figure 8: Impulse responses to a temporary productivity shock when γc = 2 and b = −0.8.

Solid lines = Ramsey policy; dashed lines = inflation targeting.
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