
DP
RIETI Discussion Paper Series 09-E-014

Optimal Monetary Policy
with Imperfect Unemployment Insurance

NAKAJIMA Tomoyuki
RIETI

The Research Institute of Economy, Trade and Industry
http://www.rieti.go.jp/en/

http://www.rieti.go.jp/en/


Optimal Monetary Policy

with Imperfect Unemployment Insurance

Tomoyuki Nakajima∗

Kyoto University and RIETI

March 2009

Abstract

We consider an efficiency-wage model with the Calvo-type sticky prices and ana-

lyze the optimal monetary policy when the unemployment insurance is not perfect.

With imperfect risk sharing, the strict zero-inflation policy is no longer optimal even

when the steady-state equilibrium is made (conditionally) efficient. Quantitative re-

sults depend on how the idiosyncratic earnings loss due to unemployment varies over

business cycles. If the idiosyncratic income loss is acyclical, the optimal policy differs

very little from the zero-inflation policy. However, if it varies countercyclically, as

evidence suggests, the deviation of the optimal policy from the complete price-level

stabilization becomes quantitatively significant. Furthermore, the optimal policy in

such a case involves stabilization of output to a much larger extent.
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1 Introduction

There is a growing amount of literature on optimal monetary policy based on the dynamic

stochastic general equilibrium framework with imperfect competition and staggered price

setting. Its simplest version has two types of distortions: relative-price distortions due

to staggered price setting, and distortions associated with imperfect competition (market

power). As discussed by Goodfriend and King (1997), Rotemberg and Woodford (1997)

and Woodford (2003), if fiscal policy is used to offset the distortions caused by market

power, then the optimal monetary policy is characterized by complete stabilization of the

price level. The intuition is very simple: without distortions due to market power, the

flexible-price equilibrium becomes efficient, which in turn can be attained by the zero-

inflation policy.1 It is the price level that has to be stabilized, but not the level of output.2

As long as the inflation rate is kept at zero, any fluctuations in output would be efficient.

The basic model has been extended in several directions. For instance, Benigno and

Woodford (2003, 2005) and Khan, King and Wolman (2003) consider the case where

distortions due to market power are present. Schmitt-Grohé and Uribe (2005) extend the

analysis further by studying an even richer model based on Christiano, Eichenbaum and

Evans (2005). The existing research on this literature, however, has restricted attention

to complete-markets (representative-agent) models. In this paper we are interested to see

the extent to which the nature of optimal monetary policy is affected by the presence of

unemployment when unemployment insurance is not perfect. In particular, we’d like to

examine whether or not the existence of imperfectly insured unemployed workers calls for

more output stabilization.

For this purpose, we bring unemployment into the basic sticky-price model by building

on the efficiency-wage model of Alexopoulos (2004). The model has a representative

household with a continuum of individual members. In each period, each member is either

employed or unemployed. An employed worker may or may not shirk. A detected shirker

will be punished by an exogenous reduction in the wage payment.3 Firms determine the

wage rate so that no workers would shirk in equilibrium. An important assumption that

makes the model tractable is that individuals members of a household are not allowed to

participate in the asset market; it is the household that makes all the decisions related

to savings. Due to this assumption, we are able to use the representative-household
1Note that this argument assumes that initial price dispersion is nil (or “small” if we are interested in

a first-order approximation of optimal monetary policy). See Yun (2005) on this point.
2What is stabilized is the “output gap,” which is defined as the difference between the actual level of

output and the efficient level of output.
3A relation with the model of Shapiro and Stiglitz (1984) is discussed in the Appendix.
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framework even though the unemployment insurance is not perfect. The rest of the model

is similar to the basic sticky-price model of Woodford (2003).

We analyze optimal monetary policy using the linear-quadratic approach developed by

Rotemberg and Woodford (1997), Woodford (2003), and Benigno and Woodford (2003,

2005). To focus on the effect of imperfect unemployment insurance on stabilization pol-

icy, we mostly assume that fiscal policy is used to make the zero-inflation steady state

conditionally efficient. It follows that with perfect insurance the flexible-price equilibrium

is efficient so that the complete price-level stabilization is the optimal policy. This is not

true with imperfect insurance, where the optimal policy would involve some fluctuations

in the inflation rate. Our qualitative analysis shows that a government-purchase shock is

a negative cost-push shock, while a productivity shock is a positive one. That is, optimal

policy should generate some deflation (inflation) when there is an exogenous increase in

government purchases (productivity).

But, quantitatively, how large is the deviation of the optimal policy from the com-

plete price-level stabilization? The answer crucially depends on how idiosyncratic income

shocks vary over business cycles. Specifically, what matters is how the relative income

of the unemployed to that of the employed varies over business cycles. We say that id-

iosyncratic income losses are acyclical if the relative income of the unemployed is constant

over business cycles, and countercyclical if the relative income varies procyclically. We

begin with the case where the relative income of the unemployed is constant over business

cycles. In this case, although the complete price-level stabilization is not exactly optimal

with imperfect insurance, the optimal policy differs very little from it. Thus, as long as

idiosyncratic income losses are acyclical, the optimal policy essentially takes the form of

the complete price-level stabilization. This is so even though the unemployment rate goes

up in a recession.

Evidence seems to suggest, however, that idiosyncratic shocks are countercyclical. In

particular, earnings losses of unemployed or displaced workers are found to be counter-

cyclical (e.g., Jacobson, LaLonde and Sullivan, 1993). To take it into account, our second

numerical exercise assumes that the relative income of the unemployed varies procycli-

cally over business cycles. In this case, the deviation of the optimal policy from the

zero-inflation policy becomes much larger. Furthermore, the optimal policy under coun-

tercyclical idiosyncratic income losses involves stabilization of the level of output, much

more so compared to the case where idiosyncratic income losses are acyclical. The intu-

ition is simple: if a bad shock to the economy worsens uninsured idiosyncratic shocks and

makes the unemployed more miserable, policy should respond by reducing unemployment
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through increasing the level of output.

Our numerical exercise suggests that the mere existence of imperfectly insured unem-

ployed workers may not justify output stabilization; there needs to be systematic variation

in the idiosyncratic risk over business cycles. An important limitation of our model is that

idiosyncratic shocks are purely transitory. Evidence such as Storesletten, Telmer and

Yaron (2004) suggests, however, that idiosyncratic shocks are highly persistent as well as

countercyclical. Based on a non-monetary growth model, Krebs (2007) demonstrates that

the welfare cost of business cycles can be sizable with such idiosyncratic shocks. Analyzing

optimal policy with persistent idiosyncratic shocks is left for future research.

This paper is organized as follows. In Section 2 the model economy is described. In

Section 3 the efficient allocation and the flexible-price equilibrium are discussed. In Section

4 a linear-quadratic approximation of the model is derived. In Section 5 optimal monetary

policy is examined in the case where the degree of risk sharing is constant over business

cycles. Section 6 considers the case where the degree of risk sharing fluctuates cyclically.

There, we also extend our analysis to the case where the non-stochastic steady state is

inefficient. Concluding remarks are in Section 7.

2 The model economy

In this section we describe our model economy. Its key features are staggered price set-

ting and unemployment. Our model builds on Woodford (2003) for the former and the

efficiency-wage model of Alexopoulos (2004) for the latter. Alexopoulos’s model differs

from the well-known model of Shapiro and Stiglitz (1984) in that a detected shirker is

punished by a reduction in the wage rate, rather than by getting fired. Nevertheless, as

discussed in the Appendix, it becomes observationally equivalent to the Shapiro-Stiglitz

model with a particular unemployment insurance program. Indeed, we find it very con-

venient that Alexopoulos’s model can be made observationally equivalent to the standard

indivisible-labor model of Hansen (1985) and Rogerson (1988), or to the Shapiro-Stiglitz

model, depending on the assumed unemployment insurance program.

2.1 Households

There is a representative household which has a continuum of individual members of unit

measure. In each period, randomly selected Nt individuals receive job offers. The rest,
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1 − Nt, are unemployed.4 All employed workers work for a fixed length of hours, h. An

employed worker, however, may or may not shirk. A shirker is a worker whose effort level

is different from that required by her employer, et.5

The utility flow of an employed individual who consumes C and exerts an effort level

e is given by

U(C, e) = lnC + ω ln(H− he), (1)

where ω,H > 0 are constant parameters, and C is the Dixit-Stiglitz aggregate of differen-

tiated consumption goods, c(i), i ∈ [0, 1]:

C =
[∫ 1

0
c(i)

θ−1
θ di

] θ
θ−1

.

Given the prices of differentiated products, p(i), i ∈ [0, 1], the standard cost-minimization

argument yields the price index, P :

P =
[∫ 1

0
p(i)1−θ di

] 1
1−θ

,

and derived demand:

c(i) = C

[
p(i)
P

]−θ

, i ∈ [0, 1].

The utility flow of an unemployed individual is given by U(C, 0).

