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Abstract 
 

This paper examines regulatory incentive mechanisms for efficient investment in 
the transmission network, taking into account both technological externalities 
among transmission lines and information asymmetry between the regulator and 
the transmission company (Transco). First, by adding extra constraints associated 
with the power flow, we develop an extended price cap mechanism that can 
internalize technological externalities among transmission lines. We show that this 
new mechanism induces the Transco to choose the optimal transmission capacity 
under its budget constraint. An extended form of the Vogelsang and Finsinger 
(V-F) mechanism is also introduced. Next, we examine the surplus-based scheme 
with government transfers. We provide a formal analysis of the incremental 
surplus subsidy (ISS) scheme specifically for the Transco, demonstrating that it 
induces the Transco to choose the optimal transmission capacity without the 
budget constraint. 
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1. Introduction 

 
The competitive electricity market has developed at two ends: the generation end and the 

retail supply end. In contrast, the power transmission sector remains a monopoly business, and 
therefore subject to regulation. As is well known, there are significant economies of scale in 
network expansion, and hence the transmission sector has a natural tendency toward monopoly. 

It is generally accepted that transmission regulation should seek to achieve the following 
primary principles: 
(i) Efficient utilization of the network in the short run. 
(ii) Efficient investment in the network in the long run. 
(iii) Cost recovery of the network assets. 
(iv) Provision of incentives for efficient investment. 
It should be noted that, due to the complex nature of the power system, the regulation of the 
transmission network is a challenging task. For example, transmission regulation should take 
into account technological externalities among transmission lines, governed by physical laws 
(e.g., Kirchhoff’s laws).  

Regarding principle (i), there is a broad literature on transmission pricing that achieves 
optimal capacity utilization. Bohn et al. (1984) and Schweppe et al. (1988) introduce the 
concept of spot pricing, or nodal pricing. Nodal pricing is based on the optimal dispatch under 
the transmission capacity constraints, which is the application of marginal cost pricing. It can 
efficiently manage transmission congestion, and therefore achieve allocative efficiency in the 
short run. However, while nodal pricing aims to allocate resources efficiently in the short term, 
it needs some additional mechanism to induce optimal expansion of the network in the long 
term. Moreover, the total cost of transmission facilities must be recovered in the presence of 
substantial economies of scale. 

It is a challenging task to fulfill principles (ii) to (iv), along with principle (i). The framework 
has been extended in two directions: the merchant transmission approach and the incentive 
regulation approach. For example, Rosellón (2003) discusses the two approaches in detail. 

The merchant transmission approach, or the market-based transmission approach, relies on 
decentralized property-rights-based mechanisms to encourage transmission investment. This 
approach requires separation of transmission ownership and operation, and creates transmission 
rights for merchant investors based on the increase of the network capacity. Hogan (1992) and 
Bushnell and Stoft (1996, 1997) show that free entry by merchant investors can lead to efficient 
transmission investment that is profitable if a number of assumptions are met.1 The main 
assumptions include the following: no economies of scale, the presence of well-defined property 
rights, the presence of a full set of futures markets, and no market power in the wholesale 
markets. However, the attractive properties of the merchant transmission approach will be 
seriously undermined if more realistic characterizations of the transmission network are 
considered. For example, Joskow and Tirole (2004) show how the efficiency of market-based 
transmission investment breaks down when some assumption such as no economies of scale is 
relaxed.  

By contrast, the incentive regulation approach, or the regulated Transco approach, relies on 
regulatory incentive mechanisms that induce the transmission company (Transco) to expand the 
network efficiently. The Transco is generally defined as a regulated monopoly which is 
responsible for building, owning and operating transmission facilities. Although this approach is 
considered as an alternative or a complement to the merchant transmission approach, a limited 
number of such incentive schemes specifically for transmission regulation have been explored 

                                                  
1 While Hogan (1992) introduces financial transmission rights, Chao and Peck (1996) derive physical 
transmission rights. 
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in the literature.  
One such scheme is a regulatory mechanism that confronts the Transco with some measure of 

the social gain associated with its activity, by using government subsidies (transfers). Gans and 
King (1999) suggest implementing the incremental surplus subsidy (ISS) scheme, proposed by 
Sappington and Sibley (1988), to induce efficient transmission investment. They simply suggest 
subsidizing the firm based on the increment of the social surplus, but do not formally describe 
the mechanism. Similarly, Joskow and Tirole (2002) provide insights on such a surplus-based 
scheme without a formal model. Léautier (2000) proposes a regulatory mechanism that is 
related to the surplus-based scheme. He begins by deriving the optimal transmission capacity 
under nodal pricing, without considering the Transco’s budget constraint. In other words, he 
explicitly shows the first-best investment level, taking into account technological externalities 
among transmission lines. He next proposes a mechanism that attempts to confront the Transco 
with the social cost of congestion along with the expansion cost, which induces the optimal 
transmission capacity. However, the result depends on the applicability of the incentive-pricing 
dichotomy introduced by Laffont and Tirole (1993). 2  Moreover, the results of these 
mechanisms depend on whether the regulator is allowed to make transfers to the Transco. 

 On the other hand, considering the case without government subsidies, Vogelsang (2001) 
introduces a two-part price cap mechanism that attempts to induce the Transco to raise enough 
revenue for transmission investment, and at the same time, receive correct signals for efficient 
network expansion. He considers that the Transco would charge a two-part tariff for 
transmission services, and choose the fixed fee and the variable fee subject to the overall cap. 
The Transco then trades off congestion against capacity expansion in such a way that it becomes 
profitable to expand if the reduction in the congestion cost is greater than the cost of investment. 
Under several assumptions, Vogelsang argues that the transmission capacity will converge to the 
optimal level, while the variable fee equals the marginal congestion cost. However, since 
Vogelsang’s mechanism does not take account of technological externalities among transmission 
lines, it would be difficult to achieve optimal expansion of the network. Therefore, it remains an 
unsettled question how to design appropriate price cap mechanisms in the presence of 
technological externalities. Moreover, if transmission customers are heterogeneous, the 
efficiency properties of this mechanism based on a two-part tariff could break down. Since the 
capital costs of transmission facilities are huge, the fixed fee sufficient to cover the costs would 
make a non-negligible number of customers drop out of the market, which causes allocative 
inefficiency.  

