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Abstract

We consider the problem of sharing a good, where agents prefer
more to less. In this environment, we prove that a sharing rule satisfies
strategy-proofness if and only if it has the quasi-constancy property:
no one changes her own share by changing her announcements. Next,
by constructing a system of linear equations, we provide a way to
find every strategy-proof sharing rule, and identify a necessary and
sufficient condition for the existence of a non-constant, strategy-proof
sharing rule. Finally, we show that it is only the equal-sharing rule
that satisfies strategy-proofness and symmetry.

Keywords: Strategy-proofness, Bossiness, Non-constancy, Quasi-constancy,
Symmetry.

JEL Classification Numbers: C72, D71.
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1 Introduction

Consider a group of agents who are to share the operating cost of an orga-
nization. How do they share the operating cost? The agents usually pay
membership dues that are common to all of them to cover the cost. Such a
sharing rule is called the equal-sharing rule. However, the equal-sharing rule
appears to be inappropriate in the sense that it does not at all reflect agents’
types, such as intensities of preference. Why do the agents not use a sharing
rule that mirrors differences in their types? When we consider the problem,
it is important to keep in mind that each agent does not know about the
other agents’ types. Agents may have an incentive to gain by manipulating
the sharing rule through misrepresentation of their types, because their true
type is unknown to the other agents.

In this paper, we consider the problem of sharing a good, and search
for strategy-proof sharing rules, where each agent prefers more to less.12

Strategy-proofness is an incentive compatibility property that requires that
agents should not benefit from misrepresenting their types irrespective of
the types reported by other agents, which was introduced by the seminal
papers of Gibbard (1973) and Satterthwaite (1975). The property seems
attractive, but it is too strong a requirement in the sense that it rules out
almost all rules in many environments.

A constant sharing rule, where the good is always split in a fixed ratio, is
a familiar rule that satisfies strategy-proofness. In addition to the constant
sharing rules, as is well known, there exists a non-constant sharing rule
that satisfies strategy-proofness if there are three agents (see Example 1).
The non-constant, strategy-proof sharing rule demonstrated in Example 1
is a bossy sharing rule, i.e., one where a change in an agent’s types does
not affect her own share, but affects the other agents’ shares.3 Besides the
above sharing rules, is there a strategy-proof sharing rule? The answer is no,
as shown by Theorem 1. The theorem tells us that a sharing rule satisfies
strategy-proofness if and only if no agent can affect her share at all through
misrepresentation of her types. This implies that it is only the bossy sharing
rule that satisfies strategy-proofness and non-constancy.

Bossiness might appear unreasonable, as Satterthwaite and Sonnenschein
(1981) state that “While we have not exhaustively considered this question,
we have identified one substantial consideration that bears on nonbossiness’s
reasonableness and desirability. It relates to simplicity of design.” However,
the property of bossiness is inherent in some “nice” mechanisms, includ-
ing in the Vickrey auction (Vickrey (1961)) and the Clarke–Groves mech-

1When considering the problem of sharing a cost, we alternatively assume that each
agent prefers less to more.

2A sharing rule is a function that assigns a list of shares to each announcement of
agents’ types.

3The notion of bossiness was introduced by Satterthwaite and Sonnenschein (1981).
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anisms (Clarke (1971) and Groves (1973)). Furthermore, non-bossiness is
demanding, because non-bossiness together with strategy-proofness implies
coalitional strategy-proofness in some environments such as pure exchange
economies (see Barberà and Jackson (1995)) or the Shapley–Scarf housing
markets (see Pàpai (2000)).4

In addition, consider the following example: There are three agents who
are to share the cost of a project, where each agent prefers less to more. Sup-
pose that each agent reports a different type and then their shares of the cost
are (0.3, 0.2, 0.5). What should be selected as the “fair” shares when agent
1’s announcement is changed to the same as that of agent 2? Some might
insist that the new shares should be (0.2, 0.2, 0.6), since those who report
the same types should be treated as the same. This rule violates strategy-
proofness, because agent 1 benefits from the change in her announcement.
Others may urge that the new shares should be (0.3, 0.3, 0.4). This rule is
bossy, but not manipulable.