An important assumption we make for tractability is that individual members of a

household are not allowed to participate in the asset market (they cannot save or borrow

individually). Instead, it is the household that participates in the asset market, where

it trades Arrow securities for aggregate shocks with the government.6 In addition, the

household receives (nominal) dividends from the firms, Πt(i), i ∈ [0, 1]; and pays (nominal)

lump-sum taxes to the government, Tt. The flow budget constraint of the household is

then given by

It + Et[Qt,t+1At+1] = At +
∫ 1

0
Πt(i) di− Tt, (2)

4We assume that whether or not each individual receives a job offer is observable and that a person

who turns down a job offer loses eligibility for unemployment benefits. Then as long as the unemployment-

insurance fee is not too large, no one would turn down a job offer.
5As we shall see, the required level of effort will be the same for all firms.
6Note that, although there is only partial insurance against the idiosyncratic risk of becoming unem-

ployed, there is a complete asset market for aggregate shocks.
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where It is the “income” distributed equally across the household members, At+1 denotes

the trading in Arrow securities and Qt,t+1 is the stochastic discount factor used to evaluate

the value of At+1. We assume the natural debt limit to prevent from the Ponzi scheme:

At+1 ≥ −Et+1

∞∑

j=0

Qt+1,t+1+j

{∫ 1

0
Πt+1+j(i) di− Tt+1+j

}
. (3)

Here, Qt,t+j is the stochastic discount factor used to evaluate date-t + j nominal income

at date t, which is defined recursively as

Qt,t+j = Qt,t+j−1Qt+j−1,t+j , j ≥ 1,

with Qt,t ≡ 1.

With lump-sum transfer It from the household, the date-t consumption of an employed

individual who is not detected shirking, Ce,t, is given by

PtCe,t = It + hWt −UIft , (4)

where Wt is the nominal wage rate, and UIft is the unemployment-insurance fee. A shirker

is caught with probability d ∈ (0, 1). A detected shirker receives only a fraction s ∈ [0, 1)

of the wage. Both s and d are constant, exogenous parameters. The date-t consumption

of a detected shirker, Cs,t, becomes

PtCs,t = It + shWt −UIft . (5)

Given this, a shirker would always choose e = 0. Finally, the level of consumption of an

unemployed individual is given as

PtCu,t = It + UIbt , (6)

where UIbt denotes unemployment benefits.7

The objective of the household is to maximize the average utility of its members. As we

shall see, firms set the wage rate, Wt, and the required level of effort, et, so that employed

workers never shirk. Hence, the objective function of the household is given by

E0

∞∑

t=0

βt
[
NtU(Ce,t, et) + (1−Nt)U(Cu,t, 0)

]
(7)

7Our assumption that It is distributed equally between employed and unemployed members of the

household may be justified by imposing the information restriction that individuals cannot communicate

with the household after their employment status is known. I thank a referee for this interpretation.
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Taking as given A0 and {Nt, et, Pt, Qt,t+1, Tt, UIft , UIbt ,Wt,Πt(i); i ∈ [0, 1], t ≥ 0}, the

household chooses {It,At+1; t ≥ 0} so as to maximize the average utility (7) subject to

(2), (3), (4), (6).

The first-order conditions imply that

Qt,t+1
Pt+1

Pt
= β

Nt+1UC(Ce,t+1, et+1) + (1−Nt+1)UC(Cu,t+1, 0)
NtUC(Ce,t, et) + (1−Nt)UC(Cu,t, 0)

Notice that the marginal rate of substitution involves the average marginal utilities. The

transversality condition takes the standard form:

lim
j→∞

EtQt,t+jAt+j = 0.

2.2 Firms

2.2.1 No shirking condition

Each differentiated product is produced by a single supplier. Each producer has the same

production technology:

yt = Atf
[
eth(nt − ns

t )
]
,

≡ At

[
eth(nt − ns

t )
] 1

φ ,

where φ ≥ 1, At is the economy-wide productivity shock, et is the level of effort required

by the firm, nt and ns
t are the numbers of employed and of shirkers, respectively. Given

this production technology, having shirkers would never be profitable for firms. Each

firm offers an employment contract, {et,Wt}, to its employed. As the following argument

shows, all firms offer the same contract, so that the index of firms, i, is omitted here.

Because a shirker is detected with probability d, no workers in a given firm would shirk

if

U(Ce,t, et) ≥ (1− d)U(Ce,t, 0) + dU(Cs,t, 0).

Given that Ce,t and Cs,t are determined as in (4) and (5), the incentive-compatible level

of effort must satisfy

et ≤ e(Wt) ≡ H
h
− H

h

(
shWt + It −UIft
hWt + It −UIft

) d
ω

,

where the firm takes It, UIft as given.
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The cost-minimization problem of the firm is then given by

min
Wt,nt

Wtnt s.t. Atf(ethnt) ≥ yt, and et ≤ e(Wt). (8)

The solution to this problem is given by

et = e,

Wt

Pt
=

χw

h

1
U(Ce,t, e)

(9)

where e and 0 < χw < 1 are constants defined in Appendix. As we shall discuss below,

the equilibrium wage rate in (9) is inefficient unless unemployment insurance is perfect.

2.2.2 Calvo pricing

The producer of product i faces the demand function:

yt(i) = Yt

[
pt(i)
Pt

]−θ

, (10)

where

Yt =
[∫ 1

0
yt(i)

θ−1
θ di

] θ
θ−1

. (11)

Let τ be the tax rate on firms’ revenue. The profit flow of firm i is then given by

Πt

[
pt(i)

]
= (1− τ)pt(i)yt(i)− hnt(i)Wt

= (1− τ)YtP
θ
t pt(i)1−θ − Wt

e
f−1

(
YtP

θ
t pt(i)−θ

At

)

The real marginal cost, st(i), is defined by

st(i) =
Wt

eAtPt

1
f ′

(
f−1

[
yt(i)/At

]) (12)

Following Calvo (1983), we assume that only a fraction (1− α) of randomly selected

firms can reset their prices in each period. The rest of the firms simply charge the same

prices as in the previous period. Thus, if firm i receives the opportunity of resetting its

product price in period t, it chooses pt(i) so as to maximize

max Et

∞∑

T=t

αT−tQt,T ΠT

[
pt(i)

]
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In this model, all firms that reset prices in the same period choose the same price.8 Let

p∗t denote the price chosen by all firms resetting their prices in period t. It satisfies the

first-order condition:

Et

∞∑

T=t

αT−tQt,T YT P θ
T

{
p∗t −

1
1− Φ

PT st,T

}
= 0, (13)

where st,T is the real marginal cost in period T of those firms that reset their prices in

period t, and

Φ ≡ 1− (1− τ)
θ − 1

θ
.

2.3 Government

The government conducts monetary and fiscal policy. The flow budget constraint for the

government is

Tt + τPtYt + NtUIft + Et[Qt,t+1At+1] = At + PtGt + (1−Nt)UIbt ,

where At+1 denotes the state-contingent debt issued by the government and A0 is given.

We assume a very simple form of fiscal policy. The government takes as given τ ,

UIft , UIbt , Gt, as well as Pt, Nt, and Yt. Fiscal policy sets Tt in the “Ricardian” way

(Woodford, 1995) so that we do not need to specify the details of the conduct of fiscal

policy. Monetary policy is formulated as in Woodford (2003, Chapter 7), Benigno and

Woodford (2003, 2005), among others. Thus, optimal monetary policy is implicitly defined

as the solution to the (adequately modified version of) Ramsey problem. With a linear-

quadratic approximation, in particular, monetary policy is to set a state-contingent path

of inflation rates.

2.4 Exogenous variables

The unemployment-insurance fee, UIft , is assumed to remain small enough so that no

worker with a job offer would turn it down. Specifically, given that U(Ce, e) = U(Cs, 0) in

equilibrium and that a worker who turns down a job offer is not eligible for unemployment

benefits, a job offer would never be rejected if PtCs,t ≥ It, that is, if

UIft ≤ shWt,

8An implicit assumption here is that each firm possesses the same, constant amount of firm-specific

capital. If we allow for accumulation of such capital, the price chosen by a firm would depend on the

amount of capital it holds. See Woodford (2005) for such a model.
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which is assumed to hold throughout this paper.

Let Bt denote the ratio of the level of consumption of the unemployed to that of the

employed:

Bt ≡ Cu,t

Ce,t
=

It + UIbt
hWt + It −UIft

.

If unemployment insurance is perfect, Bt = 1; otherwise, Bt < 1. Let Ct be the aggregate

level of consumption:

Ct ≡ NtCe,t + (1−Nt)Cu,t.

The goods-market equilibrium condition is given by

Yt = Ct + Gt, (14)

where Gt is government purchases. The levels of consumption of the employed and the

unemployed are expressed respectively as

Ce,t =
1

Nt + (1−Nt)Bt
Ct, (15)

Cu,t =
Bt

Nt + (1−Nt)Bt
Ct. (16)

The unemployment insurance program is run with balanced budget: NtUIft = (1 −
Nt)UIbt . Note that here unemployment insurance affects equilibrium only through its

effect on Bt. In our benchmark analysis, we assume for simplicity that the unemployment

benefits (and fees) in each period are determined so that this ratio remains constant:

Bt = B̄ ∈ (0, 1], for all t.