The current paper develops dynamic mechanisms that are closely related to the Vogelsang’s 
(2001) proposal. However, we take another route by considering linear tariffs for transmission 
services. Our discussion is based on nodal pricing, which seems to have become the efficiency 
standard for short-run energy and transmission pricing in the U.S. Under nodal pricing, the 
Transco can earn the congestion rent from congested transmission lines. In the long run, the 
congestion rent will change on average, in accordance with the increase or decrease in the 
transmission capacity. Therefore, by adjusting the transmission capacity appropriately, a linear 
congestion charge can be set in such a way that the congestion rent would recover the total cost 
of transmission facilities. Based on this simple principle, we start by deriving the optimal 
transmission capacity under the Transco’s budget constraint. To put it another way, we show the 
second-best investment level under nodal pricing, by imposing a revenue constraint on the 
problem considered by Léautier (2000). Next, we develop a regulatory incentive mechanism for 
the Transco on the basis of a standard price cap mechanism. If there were no technological 
externalities, a typical price cap mechanism could be directly applied in a simple form of a 
constraint on the transmission capacity: the Transco might be allowed to choose the current 
                                                  
2 If the dichotomy property applies, the choice of the optimal transmission capacity can be separated 
from the incentive for cost reduction. However, the dichotomy property holds only for specific cost 
functions.  
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period’s capacity and hence the congestion prices as long as a Laspeyres congestion price index 
would not be greater than a price cap. However, technological externalities among transmission 
lines must be taken into account appropriately in order to induce efficient expansion of the 
network. Therefore, we develop an extended form of the price cap mechanism by adding extra 
constraints associated with the power flow, so that technological externalities can be 
internalized. We show that the extended price cap mechanism can induce the Transco to choose 
the optimal transmission capacity under its budget constraint. We also introduce an extended 
form of the V-F mechanism proposed by Vogelsang and Finsinger (1979). 

This paper also examines the surplus-based scheme, considering that the regulator can 
directly compensate the Transco for the deficit. We provide a formal analysis of the ISS scheme 
specifically for the Transco, and explicitly demonstrate that it induces the Transco to choose the 
optimal transmission capacity without its budget constraint, internalizing technological 
externalities among transmission lines. 

The rest of the paper is organized as follows. In section 2, we present a model of a 
competitive power market, and characterize nodal pricing. In section 3, we derive the optimal 
transmission capacity under nodal pricing, with and without considering the Transco’s budget 
constraint. In section 4, we propose extended forms of the price cap mechanism and the V-F 
mechanism. We show that these mechanisms can induce the Transco to choose the optimal 
transmission capacity under its budget constraint. In section 5, we provide a formal analysis of 
the ISS scheme specifically for the Transco, demonstrating that it can induce the Transco to 
choose the optimal transmission capacity without the budget constraint. Section 6 concludes.  

 
 
2. The Model 
 
2.1 Power Market 

 
We consider an electric power network with N  nodes and L  transmission lines. The 

transmission capacity of each line is denoted by the vector )',,( 1 Lkk …≡k .3  
Consumers and generators make transactions in a competitive power market. Generators 

inject power at nodes, while consumers (or “loads”) withdraw power at nodes. We consider an 
independent transmission company which owns and operates the transmission grid. In addition, 
this company maintains and expands the transmission network, and collects the revenues 
through charges levied on users. This sort of transmission company is often called a Transco. 
The Transco is a regulated, profit-making company, completely independent of all other market 
participants. 

dnq ,  is the power demand at node n  for Nn ,,1…= . )( ,,, dndndn qPp =  and )( ,dnn qB  
are the inverse demand function and the gross benefit function at node n , respectively. We 
assume that )( ,dnn qB  is twice continuously differentiable and a non-decreasing concave 
function. Note that )()( ,,,, dndndndnn qPqqB =∂∂ . The consumers’ surplus at node n  can be 
expressed as dndndndnndnn qqPqBqCS ,,,,, )()()( −≡ . Furthermore, the aggregated 

consumers’ surplus of all nodes can be written as ∑ =
≡

N

n
dnn qCSCS

1
, )()( dq , where 

)',,( ,,1 dNd qq …≡dq .  
snq ,  is the power generation at node n . )( ,,, snsnsn qPp =  and )( ,snn qG  are the 

marginal and total cost of generation at node n , respectively. We assume that )( ,snn qG  is 

                                                  
3 a′  denotes the transpose of matrix (or vector) a . 
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twice continuously differentiable and a non-decreasing convex function. Clearly, 
)()( ,,,, snsnsnsnn qPqqG =∂∂  holds. The generators’ profit at node n  can be expressed as 

)()()( ,,,,, snnsnsnsnsnn qGqqPq −≡Π . Moreover, the aggregated generators’ profit of all 

nodes can be written as ∑ =
≡

N

n
snn q

1
, )()( ΠΠ sq , where )',,( ,,1 sNs qq …≡sq . 

The Transco buys power from generators at nodes, transmits it through the grid, and sells it to 
consumers at nodes. Therefore, the difference between the revenues from consumers and the 
payments to generators is the Transco’s surplus at each node, i.e., 

snsnsndndndnsndnn qqPqqPqqMS ,,,,,,,, )()(),( −≡ . Furthermore, the aggregated Transco’s 

surplus can be expressed as ∑ =
≡

N

n
sndnn qqMSMS

1
,, ),(),( sd qq , which Wu et al. (1996) 

called the merchandizing surplus.  
We can now express the social welfare as: 
 

),()()(),( sdsdsd qqqqqq MSCSW ++≡ Π . ( 1 ) 
 
 

2.2 Power Flow Equations 
 
We consider the DC load flow approximation (see, for example, Schweppe et al. 1988, and 

Leautier 2000 for details). ),,( kqq sdlF  is the power flow on transmission line l  for 
Ll ,,1…= . We can express ),,( kqq sdlF  as a linear function of the net injection 

dnsnsndnn qqqqQ ,,,, ),( −≡ : 
 

LlqqQhF
N

n

sndnnnll ,,1,),()(),,(
1

1

,,, …=≡ ∑
−

=

kkqq sd , ( 2 ) 

 
where )(, knlh  is the power transfer distribution factor, or PTDF.4 We ignore the transmission 
losses for simplicity. 