As mentioned above, the bossy sharing rule is not so unreasonable, and
thus, it is of interest to study how to find all of the strategy-proof sharing
rules. In Section 4, we construct a system of linear equations by using
Theorem 1 in the following way:

• Suppose that there are n agents having m types.

• Choose a ratio arbitrarily, which is the list of shares that agents receive
when they announce type 1.

• Choose a ratio such that agent i’s share remains unchanged, whenever
only agent i changes her announcement.

• Iterate the above operation for all agents.

Thus, we obtain mn linear equations in nmn−1 unknowns. By construction,
we can find any strategy-proof sharing rule by solving the linear system. In
Example 2, we demonstrate the linear system when there are three agents,
each of whom has two types.

Next we identify a necessary and sufficient condition for the existence
of a non-constant sharing rule by using the system of the linear equations.
We investigate some properties of the linear system, and find a relationship
between the constancy of the strategy-proof sharing rule and the dimen-
sion of the solution set of the linear system. In conjunction with the fact
that the dimension of the solution space can be written as a function of
the numbers of agents and of admissible types, the relationship implies a

4Coalitional strategy-proofness is a group incentive compatibility property that requires
that no coalition of agents should be able to gain from joint misrepresentation. Note that
coalitional strategy-proofness is a stronger requirement than strategy-proofness.
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necessary and sufficient condition that guarantees the existence of the non-
constant and strategy-proof sharing rule: there exists a sharing rule satis-
fying non-constancy and strategy-proofness if and only if there are at least
three agents, each of whom has at least two types (Theorem 4). This makes
a difference between the cases of two agents and of three or more agents (al-
though the difference could be imagined from the example of Satterthwaite
and Sonnenschein (1981) in the pure exchange economy).

Finally, we examine whether there is a non-constant sharing rule that is
strategy-proof and fair . Our notion of fairness is such that if agents have the
same types, then they receive equal shares, which is usually called symmetry .
In Theorem 5, we prove that there is no sharing rule that satisfies symmetry,
strategy-proofness, and non-constancy. The theorem leads to Corollary 1
which asserts that it is only the equal-sharing rule that is strategy-proof
and symmetric. This may be a reason why the equal-sharing rule is used in
practice for resolving the sharing problem.

The Related Literature

Sprumont (1991) considered the division problem with single-peaked prefer-
ences, and showed that a division rule satisfies strategy-proofness, Pareto
efficiency, and anonymity if and only if it is the uniform allocation rule (e.g.,
see Sprumont (1991) or Barberà (2001) for details of the uniform allocation
rule). Later, Ching (1994) weakened anonymity to symmetry. The sharing
problem considered in our paper appears similar to the division problem
with single-peaked preferences. Indeed, our problem could be regarded as a
special case where each agent has the peak of her preference when she re-
ceives the entire good. Therefore, it is possible to consider Corollary 1 as a
special case of Ching’s result, since the uniform allocation rule is equivalent
to the equal-sharing rule when each agent prefers more to less.

Our model is also analogous to the pure exchange economy model con-
sidered in Zhou (1991). Zhou showed that there is no mechanism that is
strategy-proof, Pareto efficient, and non-inversely-dictatorial in two-agent
pure exchange economies, and conjectured that a similar impossibility re-
sult could be proved in pure exchange economies with three or more agents.5

His conjecture implies that there is a difference in the possibility of the ex-
istence of a non-constant, strategy-proof, and Pareto efficient mechanism
in two-agent versus n-agent settings, where n ≥ 3. Therefore, the differ-
ence implied by Theorem 4 is similar to the difference implied by Zhou’s
conjecture.