We later relax this assumption in Section 6 and let this ratio, Bt, fluctuate procyclically

over time.

In the benchmark case, there are two stochastic shocks: the government-purchase

shock, Gt, and the productivity shock, At. Assume that they take the form:

Gt = sGȲ eξG,t , and At = ĀeξA,t ,

where sG ∈ (0, 1), Ȳ is the steady-state level of output, and {ξG,t, ξA,t} follows a stationary

stochastic process with unconditional mean of zero. Let ξt denote the vector of these

exogenous disturbances:

ξt = (ξG,t, ξA,t).

When Bt is allowed to fluctuate, we let Bt = B̄eξB,t , and ξt = (ξG,t, ξA,t, ξB,t).
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3 Efficient allocation and flexible-price equilibrium

In this section we first rewrite the household’s utility in terms of aggregate output and

a measure of output dispersion across firms. A key finding is that the less risk sharing

is, the less concave the household’s utility is in aggregate output. Then we consider the

efficient allocation given the exogenous shocks: Gt and At. Here, efficiency is defined to

be conditional on that the level of effort equals the equilibrium level, e, and that unem-

ployment insurance is limited by B̄. We shall also derive the flexible-price equilibrium. It

provides a useful benchmark, because, to a first-order approximation, the level of output

in the flexible-price equilibrium coincides with that in a sticky-price equilibrium with zero

inflation.

3.1 Utility flow of the household

Using (14)-(16), the flow utility of the household (i.e., the average utility flow of its mem-

bers) is given by

Wt ≡ NtU(Ce,t, et) + (1−Nt)U(Cu,t, 0),

= Nt ln
[

1
Nt + (1−Nt)Bt

Ct

]
+ (1−Nt) ln

[
Bt

Nt + (1−Nt)Bt
Ct

]
,

− ω
[
ln(H)− ln(H− he)

]
Nt + ln(H),

= ln(Yt −Gt) + z(Nt; B̄)− ω
[
ln(H)− ln(H− he)

]
Nt + ln(H), (17)

where

z(N ; B) ≡ (1−N) lnB − ln
[
N + (1−N)B

]
.

The function z(N ; B) represents the inefficiency caused by imperfect risk sharing, B.

If B = 1, z(N ; 1) = 0 for all N , so that the flow utility of the household takes the same

form as in the indivisible labor model of Hansen (1985) and Rogerson (1988):

Wt = ln(Yt −Gt)− ω
[
ln(H)− ln(H− he)

]
Nt + ln(H).

When B < 1, z(N ; B) has a minimum at N = N(B), where

N(B) ≡ 1−B + B ln(B)
−(1−B) ln(B)

<
1
2
,

and is increasing in N for N > N(B) and decreasing in N for N < N(B). In what follows,

we focus on the case where Nt > 1/2 holds almost surely for all t. Note also that the
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function z(N ; B) is convex in N . Therefore, imperfect risk sharing makes the household’s

objective function less concave.

The aggregate employment, Nt, is expressed as

Nt =
∫ 1

0
nt(i) di =

∫ 1

0

1
eh

[
yt(i)
At

]φ

di,

=
1
eh

(
Yt

At

)φ

∆t,

≡ N(Yt,∆t;At), (18)

where ∆t is the output (or price) dispersion measure defined as

∆t ≡
∫ 1

0

[
yt(i)
Yt

]φ

di =
∫ 1

0

[
pt(i)
Pt

]−θφ

di ≥ 1. (19)

where the inequality follows from Jensen’s inequality.

Using this, the flow utility of the household can be expressed as a function of Yt, ∆t,

and exogenous disturbances:

W(Yt, ∆t; ξt) = U(Yt; Gt) + Z(Yt, ∆;At, B̄)− V (Yt, ∆t; At) + ln(H), (20)

where

U(Y ; G) ≡ ln(Y −G), (21)

Z(Y,∆; A,B) ≡ z
[
N(Y,∆; A);B

]
, (22)

V (Y,∆; A) = ω
[
ln(H)− ln(H− he)

]
N(Y, ∆;A) (23)

Since N(Y,∆; A) is convex in Y , so is Z(Y,∆; A,B). Hence imperfect unemployment

insurance, B̄ < 1, makes the objective function of the household less concave relative to

the case of perfect insurance. That is, ceteris paribus, the household tends to be willing to

accept larger fluctuations in output when risk sharing is not perfect. This property plays

an important role in determining the character of optimal monetary policy in our model.

Throughout this paper we assume that Z(Y,∆; A,B) is not so convex that W(Y, ∆; ξ) is

strictly concave in Y and ∆ for each ξ.

Assumption 1. For each ξ, W(Y, ∆; ξ) is strictly concave in Y and ∆.

3.2 Efficient rate of output

The efficient allocation is the feasible allocation that maximizes the expected discounted

sum of the household’s average utility flows, {Wt}, in (20). This Pareto problem has no
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predetermined variables and can be solved state by state in a static fashion. For each ξt,

the efficient allocation, {y∗t (i) : i ∈ [0, 1]}, is the solution to

max
{yt(i)}

W(Yt,∆t; ξt)

where Yt is given by (11). Under our assumption, it is straightforward to see that there is

no output dispersion in the efficient allocation:

y∗t (i) = Y ∗
t , and ∆∗

t = 1,

and that the efficient level of aggregate output satisfies the first-order condition:

UY (Y ∗
t ;Gt) + ZY (Y ∗

t , 1;At, B̄) = VY (Y ∗
t , 1;At). (24)

As shown in the Appendix, the efficient level of output is decreasing in the level of risk

sharing, B̄:

∂Y ∗
t

∂B̄
≤ 0. (25)

Thus lower risk sharing (lower B̄) raises the efficient level of output. This is because less

risk sharing makes unemployment more costly, and hence the efficient level of unemploy-

ment is lower, which implies that the efficient level of output is higher.

3.3 Flexible price equilibrium

Here we consider the flexible-price equilibrium, in which each firm can change its product

price freely in every period. The flexible-price equilibrium defines the “natural rates” of

endogenous variables, which are denoted by superscript n.

With flexible prices, each firm i ∈ [0, 1] chooses pt(i) so that

pt(i)
Pt

=
1

1− Φ
st(i)

In the symmetric equilibrium, all firms charge the same price, pt(i) = Pt, which yields

st(i) = 1− Φ, ∀i ∈ [0, 1]. (26)

In the flexible-price equilibrium, consumption of the employed can be written as

Cn
e,t = D(Y n

t ; At, B̄)(Y n
t −Gt),

where

D(Y ;A, B) ≡ 1
N(Y, 1;A) +

[
1−N(Y, 1;A)

]
B

.
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Using (9), (21) and (23), condition (26) can be expressed as

χ(1− Φ)UY (Y n
t ; Gt)D(Y n

t ;At, B̄)−1 = VY (Y n
t , 1;At), (27)

where χ is the constant defined by

χ ≡ ω[ln(H)− ln(H− he)]
χw

The natural rate of output, Y n
t , is defined implicitly in (27).

As shown in the Appendix, in contrast with the case of the efficient rate of output

(25), the natural rate of output increases with the level of risk sharing:

∂Y n
t

∂B̄
≥ 0. (28)

This is because, other things being equal, an increase in risk sharing tends to reduce the

amount of consumption of the employed due to a rise in the unemployment-insurance fee.

As shown in equation (9), a decline in consumption of the employed, in turn, lowers the

wage rate and hence increases production.

4 Linear-quadratic approximation

We wish to characterize the optimal monetary policy using the linear-quadratic approach

developed by Woodford (2003) and Benigno and Woodford (2003, 2005). In that approach,

the monetary authority maximizes a quadratic approximation of the utility of the repre-

sentative household subject to a log-linear approximation of the aggregate supply relation.

Each approximation is taken around the zero-inflation steady state.

With the Calvo pricing, the price index, Pt, evolves as

Pt =
[
(1− α)p∗ 1−θ

t + αP 1−θ
t−1

] 1
1−θ

, (29)

where p∗t is the newly set price in period t, defined in (13). It follows that

p∗t
Pt

=

(
1− αΠθ−1

t

1− α

) 1
1−θ

, (30)

where Πt ≡ Pt/Pt−1 is the gross rate of inflation in period t. Similarly, the evolution of

the price dispersion measure, ∆t, is given by

∆t =
∫ 1

0

[
pt(i)
Pt

]−θφ

di

= (1− α)
(

p∗t
Pt

)−θφ

+ αΠθφ
t ∆t−1
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Using (30), we obtain

∆t = (1− α)

(
1− αΠθ−1

t

1− α

) θφ
θ−1

+ αΠθφ
t ∆t−1 (31)

Consider the zero-inflation steady state, that is, the equilibrium in which ξt = 0 and

Πt = 1, for all t. In what follows, the value of each variable at the zero-inflation steady

state is denoted by a bar. Equation (31) implies that ∆t = 1, for all t. The first-order

condition (13) reduces to st(i) = 1−Φ, for all i, which implies that the level of output at

the zero-inflation steady state, Ȳ , is the solution to

χ(1− Φ)UY (Ȳ ; Ḡ)D(Ȳ ; Ā, B̄)−1 = VY (Ȳ , 1; Ā)

We assume that the zero-inflation steady-state equilibrium is (conditionally) efficient.