)(, knlh  represents the increase in the power flow on line l  resulting from a unit increase 
in power transferred from node n  to the swing bus (without loss of generality, we can choose 
the swing bus to be node N ). The PTDF is determined by the physical characteristics of the 
network—especially the transmission capacity k . Hence, )(, knlh  can be written as a 
function of the capacity k . Moreover, the power flow ),,( kqq sdlF  can also be expressed as 
a function of the capacity k .  

It should be noted that the PTDF )(, knlh  depends on the capacity not only of line l , but 
also of all other lines. Similarly, note also that the power flow ),,( kqq sdlF  depends on the 
capacity of all lines. If we increase the capacity of line l , the power flow on another line m , 
i.e., ),,( kqq sdmF  may change through changes in the PTDFs.5 Therefore, expansion of the 

                                                  
4 As is customary in the electric power engineering literature, the power flow can be expressed as a 
function of only 1−N  independent net injections. The node which is not represented is often called the 
swing bus.  
5 If we change the capacity of a certain line, the admittance of this line is also modified. Then, this may 
cause changes in all the PTDFs, and hence cause changes in the power flows on all lines. 
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transmission network may have externalities that are governed by physical laws. We will 
discuss this issue further in the next section. 
 
2.3 Nodal Pricing 

 
Since the total power generated during any given hour has to be equal to the total amount 

demanded, the energy balance constraint can be written as 
0),(),(

1
,, =≡ ∑ =

N

n
sndnn qqQQ sd qq . Moreover, the transmission capacity constraint can be 

expressed as ll kF ≤),,( kqq sd  because the power flow on each line cannot exceed the line’s 
capacity. We mainly consider the thermal limits of each line for the transmission capacity.  

An efficient power market is characterized by the maximization of the social welfare, subject 
to the energy balance and transmission capacity constraints: 

 
),(:max)(

,

sd

qq
qqk

sd
Wv ≡  ( 3 ) 

s.t. 0),( =sd qqQ   
LlkF ll ,,1,),,( …=≤kqq sd .  

 
Let λ  and 0≥lη  be the shadow prices associated with the energy balance and 

transmission capacity constraints, respectively. Then, the first-order conditions yield standard 
nodal pricing formulas: ∑=

−=
L

l
nlln hp

1
, )()()( kkk ηλ  for 1,,1 −= Nn … ; )(kλ=np  

for the swing bus Nn = . Let ))'(),(()( ** kqkqkq s*d≡  denote the optimal power demand 
and supply at nodes under nodal pricing. ))(),(()( * kqkqk s*dWv ≡  represents the maximum  
social welfare under nodal pricing, or, simply, the optimal value function. Note that )(kv  is 
the social welfare in the short run in which the transmission capacity k  is given and fixed. See 
Bohn et al. (1984) and Schweppe et al. (1988) for the details of nodal pricing. 

Note that )(klη  represents the shadow congestion price of line l . Hence, the Transco 

obtains the congestion rent ∑=
≡

L

l
ll k

1
)()( kk ηρ  under nodal pricing. Wu et al. (1996) show 

that the congestion rent is equal to the merchandizing surplus at the optimal dispatch: 
 

)())(),(( kkqkq *s*d ρ=MS . ( 4 ) 
 

 
3. Optimal Transmission Capacity under Nodal Pricing 

 
In the long run, optimal expansion of the transmission network is critical for an efficient 

power market to develop. It should also be noted that the total cost of transmission facilities 
must be recovered in an appropriate way. The Transco must earn enough revenue in a power 
market to cover its capital and other costs when government subsidies are not available. In this 
section, we first derive the optimal transmission capacity, considering the Transco’s budget 
constraint. We then discuss the optimal transmission capacity without the budget constraint, 
assuming that the regulator can subsidize the Transco for the deficit. Let us start by defining 
some key terms associated with costs, externalities, and congestion rent. 

Let )(kc  denote the capacity cost of transmission lines, mainly the fixed capital cost. We 
assume that )(kc  is twice continuously differentiable and a non-decreasing concave function, 
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considering economies of scale in network expansion. Note that l
l kcc ∂∂≡ )()( kk  is the 

marginal capacity cost of line l .6 Subtracting the capacity cost from the congestion rent yields 
the Transco’s long-run profit )()()( kkk c−≡ ρσ  under nodal pricing. 

As we have seen in the previous section, an increase in the capacity of line l  may modify 
the PTDFs, and hence cause changes in the power flow on another line m , i.e., 

),,( kqq sdmF , even if the injections and withdrawals of all nodes are kept unchanged. This 
phenomenon is caused by the technological effects of network expansion, which is governed by 
physical laws.  

Let us evaluate the technological effects of capacity expansion on the power flows. 
lmm

l kFF ∂∂≡ ),,(),,( kqqkqq sdsd  denotes a marginal change in the power flow on line 
m  when we increase the capacity of line l  by one unit, keeping all the injections and 
withdrawals unchanged. Thus, ),,()( kqqk sdm

l
m Fη  can be interpreted as the value of a 

marginal change in the power flow on line m , as measured by the shadow congestion price of 
this line. We can now define )(klφ  as (marginal) externalities associated with power flow 
changes by considering the effects on all lines:  

 

LlF
L

m

m
l

ml ,,1,|),,()()(
1

* …=≡ ∑
=

= (k)qq
sd kqqkk ηφ . ( 5 ) 

 
That is, )(klφ  is the value of marginal changes in the power flows as measured by the shadow 
congestion prices, which is associated with a unit increase in the line l ’s capacity. Note that 

)(klφ  is evaluated at the optimal dispatch, i.e., at )(* kq .  
)(klφ  has essentially the same structure as what Leautier (2000) simply calls an indirect 

effect (externalities among transmission lines). However, the difference is that we explicitly 
define 0)( >klφ  as negative externalities. Since )()()( kkk ll

lv φη −=  holds from the 

envelope theorem, the additional capacity of line l  increases the social welfare by )(klη , 
whereas it has the effect of decreasing the social welfare by )(klφ  at the same time. Thus, 

0)( >klφ  can be interpreted as the marginal externality cost, and hence considered to be 
negative externalities.7  

We can then define the social marginal capacity cost )(klτ  by adding the marginal 
externality cost )(klφ  to the (private) marginal capacity cost )(klc : 