5However, Kato and Ohseto (2002) have recently proved that there exist some mech-
anisms that are strategy-proof, Pareto efficient, and non-inversely-dictatorial in pure ex-
change economies with four or more agents. Nevertheless, as noted in Kato and Ohseto
(2002), Zhou’s conjecture is still open in three-agent pure exchange economies.
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This paper is organized as follows. Section 2 provides notation and defini-
tions. In Section 3, we characterize strategy-proof sharing rules. A system of
linear equations is constructed in Section 4. Section 5 identifies a necessary
and sufficient condition for the existence of a non-constant and strategy-
proof sharing rule. We search for a sharing rule that is fair and strategy-
proof in Section 6, and Section 7 contains concluding remarks. Some proofs
are given in the Appendix.

2 Notation and Definitions

Let N := {1, 2, . . . , n} be the set of agents, where 2 ≤ n < +∞. Let
X :=

{
(x1, x2, . . . , xn) ∈ Rn

+

∣∣ ∑
i∈N xi = 1

}
be the set of ratios, where agent

i ∈ N receives xi, which we call agent i’s share.
Let Θi be the set of possible types of agent i ∈ N . Each agent i ∈ N

has a utility function ui : X × Θi → R. We assume that each agent i ∈ N
is selfish, i.e., ui(x; θi) depends only on xi for any x ∈ X and any θi ∈ Θi.
Let Θm

i :=
{
θ1
i , θ

2
i , . . . , θ

m
i

} ⊂ Θi be a set of agent i’s types: θk
i ∈ Θm

i

only if ui(·; θk
i ) is a strictly increasing function of xi. The domain is the set

Θm := Θm
1 ×Θm

2 ×· · ·×Θm
n . A type profile is a list θ = (θ1, θ2, . . . , θn) ∈ Θm .

A sharing rule is a single-valued function f : Θm → X, which assigns a
list of shares x ∈ X to each type profile θ ∈ Θm . It will be convenient to
write f(θ) = (f1(θ), f2(θ), . . . , fn(θ)).

Now we introduce a property that the sharing rule is to satisfy. Strategy-
proofness is an incentive compatibility property, which requires that no agent
should be able to benefit from misrepresenting her types irrespective of the
other agents’ types.

Definition 1 (Strategy-proofness). A sharing rule f satisfies strategy-
proofness if, for all θ ∈ Θm and all i ∈ N , there is no θ′i ∈ Θm

i such that

ui(f(θ′i, θ−i); θi) > ui(f(θ); θi).

A constant sharing rule is a sharing rule satisfying strategy-proofness.

Definition 2 (Constant Sharing Rules). A sharing rule f is a constant
sharing rule if, for some x ∈ X, f(θ) = x for any θ ∈ Θm .

A dictatorial sharing rule, which always assigns the entire good to a given
agent, is a special case of the constant sharing rule. In order to distinguish
non-constant sharing rules from the constant sharing rules, we often impose
the following condition.

Definition 3 (Non-constancy). A sharing rule f satisfies non-constancy
if, for some θ, θ′ ∈ Θm ,

f(θ) 6= f(θ′).
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3 Strategy-proof Sharing Rules

In this section, we investigate what kinds of sharing rules satisfy strategy-
proofness. Aside from constant sharing rules, there is a non-constant sharing
rule that satisfies strategy-proofness, as demonstrated in Example 1.

Example 1. Suppose that there are three agents, 1, 2, and 3, who are
to share a good worth $100 to each of them. Furthermore, suppose that
m = 2, i.e., for each agent, the set of types consists of only two types. Then,
a non-constant and strategy-proof sharing rule is the following:





f̄(θ1
1, θ

1
2, θ

1
3) = x1 = (0.7, 0.2, 0.1)

f̄(θ2
1, θ

1
2, θ

1
3) = x2 = (0.7, 0.1, 0.2)

f̄(θ1
1, θ

2
2, θ

1
3) = x3 = (0.4, 0.2, 0.4)

f̄(θ2
1, θ

2
2, θ

1
3) = x4 = (0.4, 0.1, 0.5)

f̄(θ1
1, θ

1
2, θ

2
3) = x5 = (0.5, 0.4, 0.1)

f̄(θ2
1, θ

1
2, θ

2
3) = x6 = (0.5, 0.3, 0.2)

f̄(θ1
1, θ

2
2, θ

2
3) = x7 = (0.2, 0.4, 0.4)

f̄(θ2
1, θ

2
2, θ

2
3) = x8 = (0.2, 0.3, 0.5).