Assumption 2. The tax rate on monopoly revenue, τ , is set so that the level of output

in the zero-inflation steady state is efficient:

Ȳ = Ȳ ∗

Whether or not unemployment insurance is perfect, imperfect competition would cause

inefficiency at the steady state. How such inefficiency affects the optimal equilibrium

path has been analyzed, for instance, by Khan, King and Wolman (2003) and Benigno

and Woodford (2003, 2005). With Assumption 2, we can focus on the inefficiency that

imperfect unemployment insurance introduces outside the steady state.

As shown in the Appendix, a log-linear approximation of first-order condition (13) for

p∗t is given by

πt = κxt + βEtπt+1 + ut. (32)

Here xt is the (welfare-relevant) output gap:

xt ≡ Ŷt − Ŷ ∗
t ,

ut is the “cost-push shock,” defined by

ut ≡ κ(Ŷ ∗
t − Ŷ n

t ),

and κ is the constant defined by

κ ≡ (1− α)(1− αβ)
α

σ−1 − δ + φ− 1
1 + (φ− 1)θ

,
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where σ−1 and δ are the elasticities of UY and D−1 with respect to Y evaluated at the

zero-inflation steady state:

σ−1 ≡ −UY Y Ȳ

UY
=

1
1− sG

> 1, δ ≡ −DY Ȳ

D
=

(1− B̄)N̄
N̄ + (1− N̄)B̄

≥ 0.

Note that δ = 0 with perfect insurance. It immediately follows that imperfect insurance

makes κ smaller. In other words, the real effect of a nominal shock is larger with imperfect

insurance.

Proposition 1. Imperfect insurance makes the coefficient κ in the AS relation (32)

smaller:

κ|B̄<1 < κ|B̄=1.

Also, as shown in the Appendix, a quadratic approximation of the household’s utility

is given by

E0

∞∑

t=0

βtWt = −Ȳ VY E0

∞∑

t=0

βt 1
2

[
qππ2

t + qyx
2
t

]
, (33)

where

qπ ≡
αθ

[
1 + (φ− 1)θ

]

(1− α)(1− αβ)
(1− Γ),

qy ≡ σ−1(1− Γ)− ζΓ + φ− 1.

Here, ζ and Γ are constants defined by

ζ ≡ ZY Y Ȳ

ZY
≥ 0, Γ ≡ ZY

UY + ZY
∈ [0, 1],

where all derivatives are evaluated at the zero-inflation steady state. From (32) and (33), it

follows that the exogenous shocks relevant for the optimal policy problem are summarized

into a single composite variable, ut.

5 Optimal policy with constant risk sharing

In the traditional (Ramsey) approach, the optimal policy problem, say at date t0, is to

choose a state-contingent path, {πt, xt}t≥t0 , so as to maximize the household’s utility

(33) subject to the aggregate-supply relation (32) for t ≥ t0. As is well known, this

type of optimization fails to be time consistent: if the planner is allowed to reoptimize

at a future date, it will choose a different path of inflation and output gap. Concerning
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this issue, Woodford (2003) and Benigno and Woodford (2003, 2005) have shown that the

optimal policy problem can be modified into a recursive form with an additional constraint,

which is to allow the planner to make a commitment for one period. The solution to

such a constrained policy problem is called optimal policy from a timeless perspective.

Specifically, in the linear-quadratic problem here, the modified policy problem at any date

t0 is to choose a state-contingent path, {πt, xt}t≥t0 , so as to maximize the household’s

utility subject to the aggregate-supply relation as well as to the commitment from the

previous period of the form:

πt0 = π̄t0 .

Following Woodford (2003) and others, we shall consider the policy problem constrained

in this fashion. Note, however, that it yields the same impulse responses to exogenous dis-

turbances as the traditional, unconstrained policy problem (Woodford, 2003, Proposition

7.9).

Letting ϕt be the Lagrange multiplier for (32), the first-order conditions yield

πt =
1
qπ

(ϕt−1 − ϕt), (34)

xt =
κ

qy
ϕt. (35)

Substituting into (32), we obtain the second-order difference equation in ϕt:

βqyEtϕt+1 −
[
(1 + β)qy + κ2qπ

]
ϕt + qyϕt−1 = qπqyut. (36)

Its characteristic equation,

βqyµ
2 − [

(1 + β)qy + κ2qπ

]
µ + qy = 0,

has a solution pair, µ ∈ (0, 1) and 1/(βµ) > 1. It follows that a bounded solution to (36)

takes the form of

ϕt = µϕt−1 − qπ

∞∑

j=0

βjµj+1Etut+j (37)

where ϕt0−1 satisfies the initial condition: ϕt0−1 − ϕt0 = qππ̄t0 . Given {ϕt}, the optimal

state-contingent evolution of πt and xt are derived using (34)-(35).

Equations (34), (35) and (37) tell us how the optimal state-contingent paths of πt

and xt depend on the composite shock, ut = κ(Ŷ ∗
t − Ŷ n

t ). For example, consider impulse

responses to a cost-push shock in period t. To be specific, suppose that ut follows an
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AR(1) process given by ut = ρuut−1 + εu,t where ρu ∈ (−1, 1) and εu,t is i.i.d. with zero

mean. Equation (37) implies that

ϕt+j = µϕt+j−1 + φuut+j ,

where φu ≡ −µqπ/(1−βµρu). It follows that impulse responses at dates t+j, j = 0, 1, . . .,

become

Etϕt+j − Et−1ϕt+j =
µj+1 − ρj+1

u

µ− ρu
φuεu,t

Etxt+j −Et−1xt+j =
κ

qy

µj+1 − ρj+1
u

µ− ρu
φuεu,t

Etpt+j − Et−1pt+j = − 1
qπ

µj+1 − ρj+1
u

µ− ρu
φuεu,t

and

Etπt+j − Et−1πt+j =





− 1
qπ

φuεu,t, for j = 0

1
qπ

µj(1− µ)− ρj
u(1− ρu)

µ− ρu
φuεu,t, for j ≥ 1

To see now how ut depends on the fundamental shocks, log-linearize the first-order

conditions (24) and (27) around the zero-inflation steady state:

Ŷ ∗
t = c∗AξA,t + c∗GξG,t (38)

Ŷ n
t = cn

AξA,t + cn
GξG,t (39)

where9

c∗A ≡
φ− Γ(ζ + 1)

σ−1(1− Γ)− ζΓ + φ− 1
(40)

c∗G ≡
σ−1(1− Γ)sG

σ−1(1− Γ)− ζΓ + φ− 1
> 0 (41)

cn
A ≡

φ− δ

σ−1 − δ + φ− 1
> 0 (42)

cn
G ≡

σ−1sG

σ−1 − δ + φ− 1
> 0 (43)

Given this, we can express the cost push shock as

ut = cu
AξA,t + cu

GξG,t,

where cu
s ≡ κ(c∗s − cn

s ), for s = A,G.
9If inequality (44) below holds, c∗A > 0.
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5.1 Effects of imperfect insurance: Theoretical results

Optimal policy involves strict price-level stabilization (zero inflation), if the flexible-price

equilibrium is optimal, so that Ŷ n
t = Ŷ ∗

t and ut = 0. It is obviously the case when the

unemployment insurance is perfect: B̄ = 1. It is also the case when there are no govern-

ment purchases in the steady state, sG = 0. This is due to our homothetic preferences, as

is discussed in Benigno and Woodford (2005). The following proposition summarizes.

Proposition 2. (a) If B̄ = 1, then c∗A = cn
A and c∗G = cn

G. (b) If sG = 0, then c∗A = cn
A.

In general, the flexible-price equilibrium is not efficient outside the steady state, that

is, Y n
t 6= Y ∗

t , in spite of Assumption 2. Given the first-order conditions (24) and (27), the

elasticities of UY + ZY and UY D−1 with respect to Y are important in determining the

nature of optimal monetary policy. At the zero-inflation steady state, those elasticities

are given by

−UY Y Y + ZY Y Y

UY + ZY
= σ−1(1− Γ)− ζΓ ≤ σ−1

−UY Y Y

UY
+

DY Y

D
= σ−1 − δ ≤ σ−1

With B̄ = 1, they are both equal to σ−1 since δ = Γ = 0. Thus, imperfect insurance makes

both UY +ZY and UY D−1 less elastic with respect to Y . The former follows from the fact

that imperfect insurance makes the aggregate utility less concave. The latter follows from

the fact that an increase in Y raises Ce less than C, because it reduces unemployment (this

effect is reflected in the term D−1). As the next proposition states, this property implies

that the responses of Y ∗
t and Y n

t to an exogenous shift in Gt are larger with imperfect

insurance than with perfect insurance.