 
Llc l

l
l ,,1),()()( …=+≡ kkk φτ . ( 6 ) 

 
Next, we consider the effects of capacity expansion on the congestion rent. A unit increase in 

the capacity of line l  gives the Transco an extra congestion rent )(klη  on this additional 
unit. Furthermore, it should be noted that an additional unit will cause changes in the congestion 
rent on the inframarginal transmission units, that is, mm

l k)(kη  for Lm ,,1…= . We then 

                                                  
6 A functional symbol with a subscript will indicate the derivative of the original function with respect to 
the variable denoted by the superscript.  
7 0)( <klφ  yields the marginal externality benefit, and hence is considered to be positive externalities. 
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define )(klψ  as (marginal) changes in the congestion rent on the inframarginal capacity:8  
 

Llk m
L

m

m
l

l ,,1,)()(
1

…=−≡ ∑
=

kk ηψ . ( 7 ) 

 
It is straightforward that )()()( kkk ll

l ψηρ −=  holds. 
Let )(ku  denotes the social welfare in the long run. Note that 

)()()( kkk cvu −≡ )())(())(( kkqkq sd σ+Π+≡ ∗∗CS . We now represent the welfare 
maximization problem, considering the Transco’s budget constraint:  

 
)(:max k

k
u  ( 8 ) 

s.t. 0)( ≥kσ .   
 

Let 0≥ξ  be the shadow price associated with the budget constraint, and let )1( ξξ +≡R . 
We then obtain the optimal transmission capacity *k , taking into account the Transco’s budget 
constraint: 
 
 

Proposition 1: The optimal transmission capacity under a budget constraint is such that the 
deviation of the congestion price from the social marginal capacity cost is proportional to the 
difference between changes in the congestion rent on the inframarginal capacity and 
externalities associated with power flow changes. That is, *k  satisfies 

{ } LlR llll ,,1,)()()()( …=−=− kkkk φψτη . ( 9 ) 
 
 

The proof is given in the appendix. In the long run, the congestion rent under nodal pricing 
will change in accordance with the increase or decrease in the transmission capacity. Therefore, 
by adjusting the transmission capacity appropriately, a linear congestion charge can be set in 
such a way that the congestion rent would recover the capacity cost of transmission lines. 
Proposition 1 shows that, under nodal pricing, the transmission capacity should be adjusted on 
the basis of both changes in the congestion rent on the inframarginal capacity and externalities 
associated with power flow changes in order to increase the long-run social welfare, while 
satisfying the budget constraint. This rule can be regarded as a kind of the Ramsey rule, which 
is associated with not the power q , but the transmission capacity k . In other words, it 
determines the second-best investment level *k , while nodal prices are charged for the power 

*q . 
If the regulator can subsidize the Transco for the deficit, we will attain the optimal 

transmission capacity without the Transco’s budget constraint. The first-best transmission 
capacity, denoted by fk , is straightforward from Proposition 1. Substituting 0 for R  yields 

                                                  
8 Suppose a simple two-node case in which there is only one transmission line. If the line’s capacity is 
increased, the congestion price is decreased. Hence, the congestion rent on the inframarginal transmission 
units is reduced, that is, kk )(η′  is negative. We can evaluate kk )(η′  in absolute value by defining 

)(kψ  with a negative sign. Similarly, we define )(klψ  with a negative sign. 



 9

the following corollary: 
 
 

Corollary 1: (Leautier 2000) The optimal transmission capacity without a budget constraint is 
such that the congestion price is equal to the social marginal capacity cost for each line. That is, 

fk  satisfies 

 
Llll ,,1),()( …== kk τη . ( 10 ) 

 
 

This corollary restates Corollary 1 of Leautier (2000) in view of the social marginal capacity 
cost which Leautier did not explicitly define. To put it another way, the first-best capacity 
expansion should be determined by considering the social marginal capacity cost that 
incorporates externalities of capacity expansion. 
 

 
4. Extended Price Cap regulation for Transco 

 
Without appropriate regulation, the monopoly Transco will attempt to maximize its long-run 

profit )(kσ  instead of the long-run social welfare )(ku . Thus, the Transco will determine 
the transmission capacity in such a way that )()()( kkk l

l
l c ψη +=  holds for each line. As a 

result, the attained capacity will deviate from the optimal capacity with and without the budget 
constraint, derived in section 3.  

In section 4 and 5, we examine regulatory incentive mechanisms for efficient investment in 
the transmission network, taking into account both technological externalities among 
transmission lines and information asymmetry between the regulator and the Transco. Special 
attention is focused on developing incentive mechanisms that attempt to internalize 
technological externalities governed by physical laws. Moreover, we focus on asymmetric 
information about the Transco’s cost structure, supposing that the regulator does not know the 
capacity cost function of transmission lines, while the regulator can observe the actual cost (not 
function) in each period.  

In this section, two forms of price cap regulation that can avoid government subsidy are 
developed to attain the optimal transmission capacity under the budget constraint. In section 5, a 
surplus-based scheme with government transfers will be examined to achieve the optimal 
transmission capacity without the budget constraint. 

 
4.1 Extended Price Cap Mechanism for Transco 

 
Price caps are well-known as one of powerful incentive mechanisms both in theory and in 

practice. In general, a price cap mechanism sets some ceiling for prices to be charged by the 
regulated firm. The firm is allowed to choose any prices as long as some average price index is 
below the ceiling, i.e., price cap.  

A typical price cap mechanism takes a simple form of a constraint on prices, expressed 
generally as 111 '' −−− ⋅≤⋅ tttt QPQP , where P  and Q  are price and quantity vectors of some 
goods, respectively. In other words, the firm is allowed to choose any prices as long as a 
Laspeyres price index, 111 '' −−− ⋅⋅ tttt QPQP , is not greater than a price cap, 1. It is shown that 
prices will converge to Ramsey prices in any long-run stationary equilibrium. Note that the 
regulator need not have any knowledge of the firm’s cost function. See, for example, Vogelsang 
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(1989) and Armstrong et al. (1994), for further discussion. 
It may be natural to consider some form of cap on the congestion prices in order to induce 

efficient capacity expansion of transmission lines. Such a mechanism might take a simple form 
of a constraint on the congestion prices, )()'()'( 1111 −−−− ≡⋅≤⋅ ttttt kkkηkkη ρ , which would 
be a straightforward application of a standard price cap mechanism. That is, the Transco might 
be allowed to choose the current period’s capacity tk , and hence the congestion prices )( tkη  
as long as a Laspeyres congestion price index, 111 )'()'( −−− ⋅⋅ tttt kkηkkη , would not be greater 
than a price cap, 1. 