The sharing rule is illustrated in Figure 1. ¥
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Figure 1: A Non-constant and Strategy-proof Sharing Rule

Example 1 shows that it is possible to design a non-constant sharing rule
that satisfies strategy-proofness if there are three agents.6 The following
theorem provides a full characterization of strategy-proof sharing rules.

6We shall show in Example 2 how to construct the non-constant, strategy-proof sharing
rule.
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Theorem 1. A sharing rule f satisfies strategy-proofness if and only if

fi(θ) = fi(θ′i, θ−i)

for all θ ∈ Θm , all i ∈ N , and all θ′i ∈ Θm
i .

Proof. The only if part: Suppose to the contrary that fi(θ) 6= fi(θ′i, θ−i) for
some θ ∈ Θm , some i ∈ N , and some θ′i ∈ Θm

i . Without loss of generality,
we assume fi(θ) > fi(θ′i, θ−i). Since ui(·; θ′i) is a strictly increasing function
of xi, we obtain

ui(f(θ); θ′i) > ui(f(θ′i, θ−i); θ′i),

contradicting strategy-proofness.

The if part: It is easy to check that if fi(θ) = fi(θ′i, θ−i) for all θ ∈ Θm , all
i ∈ N , and all θ′i ∈ Θm

i , then f satisfies strategy-proofness.

Theorem 1 tells us that a sharing rule satisfies strategy-proofness if and
only if each agent never changes her own share by misrepresenting her types.
This does not lead to the constancy of the sharing rule, because it might
be a bossy sharing rule, i.e., one where each agent could change someone
else’s share through misrepresentation of her types, even though she cannot
affect her own share. Nevertheless, the bossy sharing rule is quasi-constant
in the sense that each agent never affects her own share by changing her
announcements. In this sense, Theorem 1 could be deemed to be an impos-
sibility result.

It follows from Theorem 1 that non-bossiness is inconsistent with strategy-
proofness and non-constancy. This reveals a stark contrast between our
model and other models such as the pure exchange economy model or the
model considered in Sprumont (1991), because non-bossiness is consistent
with strategy-proofness and non-constancy in the models (see Barberà and
Jackson (1995) for the pure exchange economy model, and Barberà, Jackson,
and Neme (1997) for Sprumont’s model).

4 The Linear System

We construct a system of linear equations to find all strategy-proof sharing
rules. Let f : Θm → X be a strategy-proof sharing rule. Then, by Theorem
1, we have the following:

f(θ1
1, θ

1
2, θ

1
3, . . . , θ

1
n−1, θ

1
n) = (x1

1, x
1
2, x

1
3, . . . , x

1
n−1, x

1
n)

f(θ2
1, θ

1
2, θ

1
3, . . . , θ

1
n−1, θ

1
n) = (x1

1, x
2
2, x

2
3, . . . , x

2
n−1, x

2
n)

...
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f(θm
1 , θ1

2, θ
1
3, . . . , θ

1
n−1, θ

1
n) = (x1

1, x
m
2 , xm

3 , . . . , xm
n−1, x

m
n )

f(θ1
1, θ

2
2, θ

1
3, . . . , θ

1
n−1, θ

1
n) = (x2

1, x
1
2, x

m+1
3 , . . . , xm+1

n−1 , xm+1
n )

f(θ2
1, θ

2
2, θ

1
3, . . . , θ

1
n−1, θ

1
n) = (x2

1, x
2
2, x

m+2
3 , . . . , xm+2

n−1 , xm+2
n )