Proposition 3. Assume that sG > 0. The responses of Y ∗
t and Y n

t to Gt are larger with

imperfect insurance than with perfect insurance:

c∗G|B̄=1 < c∗G|B̄<1,

cn
G|B̄=1 < cn

G|B̄<1.

In other words, imperfect insurance makes the efficient and natural rates of output

more volatile in response to a “demand shock.” The opposite is true for the response to

a “supply shock,” At.
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Proposition 4. Assume that sG > 0. The responses of Y ∗
t and Y n

t to At are smaller with

imperfect insurance than with perfect insurance:

c∗A|B̄<1 < c∗A|B̄=1,

cn
A|B̄<1 < cn

A|B̄=1.

With perfect insurance, the efficient (and the natural) rate of output is determined

by the equation UY = VY , where the left-hand side expresses the marginal benefit of

increasing Y and the right-hand side its marginal cost. An increase in productivity, A,

lowers the marginal cost but does not affect the marginal benefit, and hence raises the

efficient rate of output. With imperfect insurance, this effect is partially offset because A

lowers ZY and D−1.

Whether G and A are positive or negative cost-push shocks depends on the elasticities

of UY +ZY and UY D−1. The following lemma provides a necessary and sufficient condition

that the former is greater than the latter.

Lemma 1.

σ−1(1− Γ)− ζΓ > σ−1 − δ > 0 (44)

if and only if σ−1 − δ > 0 and

(σ−1 − δ)
[
2δ + ln(B̄)Nφ

]
> (φ− 1)

[− ln(B̄)Nφ− δ
]

Condition (44) holds if φ = 1 and B̄ ∈ (0.21, 1). Indeed, it is satisfied for all the

numerical exercises we have considered, and hence, we shall restrict our attention to such

a case.

Proposition 5. Assume that sG > 0, B̄ < 1 and (44) holds. Then the government-

purchase shock, G, is a negative cost-push shock and the productivity shock, A, is a positive

cost-push shock:

cu
G < 0, and cu

A > 0.

The following proposition shows how imperfect insurance affects the persistence pa-

rameter µ of optimal policy.

Proposition 6. Under condition (44), imperfect insurance makes the persistence param-

eter µ in (37) larger:

µ|B̄=1 < µ|B̄<1.
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5.2 Effects of imperfect insurance: Quantitative results

We have seen that the exact zero-inflation policy is not optimal if the unemployment

insurance is not perfect. Here we examine quantitatively how much optimal policy differs

from the complete price-level stabilization. Assume that the exogenous disturbances, ξA,t

and ξG,t, follow the AR(1) process given by ξA,t = ρAξA,t−1+εA,t and ξG,t = ρGξG,t−1+εG,t,

where εA,t and εG,t are i.i.d. random variables with mean zero. In the numerical exercise

below, we set α = 0.66, β = 0.99 (the time unit is a quarter), φ = 1.47, and θ = 10, which

are in accordance with the parameter values assumed in Woodford (2003, Table 5.1). In

addition we assume sG = 0.2 and N̄ = 0.94. Different values are examined for B̄, ρA and

ρG.

Figures 1-4 plot optimal responses of πt, xt ≡ Ŷt − Ŷ ∗
t , and Ŷt to the productivity and

government-purchase shocks, for different values of B̄, ρA, and ρG.10 We set the size of

the initial innovation to the two shocks as εA,0 = −2.34% and εG,0 = −13.76%, both of

which reduce the efficient level of output by 2 percent, Ŷ ∗
0 = −2%, in the case of B̄ = 1

and ρA = ρG = 0. The inflation rate is expressed as an annual rate in percentage points

and the output gap and the level of output are expressed in percentage deviations from

their steady-state values.

***Figures 1-2 are located here.***

In Figures 1-2, shocks are serially uncorrelated, ρA = ρG = 0, and different degrees

of risk sharing are considered: B̄ = 0.5, 0.75, 1.0. Consistent with the theoretical results

above, the exact price stabilization is optimal in the case of perfect insurance (B̄ = 1),

and the less risk sharing is (the lower B̄ is), the more the optimal policy differs from the

complete price-level stabilization. Consistent with Propositions 3-4, less insurance makes

optimal responses of output to the government-purchase shock (the productivity shock)

larger (smaller). However, quantitatively, the optimal policy may not be distinguishable

from the complete price-level stabilization. Figures 1-2 show that even when B̄ is as low

as 0.5, the optimal policy generates almost no inflation or deflation and lets output decline

by about 2 percent.

***Figures 3-4 are located here.***
10Specifically, those figures plot E0πt − E−1πt etc. for t = 0, 1, . . . , 8.
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We have seen that, quantitatively, the steady-state level of risk sharing, B̄, does not

matter much. In what follows we set our benchmark value of B̄ to 0.75. We have chosen

this value following Alexopoulos (2004), who set B̄ = 0.78 based on the evidence in

Gruber (1997).11 We next examine the effects of the persistence of each shock. In Figures

3-4, we plot the optimal policy responses when both ρA and ρG are 0.9, respectively

(B̄ = 0.75). As the persistence of a shock becomes greater, the optimal responses to

it involve larger fluctuations in the inflation rate and the output gap. However, these

figures again show that regardless of the values of ρA and ρG, deviations of the optimal

policy from the complete price-level stabilization is quantitatively very small. We thus

conclude that, as far as the degree of risk sharing is constant, imperfect risk sharing does

not have a quantitatively significant impact on the optimal policy, and the optimal policy

is essentially characterized by the price-level stabilization.

6 Optimal policy with countercyclical idiosyncratic shocks

We have so far focused on the case where the degree of risk sharing is constant, Bt = B̄. In

our model, Bt is the relative income level of the unemployed to the employed, and hence,

it measures the earnings loss that workers experience when they become unemployed. Ac-

cording to the evidence such as Jacobson, LaLonde and Sullivan (1993), such earnings loss

fluctuates countercyclically, i.e., Bt fluctuates procyclically.12 In this section we shall see

that the optimal policy would involve much larger fluctuations in inflation if Bt fluctuates

procyclically.

6.1 Optimal responses to a negative insurance shock

With time-varying Bt = B̄ exp(ξB,t), the efficient and the natural rates of output are

given, respectively, as

Ŷ ∗
t = c∗AξA,t + c∗GξG,t + c∗BξB,t

Ŷ n
t = cn

AξA,t + cn
GξG,t + cn

BξB,t

11Although B̄ does not matter much in our model, it may well play an important role in other contexts.

For instance, the results by Shimer (2005) and Hagedorn and Manovskii (forthcoming) show that the

value of non-market activity, which might correspond to B̄ in our model, significantly affects the cyclical

properties of the labor search model. Hagedorn and Manovskii show that the standard search model does

much better if we set B̄ = 0.95, as opposed to the value chosen by Shimer (2005), which is B̄ = 0.4.
12More broadly, Storesletten, Telmer and Yaron (2004) show evidence that the idiosyncratic income risk

fluctuates countercyclically.
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where c∗A, c∗G, cn
A and cn

G are as given in (40)-(43), and

c∗B ≡ 1
σ−1(1− Γ)− ζΓ + φ− 1

φ(1− B̄)N̄ [(1− N̄)2B̄ − N̄2]
[σ−1 − ln(B̄)N̄φ− δ][(1− B̄)N̄ + B̄]2

cn
B ≡ 1

σ−1 − δ + φ− 1
(1− N̄)B̄

N̄ + (1− N̄)B̄

It follows from equations (25) and (28) that cn
B > 0 and c∗B < 0. Hence Bt is a negative

cost-push shock.

Proposition 7. The insurance shock, Bt, is a negative cost-push shock:

cu
B < 0.

***Figure 5 is located here.***

The intuition of this result is simple. A higher Bt reduces the efficient level of output,

Y ∗
t , because it reduces the inequality between the employed and the unemployed, and

hence raises the efficient rate of unemployment. On the other hand, an increase in Bt

raises the natural rate of output, Y n
t , because it reduces the consumption of the employed,

Ce
t , and hence reduces the marginal rate of substitution between leisure and consumption

of the employed (and the wage rate), which raises the level of output in the flexible-price

equilibrium. Figure 5 plots the optimal responses to a negative insurance shock at date 0:

B0 = 0.65 and Bt = 0.75 for t 6= 0. It shows that in response to such a shock, the optimal

polity raises both inflation and output significantly.

6.2 Optimal responses with cyclical Bt

Now let us examine quantitatively how cyclical fluctuations in Bt affects the optimal policy.

Specifically, we shall consider the impulse responses of the optimal policy to a decline in

At or Gt, assuming that such negative shocks to the economy accompany a decrease in Bt

(an increase in the earnings loss of the unemployed).