However, unfortunately, a typical price cap mechanism cannot be directly applied to induce 
optimal expansion of the transmission network. First, a typical price cap will not achieve the 
optimal transmission capacity under the Transco’s budget constraint in the presence of 
technological externalities among transmission lines. Since technological externalities are not 
taken into consideration under a standard mechanism, the long-run stationary capacity, if any, 
will deviate from the optimal capacity derived in Proposition 1. Second, and related to the first 
point, the convergence of the process may not be assured. The convexity of the consumers’ 
surplus with respect to prices assures the convergence of the process under a typical price cap. 
However, the convexity of the consumers’ surplus with respect to the congestion prices would 
be ambiguous. 

Therefore, we have to modify and extend the original price cap mechanism in order to 
internalize technological externalities and assure the convergence of the process. By introducing 
an additional constraint on the capacity, we now define the extended price cap mechanism for 
Transco as follows: 

 
 

Definition 1: (The extended price cap mechanism for Transco) In each period t , the regulator 
allows the Transco to choose the transmission capacity tk  that satisfies the following 
constraint: 

)(2),()'()'( 1111 −−−− ≤⋅+⋅ tttttt kkqFkηkkη ρ , ( 11 ) 
)()( 1−≥ tt cscs kk . ( 12 ) 

 
 
The second term of the LHS of the first inequality, ),()'( 11 ttt kqFkη −− ⋅ , is the extra element 

added to the original price cap mechanism. This new element has a crucial effect in internalizing 
technological externalities. It should be noted that ),( 1 tt kqF −  represents the power flow 
under the current period’s capacity tk  if it were applied to the previous period’s power 
transaction at nodes under nodal pricing, namely )( 1*1 −− ≡ tt kqq . Note also that the RHS of 
the first inequality is doubled. The second inequality assures the convergence of the process by 
preventing the Transco from reducing the consumers’ surplus. Note that ))(()( kqk d∗≡ CScs . 

We suppose that both the regulator and the Transco can observe the information needed to 
implement our new mechanism. The congestion prices η  and the congestion rent ρ  are 
derived in the process of calculating nodal prices. The power flow F  can also be calculated by 
the software that uses a standard technique in power system engineering. Fortunately, the 
consumers’ surplus cs  can also be derived in the process of calculating nodal prices. It should 
be noted that both the regulator and the Transco can use the information obtained in the spot 
market; that is, the demand bid curve (function) and the supply offer curve (function). Note also 
that the regulator needs to know neither the Transco’s capacity cost function nor the actual cost. 
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We now establish the following proposition. 
 
 

Proposition 2: For any given 0)( 0 ≥kσ , the extended price cap mechanism induces the 
Transco to choose the optimal transmission capacity under a budget constraint, i.e., *k , in a 
dynamic process. That is, there exists *k  such that: 

(i) )()(lim *kk uu t

t
=

∞→
. ( 13 ) 

 
(ii) { })()()()( **** kφkψkτkη −=− R . ( 14 ) 

 
 
The proof is given in the appendix. Here, we attempt to provide an intuitive explanation of 

this mechanism. If the Transco earned a positive profit in period 1−t , it can, if it wants, earn 
the same positive profit by choosing 1−tk  in period t , without reducing the consumers’ 
surplus. In general, the Transco will choose a different capacity vector in period t  and be 
strictly better off. Generally, the consumers’ surplus can also rise over time. Since we consider a 
fully competitive generation market, the long-run economic profit of generators is supposed to 
be zero. Overall, we get a monotonically increasing sequence in the social welfare, and the 
sequence is shown to converge to the optimal transmission capacity under the Transco’s budget 
constraint.  

It should be emphasized that our new mechanism can internalize technological externalities 
among transmission lines, whereas a standard mechanism cannot. The basic idea underlying this 
mechanism is that the gradient vector of ),()'( 11 ttt kqFkη −− ⋅  with respect to tk , which is a 
key component, becomes the vector φ  in the limit; that is, externalities associated with power 
flow changes. As a result, the three surfaces, namely, the iso-welfare surface, the iso-profit 
surface, and the regulatory constraint surface are tangent to each other at the limit point, which 
coincides with ∗k . Hence, we obtain the optimal transmission capacity under the budget 
constraint. The extended price cap mechanism would provide new insights into incentive 
regulation for the Transco in a competitive power market. 

 
4.2 Extended Vogelsang-Finsinger Mechanism for Transco 

 
The Vogelsang and Finsinger mechanism, called the V-F mechanism, is a dynamic scheme 

that induces the monopoly firm to move, over time, to Ramsey prices, where the firm’s profit is 
zero. The original V-F mechanism takes a simple form of a constraint on prices, expressed as 

)(' 11 −− ≤⋅ ttt C QQP . In other words, the firm is allowed to charge prices in the current period 
that would not result in any positive profit if they were applied to the previous period’s 
quantities and cost. Under some assumptions, Vogelsang and Finsinger (1979) show that prices 
will converge to Ramsey prices and the firm’s profit will vanish in the limit. The regulator using 
the V-F mechanism need not know the firm’s cost function )( ⋅C , but only the reported cost in 
the previous period, )( 1−tC Q . The V-F mechanism is different from a typical price cap 
mechanism in that the RHS of the inequality is the reported cost )( 1−tC Q , instead of the 
revenue 11 ' −− ⋅ tt QP . If the previous period’s profit is positive, the constraint can be expressed as 

1111 ')(' −−−− ⋅≤≤⋅ ttttt C QPQQP . Thus, the constraint under the V-F mechanism is tighter than 
that under a typical price cap mechanism.  
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Similar to the argument in the previous subsection, we have to modify and extend the original 
V-F mechanism in the presence of technological externalities. We define the extended 
Vogelsang-Finsinger (V-F) mechanism for Transco as follows: 

 
 

Definition 2: (The extended V-F mechanism for Transco) In each period t , the regulator 
allows the Transco to choose the transmission capacity tk  that satisfies the following 
constraint: 

)()(),()'()'( 11111 −−−−− +≤⋅+⋅ ttttttt c kkkqFkηkkη ρ . ( 15 ) 
)()( 1−≥ tt cscs kk . ( 16 ) 

 
 
The second term of the LHS of the first inequality is )()( 11 −− + ttc kk ρ  instead of 

)(2 1−tkρ , which is the only difference between this mechanism and the extended price cap 
mechanism. Note that, in general, the constraint under the extended V-F mechanism is tighter 
than that under the extended price cap mechanism. 