...

f(θm
1 , θ2

2, θ
1
3, . . . , θ

1
n−1, θ

1
n) = (x2

1, x
m
2 , xm+m

3 , . . . , xm+m
n−1 , xm+m

n )
...

f(θ1
1, θ

m
2 , θ1

3, . . . , θ
1
n−1, θ

1
n) = (xm

1 , x1
2, x

m(m−1)+1
3 , . . . , x

m(m−1)+1
n−1 , xm(m−1)+1

n )

f(θ2
1, θ

m
2 , θ1

3, . . . , θ
1
n−1, θ

1
n) = (xm

1 , x2
2, x

m(m−1)+2
3 , . . . , x

m(m−1)+2
n−1 , xm(m−1)+2

n )
...

f(θm
1 , θm

2 , θ1
3, . . . , θ

1
n−1, θ

1
n) = (xm

1 , xm
2 , x

m(m−1)+m
3 , . . . , x

m(m−1)+m
n−1 , xm(m−1)+m

n )
...

f(θm
1 , θm

2 , θm
3 , . . . , θm

n−1, θ
1
n) = (xmn−2

1 , xmn−2

2 , xmn−2

3 , . . . , xmn−2

n−1 , xmn−1

n )

f(θ1
1, θ

1
2, θ

1
3, . . . , θ

1
n−1, θ

2
n) = (xmn−2+1

1 , xmn−2+1
2 , xmn−2+1

3 , . . . , xmn−2+1
n−1 , x1

n)
...

f(θm
1 , θm

2 , θm
3 , . . . , θm

n−1, θ
m
n ) = (xmn−1

1 , xmn−1

2 , xmn−1

3 , . . . , xmn−1

n−1 , xmn−1

n ),

where xk
i ≥ 0.

Since
∑

i∈N fi = 1, we obtain mn linear equations as follows:

x1
1 + x1

2 + x1
3+ · · ·+ x1

n−1 + x1
n = 1

x1
1 + x2

2 + x2
3+ · · ·+ x2

n−1 + x2
n = 1

...

x1
1 + xm

2 + xm
3 + · · ·+ xm

n−1 + xm
n = 1

x2
1 + x1

2 + xm+1
3 + · · ·+ xm+1

n−1 + xm+1
n = 1

x2
1 + x2

2 + xm+2
3 + · · ·+ xm+2

n−1 + xm+2
n = 1

...

x2
1 + xm

2 + xm+m
3 + · · ·+ xm+m

n−1 + xm+m
n = 1

...

xm
1 + x1

2 + x
m(m−1)+1
3 + · · ·+ x

m(m−1)+1
n−1 + xm(m−1)+1

n = 1

xm
1 + x2

2 + x
m(m−1)+2
3 + · · ·+ x

m(m−1)+2
n−1 + xm(m−1)+2

n = 1
...

xm
1 + xm

2 + x
m(m−1)+m
3 + · · ·+ x

m(m−1)+m
n−1 + xm(m−1)+m

n = 1
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...

xmn−2

1 + xmn−2

2 + xmn−2

3 + · · ·+ xmn−2

n−1 + xmn−1

n = 1

xmn−2+1
1 + xmn−2+1

2 + xmn−2+1
3 + · · ·+ xmn−2+1

n−1 + x1
n = 1

...

xmn−1

1 + xmn−1

2 + xmn−1

3 + · · ·+ xmn−1

n−1 + xmn−1

n = 1,

where xk
i ≥ 0.

By construction, solving the system of the mn linear equations in nmn−1

unknowns, we can find every strategy-proof sharing rule. To handle the
linear system easily, we put the equations into matrix form:




1 0 ··· 0 ··· 0 0 ··· 0 1 0 ··· 0 ··· 0 0 ··· 0 ··· 1 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0
1 0 ··· 0 ··· 0 0 ··· 0 0 1 ··· 0 ··· 0 0 ··· 0 ··· 0 1 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0...