We consider the same size of the initial innovations for the productivity and government-

purchase shock as in the previous figures: εA,0 = −2.34% and εG,0 = −13.76%. Also, the

steady-state level of risk sharing is given by B̄ = 0.75 and shocks are serially uncorre-

lated: ρA = ρG = 0. Here, however, we assume that those negative shocks arrive with a

temporary decline in the degree of risk sharing: B0 = 0.65. It returns to the steady-state
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level after one period: Bt = B̄ for t ≥ 1. Note that such a decline in Bt (from B̄ = 0.75

to B0 = 0.65) seems to be empirically plausible. For instance, based on various empirical

work, Krebs (2007) assumes that the difference in the earnings losses of displaced workers

between booms and recessions is 12 percent in his numerical analysis.

***Figures 6-7 are located here.***

In Figures 6-7, the solid lines describe the impulse response functions of the optimal

policy for those composite shocks. For comparison, the dotted lines show the case with

constant Bt. As we have already seen, with constant risk sharing, the optimal policy is

essentially characterized as the complete price-level stabilization. For instance, Bt ≡ 0.75

and εA,0 = −2.34% leads to π0 = −0.0063 percent. As we know from Figure 1, even with

Bt ≡ 0.5, π0 = −0.011 percent. However, if B0 moves together with εA,0, then optimal

policy involves much larger responses of the inflation rate: when B0 = 0.65 = B̄ − 0.1,

π0 = 0.25%. Similarly, such countercyclical income losses of the unemployed imply much

larger responses of the output gap, x0 = Ŷ0−Ŷ ∗
0 (x0 = 0.013%,−0.53% for B0 = B̄, B̄−0.1,

respectively). It is also noteworthy that a countercyclical idiosyncratic income shock

calls for more stabilization of the actual level of output, Ŷt: Ŷ0 = −1.966%,−0.29%

for B0 = B̄, B̄ − 0.1, respectively. Figure 7 illustrates that optimal responses to the

government-purchase shock share similar properties.

We find it interesting that the actual level of output, Ŷt, is stabilized quite strongly

under optimal policy when the degree of risk sharing, Bt, fluctuates cyclically. In the case

where B0 declines to 0.65, the optimal responses of π0 and Ŷ0 are of similar magnitude.

There are two reasons for this. First, although negative shocks εA,0 and εG,0 tend to reduce

the efficient level of output, Y ∗
0 , the deterioration in risk sharing calls for stimulation of

the economy and hence tends to raise the efficient level of output. These two forces offset

each other so that Ŷ ∗
0 is close to zero and the equilibrium level of output is stabilized

under optimal policy. Second, fluctuations in the inflation rate and the output gap are

larger with cyclical Bt because its quantitative impact on the cost-push shock, ut, is large,

which, in turn, is the result of the fact that a shock to risk sharing affects the efficient and

natural levels of output in the opposite directions (recall that cn
B > 0 and c∗B < 0).

6.3 Extension to the case with distorted steady state

So far we have maintained the assumption that the non-stochastic steady state is efficient

(Assumption 2). Here, we relax this assumption and see that our basic result extends to
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the case with distorted steady state. For this purpose, we choose to follow the approach

taken by Khan, King and Wolman (2003), that is, linearizing the first-order conditions

for the optimal policy problem (the “Ramsey” problem), rather than the linear-quadratic

approach of Benigno and Woodford (2005), which we have taken so far.

From (17), the flow utility of the household can be written as

Wt = ln(Ce,t)−
[
v + ln(Bt)

]
Nt + ln(Bt)

where v is the marginal disutility of labor supply: v ≡ ω
[
ln(H)− ln(H−he)

]
. The Ramsey

problem is then formulated as

max E0

∞∑

t=0

βt
{

ln(Ce,t)− (v + ln Bt)Nt

}

subject to the equilibrium conditions:

λt =
1

Cet

{(
1− 1

Bt

)
Nt +

1
Bt

}
(45)

Yt −Gt =
[
(1−Bt)Nt + Bt

]
Ce,t (46)

Ft = λtYt + Etαβπθ−1
t+1 Ft+1 (47)

Kt = λtCe,tY
φ
t A−φ

t + Etαβπφθ
t+1Kt+1 (48)

Ft

(
1− απθ−1

t

1− α

) 1+(φ−1)θ
1−θ

=
φθ

(1− τ)(θ − 1)
χω

eh
Kt (49)

Nt =
1
eh

Y φ
t A−φ

t ∆t (50)

∆t = (1− α)

(
1− απθ−1

t

1− α

) φθ
θ−1

+ απθφ
t ∆t−1 (51)

where λt is the Lagrange multiplier on the flow budget constraint in the household’s

utility-maximization problem. Here, equation (45) is the first-order condition with re-

spect to Ce,t in the household’s utility-maximization problem; (46) is the goods market

clearing condition; (47)-(49) describe the profit-maximization condition under the Calvo

pricing; (50) is the aggregate production technology; and (51) defines the relative-price

distortion ∆t. Note that the policy-maker here takes as given the sticky-price distortion,

the efficiency-wage distortion, the imperfectness of the unemployment insurance, and the

monopoly distortion. In this sense, this is the second-best problem.

***Figure 8 is located here.***
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We have used Dynare to solve this problem numerically.13 We conduct the same

exercise as in Figure 6 except that the steady state is no longer efficient. Specifically, we

set the parameter values so that the natural rate of output is 90 percent of the efficient

rate of output in the steady state. The solid lines in Figure 8 plot the optimal response

of inflation and output to a temporary decline in the productivity that accompanies a

decline in the degree of risk sharing Bt (B0 = 0.65 and Bt = 0.75 for t 6= 0 as in Figure

6). For comparison, the dashed lines depict the case where Bt is constant. We can see

that our basic results continue to hold when the steady state is distorted: the inflation

rate responds much more and output is stabilized to a larger extent when the degree of

risk sharing fluctuates cyclically.

6.4 Second moment properties

In order to further examine the effect of cyclical fluctuations in Bt on the optimal policy,

let us investigate the second-moment properties of the model. For comparison, we consider

a Taylor-rule policy as well as the Ramsey (or optimal) policy. The Taylor rule we consider

is given by

ln(Rt) = ln(R̄) + απ ln(πt)

where Rt is the nominal interest rate. We set R̄ so that the inflation rate is zero at the

steady state. For απ, we follow Dittmar, Gavin and Kydland (2005) and set αpi = 1.5.

Concerning the exogenous shocks, we abstract from the government-purchase shock:

ξG,t = 0 for all t. We assume that the productivity process follows:

lnAt = ρA ln At−1 + ξA,t

where ρA = 0.95 and ξA,t is i.i.d. and follows N(0, σ2
A). For normalization, we choose σA

so that the standard deviation of output in the model economy with the Taylor-rule policy

coincides with that in the U.S. data. For the risk-sharing process, Bt, we consider two

cases. The first case is the one where Bt is constant, Bt = 0.75 for all t. The second case

is the one where Bt fluctuates cyclically. Specifically, we consider the following process for

Bt:

lnBt = (1− ρB) ln B̄ + ρB lnBt−1 + σBξA,t

13Dynare is a suite of programs for estimation and simulation of DSGE models, which was originally

developed by Michel Juillard. It is available at http://www.cepremap.cnrs.fr/dynare/.
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where σB is set so that a one-percent decline in A reduces Bt from B̄ = 0.75 to 0.7, that

is, σB = (ln(0.75)− ln(0.7)) ∗ 100 = 6.9. This is roughly consistent with the exercises we

have done in Figures 6-8, and seems to be in line with the value obtained in the literature.

***Table 1 is located here.***

Table 1 shows the standard deviation of log output (std(Ŷ ), the standard deviation

of the inflation rate (std(π)), the correlation coefficient of those two variables, and the

autocorrelation coefficients of each variable for the U.S. data and for several versions of

our model. We can see that our basic result holds here: First, regardless of whether the

steady state is efficient or not, if Bt is constant over time, the optimal policy stabilizes

the price level almost completely (the standard deviation of the inflation rate is 0.01

percent for both cases). Note that the standard deviation of output under the optimal

policy is greater than that under the Taylor-rule policy. Second, if Bt fluctuates cyclically,

the optimal policy allows inflation to vary significantly, and at the same time, reduces

the variation in the level of output. In terms of the standard deviations of output and

inflation, the Ramsey policy with cyclical Bt seems to generate statistics closer to the

data than the Ramsey policy with constant Bt. This is also the case with correlation:

The correlation between output and inflation under optimal policy is fairly high (about

0.65) when Bt is constant, but it is close to zero when Bt is cyclical, which is consistent

with the data. The autocorrelation of output is higher in the optimal policy with cyclical

Bt, which is, again, consistent with the data. Overall, we can see that the optimal policy

with cyclical Bt generates statistics much closer to the U.S. data than the optimal policy

with constant Bt, both in terms of standard deviations and the correlation coefficients of

output and inflation. Of course, our model is too stylized to compare directly to the data,

but nevertheless, we find this result interesting.