We focus on asymmetric information about the Transco’s cost structure in a similar way as 
the original V-F mechanism. That is, we suppose that the regulator does not know the Transco’s 
capacity cost function )( ⋅c , but can observe the actual cost (not function) in the previous 
period, )( 1−tc k . Similar to the previous subsection, the congestion prices η , the congestion 
rent ρ , and the consumers’ surplus cs  can be derived in the process of calculating nodal 
prices. The power flow F  can also be calculated by the software that uses a standard technique 
in power system engineering.  

The assumption imposed on the cost function under the original V-F mechanism is also 
applied; that is, the cost function )(kc  exhibits no decreasing return to scale, which comes 
from economies of scale in network expansion. Moreover, we impose some natural assumptions 
associated with the nature of the power transaction. First, from the standpoint of physics, the 
power transfer distribution factor )(, knlh  is assumed to be homogenous of degree 0. To put it 
another way, )(kh  will remain the same if k  is increased by a uniform percentage. Hence, 
the power flow function ),( kqF  is assumed to be homogenous of degree 0 with respect to 
k ; that is, the way how electric power is distributed physically on each line will remain the 
same if the capacity is scaled up proportionally, keeping all the injections and withdrawals 
unchanged. Second, from an economic viewpoint, the congestion of each line will, in general, 
tend to be relieved as the entire transmission capacity constraint becomes less severe. In other 
words, the congestion prices )(kη  is supposed to fall as the entire transmission capacity k  
becomes larger and larger. Thus, we assume that 0kη =∞→ )(lim αα  for 1>α . Third, and 
related to the second point, we assume that )()( kk cscs ≥α  for 1>α . As the entire 
transmission capacity constraint becomes less severe, consumers can, in general, buy more 
electric power produced by cheaper generators.  

We now represent the following proposition. 
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Proposition 3: For any given 0)( 0 ≥kσ , the E-V-F mechanism induces the Transco to choose 
the optimal transmission capacity under a budget constraint, i.e., *k , in a dynamic process. 
The Transco’s profit is then zero. That is, there exists *k  such that: 

(i) )()(lim *kk cscs t

t
=

∞→
. ( 17 ) 

 
(ii) 0)( * =kσ . ( 18 ) 
 
(iii) { })()()()( **** kφkψkτkη −=− R . ( 19 ) 
 

 
The proof is given in the appendix. The extended V-F mechanism is similar to the original 

V-F mechanism in that the regulatory constraint is tightened every time the Transco makes a 
profit, and in turn, every time the regulatory constraint is tightened, the welfare increases. Thus, 
we can show that the monotonically increasing sequence in the welfare will converge and the 
Transco’s profit will vanish in the limit. 

The extended V-F mechanism has a desirable property that the Transco will earn no profit in 
the limit. By contrast, the extended price cap mechanism may not fully eliminate the profit over 
time since it does not require the Transco to return the previous profit to consumers.  

However, the extended V-F mechanism has a severe problem of strategic waste, similar to the 
original V-F mechanism. As Sappington (1980) demonstrates, the firm can have an incentive to 
indulge in wasteful expenditures in order to relax future constraints. In contrast, the extended 
price cap mechanism can encourage productive efficiency since the cost is not mentioned in the 
constraint. Therefore, the extended price cap mechanism has a desirable property that the 
Transco will never engage in strategic waste.9 

 
 
5. Incremental Surplus Subsidy Scheme for Transco 
 

In most cases, the regulator may not directly compensate the regulated monopoly Transco for 
the deficit. However, if the regulator can subsidize the Transco, the surplus-based schemes can 
be used in order to induce the Transco to choose the optimal transmission capacity without its 
budget constraint. One such scheme is a dynamic regulatory mechanism proposed by 
Sappington and Sibley (1988). Their mechanism, called the incremental surplus subsidy (ISS) 
scheme, provides a monopoly firm with a subsidy based on a period-to-period change in the 
consumer surplus (subtracted by the firm’s operating profit). They demonstrate that the ISS 
scheme can eventually induce the monopoly firm to maximize the total social surplus, and 
hence achieve the first-best outcome; namely, marginal cost pricing with no waste and zero 
profit. It should be noted that the result can be attained without the regulator knowing the cost 
function of the monopoly firm. 

The market they have investigated is a standard monopoly market, where a monopoly firm 
simply produces and sells products to consumers. By contrast, a power market has a more 
complicated vertical structure; that is, the regulated Transco, which is an upstream monopolist, 

                                                  
9 Formally, the extended V-F mechanism assumes that the Transco is myopic, i.e., its discount factor is 
zero. By contrast, the Transco can be a non-myopic firm that maximizes the discounted value of its profits 
under the extended price cap mechanism.  
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produces the transmission capacity k  and earns the congestion rent )(kρ ; generators, which 
are downstream competitive firms, generate electric power )(* kq  and sell it to consumers 
through the transmission lines. In spite of this market structure, we can directly apply the ISS 
scheme to the regulation of the Transco in a competitive power market.  

Although Gans and King (2000), and Joskow and Tirole (2002) suggest implementing the 
surplus-based schemes to induce efficient transmission investment, they do not explicitly 
formulate the mechanism on the basis of the original ISS scheme formula which Sappington and 
Sibley have derived. In contrast, our model framework enables explicit and straightforward 
application of the original ISS scheme formula to the regulation of the Transco. 

Based on the notation of the original ISS scheme, let wcwe +≡ )(),( kk  denote the 
Transco’s expenditure for the capacity, where 0≥w  is a possible waste. Then, define the 
Transco’s profit by subtracting the total expenditure ),( we k  from the congestion rent )(kρ . 