...
. . .

...
. . .

...
...
. . .

...
...
...
. . .

...
. . .

...
...
. . .

...
. . .

...
...
. . .

...
...
...
. . .

...
. . .

...
...
. . .

...
. . .

...
1 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 1 ··· 0 0 ··· 0 ··· 0 0 ··· 1 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0
0 1 ··· 0 ··· 0 0 ··· 0 1 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 1 0 ··· 0 ··· 0 0 ··· 0 ··· 0
0 1 ··· 0 ··· 0 0 ··· 0 0 1 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 1 ··· 0 ··· 0 0 ··· 0 ··· 0...

...
. . .

...
. . .

...
...
. . .

...
...
...
. . .

...
. . .

...
...
. . .

...
. . .

...
...
. . .

...
...
...
. . .

...
. . .

...
...
. . .

...
. . .

...
0 1 ··· 0 ··· 0 0 ··· 0 0 0 ··· 1 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 1 ··· 0 0 ··· 0 ··· 0...

...
. . .

...
. . .

...
...
. . .

...
...
...
. . .

...
. . .

...
...
. . .

...
. . .

...
...
. . .

...
...
...
. . .

...
. . .

...
...
. . .

...
. . .

...
0 0 ··· 1 ··· 0 0 ··· 0 1 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 1 0 ··· 0 ··· 0
0 0 ··· 1 ··· 0 0 ··· 0 0 1 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 1 ··· 0 ··· 0...

...
. . .

...
. . .

...
...
. . .

...
...
...
. . .

...
. . .

...
...
. . .

...
. . .

...
...
. . .

...
...
...
. . .

...
. . .

...
...
. . .

...
. . .

...
0 0 ··· 1 ··· 0 0 ··· 0 0 0 ··· 1 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 1 ··· 0...

...
. . .

...
. . .

...
...
. . .

...
...
...
. . .

...
. . .

...
...
. . .

...
. . .

...
...
. . .

...
...
...
. . .

...
. . .

...
...
. . .

...
. . .

...
0 0 ··· 0 ··· 1 0 ··· 0 0 0 ··· 0 ··· 1 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 1
0 0 ··· 0 ··· 0 1 ··· 0 0 0 ··· 0 ··· 0 1 ··· 0 ··· 1 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0...

...
. . .

...
. . .

...
...
. . .

...
...
...
. . .

...
. . .

...
...
. . .

...
. . .

...
...
. . .

...
...
...
. . .

...
. . .

...
...
. . .

...
. . .

...
0 0 ··· 0 ··· 0 0 ··· 1 0 0 ··· 0 ··· 0 0 ··· 1 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 1







x1
1

x2
1...

xm
1...

xmn−2

1

xmn−2+1
1 ...
xmn−1

1

x1
2

x2
2...

xm
2...

xmn−2

2

xmn−2+1
2 ...
xmn−1

2 ...
x1

n

x2
n...

xm
n

xm+1
n

xm+2
n...
x2m

n...
x

m(m−1)+1
n

x
m(m−1)+2
n ...

x
m(m−1)+m
n ...
xmn−1

n




= 1.

To simplify notation, let A denote the mn × nmn−1 coefficient matrix, and
x denote the nmn−1 × 1 matrix.

The following example is helpful in understanding the linear system.