7 Concluding remarks

In this paper, we have considered an efficiency-wage model with the Calvo-type sticky

prices, and analyzed the optimal monetary policy when the unemployment insurance is

not perfect. In the standard sticky-price model, the strict zero-inflation policy becomes

optimal if the zero-inflation steady state is efficient. This is because the relative-price

distortion is the only distortion in such a case, and such distortion can be eliminated by

the strict zero-inflation policy. We have seen, however, that with imperfect unemployment
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insurance, the strict zero-inflation policy is no longer optimal, even if the zero-inflation

steady-state equilibrium is efficient. Quantitatively, though, if the level of risk sharing is

constant over business cycles, the difference between the optimal policy and the strict zero-

inflation policy is minimal. We have also shown, however, that if the level of risk sharing

is procyclical, that is, if idiosyncratic shocks are countercyclical, as evidence suggests, the

difference becomes substantial. Indeed, in such a case output must be stabilized much

more compared to the case with perfect insurance.

One important limitation of our model is that, in order to keep the representative-

household framework, idiosyncratic shocks are assumed to be purely temporary. Evidence

suggests that idiosyncratic shocks are highly persistent as well as countercyclical.14 Krebs

(2007) argues that the persistence as well as the countercyclicality of idiosyncratic shocks

matter a lot concerning the welfare cost of business cycles. Incorporating persistent id-

iosyncratic shocks is left for future research.

In addition, our labor market is very stylized and so another direction of future research

is to extend our model in that respect. For instance, we have assumed that a shirker would

be punished by an exogenously given amount of wage reduction. It might be worthwhile to

consider a more general contract problem with a firm and a worker. Alternatively, it may

be interesting to consider other specifications to generate unemployment, such as search.
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Appendix

Cost-minimization problem of a firm

The first-order conditions for the cost-minimization problem (8) are

e′(W )W
e

= 1,

Af(ehn) = y.

The first equation implies that Cs/Ce = s̃ ∈ [s, 1], where s̃ is defined as the solution to

d(χ− s)(1− s̃) = ω(1− s)s̃(s̃−
d
ω − 1).

Then the cost-minimizing level of effort is given by

e =
H
h
− H

h
s̃

d
ω . (52)

The real wage rate is

Wt

Pt
=

χ

h
Ce,t, where χ ≡ 1− s̃

1− s
.

Equivalence with a version of Shapiro and Stiglitz’s (1984) model

Consider the following version of Shapiro and Stiglitz’s (1984) model: if a shirker gets

caught she is immediately fired and receives no wages; there are two levels of effort et ∈
{0, ē}. The rest is the same as our model in the text. Then the incentive compatibility

constraint becomes

U(Ce,t, ē) ≥ (1− d)U(Ce,t, 0) + dU(Cu,t, 0),
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where Ce,t and Cu,t are as given in (4) and (6), respectively. This model and our model

become essentially identical if (i) ē is at the level given by (52) and (ii) the unemployment

insurance program is given by

UIft = (1−Nt)shWt, and UIbt = NtshWt.

This is because this insurance program implies Cs,t = Cu,t in our original model.

Derivation of (25) and (28)

To derive inequality (25), note that

∂Y ∗

∂B̄
= − ZY B

UY Y + ZY Y − VY Y

The denominator is negative, UY Y + ZY Y − VY Y < 0, because of Assumption 1. The

numerator is also negative:

ZY B = −NY

B
+

NY

N + (1−N)B
+

(1−B)(1−N)NY

[N + (1−N)B]2

=
(1−B)NY

B[N + (1−N)B]
B(1−N)2 −N2

N + (1−N)B
≤ 0,

where the last inequality follows from the assumption that N > 1/2.

For (28), d ln Y n
t /d ln B̄ is easier to compute:

∂ lnY n

∂ ln B̄
=

1
σ−1 − δ + φ− 1

(1−N)B̄
N + (1−N)B̄

≥ 0.

Here, note that σ−1 ≥ 1 and φ ≥ δ.

Derivation of the aggregate-supply relation (32)

A log-linear approximation of the first-order condition for p∗t , (13), is given by

Et

∞∑

T=t

(αβ)T−t

{
p̂∗t − ŝt,T −

T∑

τ=t+1

πτ

}
= 0, (53)

where p̂∗t ≡ ln p∗t − ln Pt.

The real marginal cost of firm i is written as

ŝt(i) = (φ− 1)ŷt(i) + (σ−1 − δ)Ŷt − (σ−1 − δ + φ− 1)Ŷ n
t

Taking the average over i ∈ [0, 1], the average real marginal cost in period t is

ŝt = (σ−1 − δ + φ− 1)(Ŷt − Ŷ n
t )
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Log-linearizing the demand function (10) yields

ŷt(i) = Ŷt − θ
[
ln pt(i)− lnPt

]

It follows that

ŝt,T = ŝT + (φ− 1)
(
ŷt,T − ŶT

)

= ŝT − (φ− 1)θp̂∗t + (φ− 1)θ
T∑

τ=t+1

πτ

Substituting this into (53) yields

Et

∞∑

T=t

(αβ)T−t

{
[
1 + (φ− 1)θ]p̂∗t − ŝT +

[
1 + (φ− 1)θ]

T∑

τ=t+1

πτ

}
= 0

Solving for p̂∗t and writing it in a recursive form, we obtain

p̂∗t =
1− αβ

1 + (φ− 1)θ
ŝt + αβEtπt+1 + αβEtp̂

∗
t+1 (54)

Log-linearizing the evolution of Pt, (29), leads to

πt =
1− α

α
p̂∗t

Using this, (54) is rewritten as

πt =
1− α

α

1− αβ

1 + (φ− 1)θ
ŝt + βEtπt+1

=
1− α

α

1− αβ

1 + (φ− 1)θ
(σ−1 − δ + φ− 1)(Ŷt − Ŷ n

t ) + βEtπt+1

which is equation (32) in the main text.

Derivation of the welfare approximation (33)

Remember that the household’s flow utility is given by

W(Yt, ∆t; ξt) = U(Yt;Gt) + Z(Yt,∆; At, Bt)− V (Yt, ∆t; At) + ln(H),

where U , Z, and V are as defined in (21)-(23). We follow Woodford (2003), and Benigno

and Woodford (2003, 2005) to obtain a quadratic approximation of the household welfare.

We denote by Ξ the vector of expansion parameters: Ξ = (Ŷ , ξ,∆1/2
−1 ). First, U(Yt; Gt)

is approximated as

U(Yt;Gt) = Ū + UY Ỹt − UY G̃t +
1
2
UY Y Ỹ 2

t − UY Y ỸtG̃t +
1
2
UY Y G̃2

t +O(‖Ξ‖3)

= UY Ȳ

(
Ŷt +

1
2
Ŷt

)
+

1
2
UY Y Ȳ 2Ŷ 2

t − UY Y Ȳ ḠξG, tŶt + t.i.p. +O(‖Ξ‖3)

= UY Ȳ Ŷt +
1
2
(
UY Ȳ + UY Y Ȳ 2

)
Ŷ 2

t − UY Y Ȳ 2gtŶt + t.i.p. +O(‖Ξ‖3)
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where gt measures the change in Yt required to keep UY constant:

gt ≡ −UY GḠ

UY Y Ȳ
= sGξG,t

Next, note that the evolution of ∆t, (31), implies that

∆̂t = α∆̂t−1 +
α

1− α
θφ

[
1 + (φ− 1)θ

]π2
t

2
+O(‖Ξ‖3)

It follows that
∞∑

t=0

βt∆̂t =
αθφ

[
1 + (φ− 1)θ

]

(1− α)(1− αβ)

∞∑

t=0

βt π
2
t

2
+ t.i.p. +O(‖Ξ‖3) (55)

Then Z(Yt, ∆t; At, Bt) and V (Yt, ∆t; At) are approximated as

Z(Yt, ∆t; At, Bt) =
ZY Ȳ

φ
∆̂t + ZY Ȳ Ŷt +

1
2
(
ZY Ȳ + ZY Y Ȳ 2

)
Ŷ 2

t − ZY Y Ȳ 2ktŶt + t.i.p. +O(‖Ξ‖3)

V (Yt,∆t; At) =
VY Ȳ

φ
∆̂t + VY Ȳ Ŷt +

1
2
(
VY Ȳ + VY Y Ȳ 2

)
Ŷ 2

t − VY Y Ȳ 2qtŶt + t.i.p. +O(‖Ξ‖3)

where kt and qt are the change in Yt required to keep ZY and VY constant, respectively:

kt ≡ ZY AĀ

ZY Y Ȳ
ξA,t − ZY BB̄

ZY Y Ȳ
ξB,t

qt ≡ −VY AĀ

VY Y Ȳ
ξA,t

Since the zero-inflation steady-state is conditionally efficient,

UY + ZY − VY = 0

Note also that

Ŷ ∗
t =

1
UY Y + ZY Y − VY Y

(
UY Y gt + ZY Y kt − VY Y qt

)

It follows that

W(Yt, ∆t; ξt) = −UY Ȳ

φ
∆̂t +

1
2
Ȳ 2(UY Y + ZY Y − VY Y )(Ŷt − Ŷ ∗

t )2 + t.i.p. +O(‖Ξ‖3)

= −VY Ȳ

{
1− Γ

φ
∆̂t +

1
2
[
σ−1(1− Γ)− ζΓ + φ− 1

](
Ŷt − Ŷ ∗

t

)2
}

+ t.i.p. +O(‖Ξ‖3)

where Γ is defined by

Γ ≡ ZY Ȳ

UY Ȳ + ZY Ȳ
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Finally, using (55), we obtain

E0

∞∑

t=0

βtWt = −Ȳ VY E0

∞∑

t=0

1
2
βt

×
{

αθ[1 + (φ− 1)θ]
(1− α)(1− αβ)

(1− Γ)π2
t +

[
σ−1(1− Γ)− ζΓ + φ− 1

](
Ŷt − Ŷ ∗

t

)2
}

+ t.i.p. +O(‖Ξ‖3)

which is (33) in the main text.