),()( we kk −ρ  may differ from )()()( kkk c−≡ ρσ  by the possible waste. We assume that 
the regulator does not know the capacity cost function )( ⋅c  and the possible waste w ; and 
hence the expenditure function )( ⋅e , whereas the Transco has these information. On the other 
hand, The regulator can observe the reported (audited) expenditure in the previous period, 

),( 11 −− tt we k . We assume that both the regulator and the Transco have the same information 
about the consumers’ surplus cs  and the congestion rent ρ , which are derived in the process 
of calculating nodal prices.10 Note that the long-run economic profit of generators will be zero 
as in the previous section. 

We can then define the incremental surplus subsidy (ISS) scheme for Transco, which is the 
direct application of the original ISS scheme, as follows:  
 

 

Definition 3: (The ISS scheme for Transco) In each period t , the regulator allows the Transco 
to choose the transmission capacity tk , and provides the following subsidy ts  to the Transco 
for ∞= ,,0 …t : 

{ } { }),()()()( 1111 −−−− −−−≡ tttttt wecscss kkkk ρ . ( 20 ) 
 
 
The first term of the RHS represents the increment in the consumers’ surplus, generated by 

the capacity change between the current period t  and the previous period 1−t . The second 
term is the Transco’s profit in the previous period 1−t , calculated on the basis of the reported 
expenditure ),( 11 −− tt we k . Note again that the expenditure function itself is known, not to the 
regulator, but to the Transco. Taken together, the subsidy under the ISS scheme for Transco can 
be expressed as the improvement in the consumers’ surplus subtracted by the Transco’s lagged 
profit.  

Clearly, the basic idea of Definition 3 is the same as that of the original ISS scheme. Thus, it 
is obvious that we can obtain the same result as under the ISS scheme.  

 

                                                  
10 We suppose that both the regulator and the Transco can use the information obtained in the spot 
market: that is, the demand bid curve (function) and the supply offer curve (function). When we assume 
that these information is not fully available, the scheme proposed by Finsinger and Vogelsang (1985), 
which does not utilize the demand and supply curves (functions), may be a substitute for the ISS scheme. 
However, it may take more periods before the first-best outcome is attained. 
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Proposition 4: Under the ISS scheme for Transco, the followings hold for any given 0s , 0k : 

(i) The Transco chooses the optimal transmission capacity without a budget constraint, i.e., 
fk  in every period: 

 
∞=== ,,1,,,1),()( …… tLlflfl kk τη . ( 21 ) 

 
(ii) The Transco operates at minimum cost in every period: 
 

∞== ,,0,0 …twt . ( 22 ) 
 
(iii) The Transco gains no profit from the second period on (i.e., the Transco can gain strictly 

positive profit only in the first period):  
 

∞==+− ,,2,0),()( …tswe tttt kkρ . ( 23 ) 
 
 

The proof is omitted because it is analogous to that of Proposition 1 in Sappington and Sibley 
(1988).11 It should be noted that the ISS scheme for Transco assures the optimal transmission 
capacity without a budget constraint, internalizing technological externalities among 
transmission lines. Furthermore, the desirable features of the original ISS scheme such as 
inducing no waste hold true.  

 
 

6. Concluding Remarks 
 
This paper has examined regulatory incentive mechanisms for efficient investment in the 

transmission network, taking into account both technological externalities among transmission 
lines and information asymmetry between the regulator and the transmission company (Transco). 
First, by adding extra constraints associated with the power flow, we have developed an 
extended price cap mechanism that can internalize technological externalities among 
transmission lines. We have shown that this new mechanism induces the Transco to choose the 
optimal transmission capacity under its budget constraint. An extended form of the Vogelsang 
and Finsinger (V-F) mechanism has also been introduced. Next, we have examined the 
surplus-based scheme with government transfers. We have provided a formal analysis of the 
incremental surplus subsidy (ISS) scheme specifically for the Transco, demonstrating that it 
induces the Transco to choose the optimal transmission capacity without the budget constraint. 

Linear tariffs for transmission services have been examined on the basis of the extended 
forms of the price cap and V-F mechanism. In practice, we may, in some way, combine the 
linear tariffs of these types and the two-part tariff that is based on Vogelsang’s (2001) scheme. 
With regard to the transmission constraints, we have focused on thermal limit of each line. 
Further work is needed to incorporate other realistic limits such as voltage limit and stability 
limit. Although we have considered a perfectly competitive wholesale market, the market power 
of generators has become a relevant issue. Another track for future research is to extend the 
framework of the incentive regulation approach to incorporate an imperfectly competitive 
market. 

                                                  
11 A complete proof is available upon request. 



 16

 
 
Appendix 
 
Proof of Proposition 1 
 

Define the Lagrangian as 
 

{ })()()()(L kkkk ccv −+−≡ ρξ . ( 24 ) 
 
Then, the first-order condition with respect to lk  yields 
 

{ } 0)()()()( =−+− kkkk llll ccv ρξ   

{ } 0)()()()()()( =−−+−− kkkkkk l
ll

l
ll cc ψηξφη  ( 25 ) 

{ }[ ] { })()()()()()1( kkkkk ll
l

ll c φψξφηξ −=+−+ .  
 
Hence, we have 
 

{ })()()()( kkkk llll R φψτη −=−  ( 26 ) 
 
for Ll ,,1…= . ■ 
 
Proof of Proposition 2 
 

We simply write k  for tk , which is the decision variable in period t . We also write k  
for 1−tk . k  is a constant in period t  since it is the decision variable in the previous period 

1−t . In addition, we write q  for 1−tq . Furthermore, let ),()'()'()( kqFkηkkηk ⋅+⋅≡δ . 
Then, the first inequality of the extended price cap mechanism can be expressed as 

)(2)( kk ρδ ≤ . Basically, we give a proof for a myopic case for a comparison with the case of 
the extended V-F mechanism in Proposition 3.  

We first show that the extended price cap mechanism is feasible for the Transco. Suppose that 
the Transco makes a profit in the previous period 1−t , that is, 0)()()( ≥−= kkk cρσ . 
Since )(2),()'()'()( kkqFkηkkηk ρδ =⋅+⋅=  holds, kk =  satisfies the first inequality 
of the mechanism. Of course, kk =  also satisfies the second inequality. Thus, the Transco can, 
if it wants, choose kk =  in the current period t  and make a non-negative profit. Therefore, 
it follows that 0)()( ≥≥ kk σσ . Assuming that 0)( 0 ≥kσ  in the first period, and by 
induction, 0)( ≥kσ  holds for all t . In other words, the extended price cap mechanism is 
feasible for the Transco in the sense that it can make a non-negative profit in all periods. 