Example 2. Consider again the situation described in Example 1. Let f
be a sharing rule that satisfies strategy-proofness. Then, by Theorem 1, we
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have the following:

f(θ1
1, θ

1
2, θ

1
3) = (x1

1, x
1
2, x

1
3)

f(θ2
1, θ

1
2, θ

1
3) = (x1

1, x
2
2, x

2
3)

f(θ1
1, θ

2
2, θ

1
3) = (x2

1, x
1
2, x

3
3)

f(θ2
1, θ

2
2, θ

1
3) = (x2

1, x
2
2, x

4
3)

f(θ1
1, θ

1
2, θ

2
3) = (x3

1, x
3
2, x

1
3)

f(θ2
1, θ

1
2, θ

2
3) = (x3

1, x
4
2, x

2
3)

f(θ1
1, θ

2
2, θ

2
3) = (x4

1, x
3
2, x

3
3)

f(θ2
1, θ

2
2, θ

2
3) = (x4

1, x
4
2, x

4
3),

where xk
i ≥ 0. Since

∑
i∈N fi = 1, we have the following equations:

x1
1 + x1

2 + x1
3 = 1

x1
1 + x2

2 + x2
3 = 1

x2
1 + x1

2 + x3
3 = 1

x2
1 + x2

2 + x4
3 = 1

x3
1 + x3

2 + x1
3 = 1

x3
1 + x4

2 + x2
3 = 1

x4
1 + x3

2 + x3
3 = 1

x4
1 + x4

2 + x4
3 = 1,

where xk
i ≥ 0.

We solve the system of the eight linear equations in 12 unknowns to find
strategy-proof sharing rules. The system of the linear equations is expressed
in matrix form:




1 0 0 0 1 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0 0 1 0 0
0 1 0 0 1 0 0 0 0 0 1 0
0 1 0 0 0 1 0 0 0 0 0 1
0 0 1 0 0 0 1 0 1 0 0 0
0 0 1 0 0 0 0 1 0 1 0 0
0 0 0 1 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1







x1
1

x2
1

x3
1

x4
1

x1
2

x2
2

x3
2

x4
2

x1
3

x2
3

x3
3

x4
3




= 1.
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Solving the linear system, we have



x1
1

x2
1

x3
1

x4
1

x1
2

x2
2

x3
2

x4
2

x1
3

x2
3

x3
3

x4
3




=




1
1
1
1
0
0
0
0
0
0
0
0




+ α1




−1
−1
0
0
1
1
0
0
0
0
0
0




+ α2




0
0
−1
−1
0
0
1
1
0
0
0
0




+ α3




−1
0
−1
0
0
0
0
0
1
1
0
0




+ α4




0
0
0
0
−1
0
−1
0
1
0
1
0




+ α5




0
−1
0
−1
1
0
1
0
−1
0
0
1




.

Thus, any strategy-proof sharing rule f is written as




f(θ1
1, θ

1
2, θ

1
3) = (x1

1, x
1
2, x

1
3) = (1− α1 − α3, α1 − α4 + α5, α3 + α4 − α5)

f(θ2
1, θ

1
2, θ

1
3) = (x1

1, x
2
2, x

2
3) = (1− α1 − α3, α1, α3)

f(θ1
1, θ

2
2, θ

1
3) = (x2

1, x
1
2, x

3
3) = (1− α1 − α5, α1 − α4 + α5, α4)

f(θ2
1, θ

2
2, θ

1
3) = (x2

1, x
2
2, x

4
3) = (1− α1 − α5, α1, α5)

f(θ1
1, θ

1
2, θ

2
3) = (x3

1, x
3
2, x

1
3) = (1− α2 − α3, α2 − α4 + α5, α3 + α4 − α5)

f(θ2
1, θ

1
2, θ

2
3) = (x3

1, x
4
2, x

2
3) = (1− α2 − α3, α2, α3)

f(θ1
1, θ

2
2, θ

2
3) = (x4

1, x
3
2, x

3
3) = (1− α2 − α5, α2 − α4 + α5, α4)

f(θ2
1, θ

2
2, θ

2
3) = (x4

1, x
4
2, x

4
3) = (1− α2 − α5, α2, α5),

for some (α1, α2, α3, α4, α5) ∈
{
(α1, α2, α3, α4, α5) ∈ [0, 1]5

∣∣ α1+α3 ≤ 1, α2+
α3 ≤ 1, α4 ≤ α1 + α5 ≤ 1, α4 ≤ α2 + α5 ≤ 1, and α5 ≤ α3 + α4 ≤ 1

}
.