Proof of Proposition 3

For the first part,

c∗G|B<1 − c∗G|B=1 =
σ−1(1− Γ)sG

σ−1(1− Γ)− ζΓ + φ− 1
− σ−1sG

σ−1 + φ− 1

=
σ−1sGΓ(ζ + 1− φ)

[σ−1(1− Γ)− ζΓ + φ− 1][σ−1 + φ− 1]
> 0

because

ζ + 1− φ =
δ2

ZY Ȳ
> 0.

For the second part, note that

cn
G|B<1 − cn

G|B=1 =
σ−1sG

σ−1 − δ + φ− 1
− σ−1sG

σ−1 + φ− 1
> 0

because δ > 0.

Proof of Proposition 4

For the first part, note that

c∗A|B<1 − c∗A|B=1 =
φ− Γ(ζ + 1)

σ−1(1− Γ)− ζΓ + φ− 1
− φ

σ−1 + φ− 1

= − (σ−1 − 1)(ζ + 1)Γ
[σ−1(1− Γ)− ζΓ + φ− 1][σ−1 + φ− 1]

< 0

because σ−1 ≡ 1/(1− sG) > 1 as long as sG > 0. The second part follows from:

cn
A|B<1 − cn

A|B=1 =
φ− δ

σ−1 − δ + φ− 1
− φ

σ−1 + φ− 1

= − (σ−1 − 1)δ
[σ−1 − δ + φ− 1][σ−1 + φ− 1]

< 0,

again, because σ−1 > 1.
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Proof of Lemma 1

Lemma 1 follows from

σ−1(1− Γ) + ζΓ− (σ−1 − δ) = δ − Γ(σ−1 + ζ)

= δ − ZY Y

ZY Y + σ−1

{
σ−1 +

δ2

ZY Y
+ φ− 1

}

=
1

ZY Y + σ−1

{
(σ−1 − δ)

[
2δ + ln(B)Nφ

]− (φ− 1)
[− ln(B)Nφ− δ

]}

Proof of Proposition 5

That cu
G < 0 follows from

cu
G = c∗G − cn

G

=
σ−1(1− Γ)sG

σ−1(1− Γ)− ζΓ + φ− 1
− σ−1sG

σ−1 − δ + φ− 1
< 0

because Γ > 0 and σ−1(1−Γ)−ζΓ > σ−1−δ under condition (44). The second inequality,

cu
A > 0, is derived as:

cu
A = c∗A − cn

A

=
φ− Γζ − Γ

σ−1(1− Γ)− ζΓ + φ− 1
− φ− δ

σ−1 − δ + φ− 1

=
(σ−1 − 1)

[
(1− Γ)δ + Γ(φ− 1− ζ)

]
[
σ−1(1− Γ)− ζΓ + φ− 1

][
σ−1 − δ + φ− 1

]

Remember that

ζ = φ− 1 +
δ2

ZY Y
, and Γ =

ZY Y

ZY Y + σ−1
.

Thus

(1− Γ)δ + Γ(φ− 1− ζ) =
δ

ZY Y
(σ−1 − δ)

We finally obtain

cu
A =

(σ−1 − 1)(σ−1 − δ)δ[
σ−1(1− Γ)− ζΓ + φ− 1

][
σ−1 − δ + φ− 1

]
ZY Y

> 0

because σ−1 > 1 because sG > 0 and σ−1 > δ because of (44).
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Proof of Proposition 6

Define the quadratic function f(µ) by

f(m) ≡ βm2 −
(

1 + β + κ2 qπ

qy

)
m + 1

Then f(m) = 0 has two roots: µ ∈ (0, 1) and (βµ)−1 > 1. Remember that

κ =
1− α

α

1− αβ

1 + θ(φ− 1)
(σ−1 − δ + φ− 1)

qπ =
αθ[1 + θ(φ− 1)]
(1− α)(1− αβ)

(1− Γ)

qy = σ−1(1− Γ)− ζΓ + φ− 1

It follows that

κ2 qπ

qy
= θ

(1− α)(1− αβ)
α[1 + θ(φ− 1)]

(1− Γ)(σ−1 − δ + φ− 1)2

σ−1(1− Γ)− ζΓ + φ− 1

For µ|B̄<1 > µ|B̄=1, it suffices to show that

(1− Γ)(σ−1 − δ + φ− 1)2

σ−1(1− Γ)− ζΓ + φ− 1
< σ−1 + φ− 1

Under our assumption,

σ−1 − δ + φ− 1 < σ−1(1− Γ)− ζΓ + φ− 1

It then follows that

(1− Γ)(σ−1 − δ + φ− 1)2

σ−1(1− Γ)− ζΓ + φ− 1
< σ−1 − δ + φ− 1

< σ−1 + φ− 1
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Table 1: Second-moment properties

(a) The case of efficient steady state

Constant Bt Cyclical Bt

Data Taylor Ramsey Taylor Ramsey

std(Ŷt) 1.50 1.50 1.74 1.50 1.27

std(πt) 1.11 0.66 0.01 0.81 0.35

corr(Ŷt, πt) 0.15 -1.00 0.65 -1.00 -0.10

AR1(Ŷt) 0.86 0.71 0.71 0.71 0.91

AR1(πt) 0.49 0.71 0.42 0.71 0.42

(b) The case of inefficient steady state

Constant Bt Cyclical Bt

Data Taylor Ramsey Taylor Ramsey

std(Ŷt) 1.50 1.50 1.76 1.50 1.38

std(πt) 1.11 0.67 0.01 0.95 0.32

corr(Ŷt, πt) 0.15 -1.00 0.64 -1.00 -0.18

AR1(Ŷt) 0.86 0.71 0.71 0.71 0.90

AR1(πt) 0.49 0.71 0.40 0.71 0.40

Notes: All series are HP filtered. The inflation rates are annual rates. The sample period

of the data is 1960.I-2007.IV. ‘Taylor’ denotes the equilibrium under the Taylor rule,

and ‘Ramsey’ denotes the equilibrium under the Ramsey policy. std(x) is the standard

deviation of variable x; corr(x, y) is the correlation coefficient between variables x and y;

and AR1(x) is the autocorrelation coefficient of variable x.
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Figure 1: Optimal responses to a negative productivity shock for different degrees of risk sharing.

In each panel, the solid, dashed, and dash-dotted lines correspond to B̄ = 0.5, 0.75, 1.0, respectively.

Note: The inflation rate is expressed at an annual rate in percentage points. The output gap and

the level of output are expressed as percentage deviations from their respective steady-state values.
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Figure 2: Optimal responses to a negative government-purchase shock for different degrees of risk

sharing. In each panel, the solid, dashed, and dash-dotted lines correspond to B̄ = 0.5, 0.75, 1.0,

respectively. See the note in Figure 1 for the units.
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Figure 3: Optimal responses to a negative productivity shock with ρA = 0.9 (solid line)

and ρA = 0 (dashed line). See the note in Figure 1 for the units.
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Figure 4: Optimal responses to a negative government-purchase shock with ρG = 0.9 (solid

line) and ρG = 0 (dashed line). See the note in Figure 1 for the units.
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Figure 5: Optimal responses to a negative insurance shock. See the note in Figure 1 for

the units.
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Figure 6: Optimal responses to a negative productivity shock with cyclical Bt (solid line)

and constant Bt (dashed line). See the note in Figure 1 for the units.
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Figure 7: Optimal responses to a negative government-purchase shock with cyclical Bt

(solid line) and constant constant Bt (dashed line). See the note in Figure 1 for the units.
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Figure 8: Optimal responses to a negative productivity shock with cyclical Bt (solid line)

and constant Bt (dashed line) when the steady state is distorted. See the note in Figure

1 for the units.
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