Since )()( kk cscs ≥  and )()( kk σσ ≥  hold under the extended price cap mechanism, 
{ }∞

=0)( tu k  is a non-decreasing sequence, which is bounded by a constrained welfare maximum. 

Hence, it converges, and the limit )ˆ()(lim kk uu
t

=
∞→

 exists. Note that the long-run social 

welfare is expressed as )()()( kkk σ+≡ csu . Here, the long-run economic profit of 
generators, ))(( kqs∗Π , is supposed to be zero since we consider a fully competitive generation 
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market. If the Transco is non-myopic and acts strategically, it may choose k  such that 
)()( kk σσ <  for some periods in order to have more profitable periods later. However, such a 

finite sequence can always be ended at periods when the profit is greater than the past profit 
)(kσ . Hence, we can get a non-decreasing sub-sequence of the Transco’s profit even in a 

non-myopic case.  
Considering the regulator’s problem, { }0)(:)()()(max ≥+≡ kkkk

k
σσcsu , we can 

rewrite the first-order condition as follows:  
 

( ) )(1)( kk kk σζ ∇+−=∇ cs , ( 27 ) 
 

where 0≥ζ  is a Lagrange multiplier.  
On the other hand, the Transco’s problem in each period can be expressed as 
{ })()(),(2)(:)(max kkkkk

k
cscs ≥≤ ρδσ . Then, the first-order condition yields 

 

{ } ),(),()'()('
)()()(

kkqFkηkηk
kkk

kkk

kkk

cs
cs

∇−⋅∇+⋅∇=

∇−∇=∇

µτ
µδτσ

 ( 28 ) 

 
where 0≥≡ tττ  and 0≥≡ tµµ  are Lagrange multipliers. Thus, the following condition 
holds in the limit:  
 

{ }
{ } ).ˆ(ˆ)'ˆ()'ˆ(ˆ

)ˆ(ˆ)ˆ,ˆ()'ˆ()ˆ('ˆˆ)ˆ(

kkφkψ

kkqFkηkηkk

k

kkkk

cs

cs

∇−−−=

∇−⋅∇+⋅∇=∇

µτ

µτσ
 ( 29 ) 

 
Note that )'()'()( kφkηkk −=∇ v  holds from the envelope theorem. Furthermore, since 

)()()( kkk kkk ρ∇+∇=∇ csv  and )'()'()( kψkηkk −=∇ ρ , we have the following equality: 
 

)'()'()( kφkψkk −=∇ cs . ( 30 ) 
 

Hence, we obtain the following condition in the limit: 
 

( ) )ˆ(ˆˆ)ˆ( kk kk cs∇+−=∇ µτσ . ( 31 ) 
 

Therefore, the three surfaces { })ˆ()(| kkk σσ = , { })ˆ()(| kkk uu = , and the regulatory 

constraint of the extended price cap mechanism are tangent to each other at ∗= kk̂ . This 
completes the proof. ■  
 
Proof of Proposition 3 
 

Using similar notations as in the proof of Proposition 2, the first inequality of the extended 
V-F mechanism can be expressed as )()()( kkk ρδ +≤ c . 

Suppose that 0)()'()( ≥−⋅= kkkηk cσ  in the previous period 1−t . Since we assume 
that )( kη α  approaches 0 as 1>α  gets large, there exists α  such that 
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0)()'( =−⋅ kkkη cα . Moreover, ),(),( kqFkqF =α  holds for such α  from the 
assumption that ),( kqF  is homogenous of degree 0 with respect to k . Thus, it follows that 
such kk α=  satisfies the first inequality of the mechanism:  
 

).()(
),()'()'(
),()'()'()(

kk
kqFkηkkη
kqFkηkkηk

ρ
α

αααδ

+=

⋅+⋅=

⋅+⋅=

c
 ( 32 ) 

 
Since, by assumption, )()( kk cscs ≥α  holds for such α ,  kk α=  also satisfies the 
second inequality of the mechanism. Furthermore, )()( kk cc αα ≤  follows from the 
assumption that )(kc  exhibits no decreasing return to scale. Thus, we have 
 

{ }
0

)()'(
)()'(
)()'(

)()(

=
−⋅=

−⋅≥

−⋅=

≥

kkkη
kkkη
kkkη

kk

c
c

c

αα
ααα
ααα

ασσ

 ( 33 ) 

 
for period t . Assuming that 0)( 0 ≥kσ  in the first period, and by induction, 0)( ≥kσ  
holds for all t . In other words, the extended V-F mechanism is feasible for the Transco in the 
sense that it can make a non-negative profit in all periods. 

Since )()( kk cscs ≥  holds under the extended V-F mechanism, { }∞
=0)( tcs k  is a bounded 

non-decreasing sequence, and hence the limit )~()(lim kk cscs
t

=
∞→

 exists. At the limit point k~ , 

)~()~()~( kkk ρδ +≤ c  yields 0)~( ≤kσ . On the other hand, since 0)( ≥kσ  holds for all t , 
it follows that 0)~( =kσ ; that is, the Transco’s profit will vanish in the limit. Note that 
{ }∞

=0)( tkσ  is not a non-decreasing sequence, although )(kσ  is non-negative.  
Considering that the Transco’s profit is zero in the limit, we can restate the regulator’s 

problem as { }0)(:)()(max =≡ kkk
k

σcsu . The first-order condition can be rewritten as 

follows:  
 

)(~)( kk kk σζ ∇−=∇ cs , ( 34 ) 
 
On the other hand, the Transco’s problem in each period can be expressed as 
{ })()(),()()(:)(max kkkkkk

k
cscsc ≥+≤ ρδσ . By the same argument in the proof of 

Proposition 2, we obtain the following condition in the limit: 
 

( ) )~(~~)~( kk kk cs∇+−=∇ µτσ . ( 35 ) 
 

Therefore, the three surfaces { }0)(| =kk σ , { })~()(| kkk uu = , and the regulatory 
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constraint of the extended V-F mechanism are tangent to each other at ∗= kk~ . This completes 
the proof. ■  
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