The strategy-proof sharing rule introduced in Example 1 is given by
(α1, α2, α3, α4, α5) = (0.1, 0.3, 0.2, 0.4, 0.5). ¥

5 A Necessary and Sufficient Condition

In this section, we identify a necessary and sufficient condition for the ex-
istence of a non-constant, strategy-proof sharing rule. We first provide the
following lemma, which is concerned with the properties of the coefficient
matrix A.

Lemma 1. Consider the linear system Ax = 1. Then the following state-
ments hold whenever n ≥ 2:

(i) rank A = mn − (m− 1)n.

(ii) The dimension of the solution space of the linear system is

nmn−1 − {mn − (m− 1)n}.

12



The proof of Lemma 1 is given in the Appendix. We next look for
the relationship between the constancy of the strategy-proof sharing rule
and the dimension of the solution set of the linear system. The following
theorem is a fundamental result, which follows from the fact that n−1 linear
independent vectors are necessary to express all of the constant sharing rules,
each of which is a typical strategy-proof sharing rule.

Theorem 2. Consider the linear system Ax = 1. Then the dimension of
the solution set of the linear system is greater than or equal to n− 1.

The proof of Theorem 2 appears in the Appendix. Theorem 2 tells
us that in order for every strategy-proof sharing rule to be obtained as a
solution of the linear system, it is necessary that the dimension of its solution
space is at least n−1. This leads to the following theorem, which states that
(n− 1)-dimensional solution space is not enough for a non-constant sharing
rule to be represented as a solution of the linear system.

Theorem 3. Consider the linear system Ax = 1. Then, only the constant
sharing rule satisfies strategy-proofness if and only if the dimension of the
solution set of the linear system is equal to n− 1.

The proof of Theorem 3 is in the Appendix. Theorem 3 implies that the
existence of the non-constant and strategy-proof sharing rule depends on the
dimension of the solution set of the linear system. Combined with Lemma
1, Theorem 3 implies that it also depends on the numbers of agents and of
admissible types, whether or not there exists a non-constant, strategy-proof
sharing rule, which is formally stated in Theorem 4 below.

Theorem 4. Consider the linear system Ax = 1. Then, there exists a non-
constant and strategy-proof sharing rule if and only if n ≥ 3 and m ≥ 2.

Theorem 4 indicates that non-constant, strategy-proof sharing rules as
well as all of the constant sharing rules appear as solutions to the linear
equations whenever there are three or more agents, each of whom has at
least two types. Furthermore, the theorem implies that more complicated
sharing rules emerge as either the numbers of agents or of types increase,
since the dimension of the solution space of the linear system becomes large
as either of these numbers grows.

Before proceeding to the proof of Theorem 4, we present two lemmas.

Lemma 2. Let g(s) be a polynomial of degree 3. If g satisfies

(i) g(1) ≥ 0 and

(ii) g′(s) > 0 for any s ≥ 1,

then g(s) > 0 for any s ≥ 2.

13



Lemma 3. Let g(s) be a polynomial of degree l ≥ 4. If g satisfies

(i) g(1) ≥ 0,

(ii) gi(1) > 0 for any i with 1 ≤ i ≤ l − 3, and

(iii) gl−2(s) > 0 for any s ≥ 1,

then g(s) > 0 for any s ≥ 2, where gi(s) := dig(s)
dsi .

The proof of Lemma 2 is analogous to that of Lemma 3, which is in the
Appendix. Now we prove Theorem 4.

Proof of Theorem 4. By the contrapositive of Theorem 3, Theorem 4 is
equivalent to the following statement: the dimension of the solution set
of the linear system is not n − 1 if and only if n ≥ 3 and m ≥ 2. Then,
together with Lemma 1-(ii) and Theorem 2, Theorem 4 is also equivalent to
the following statement:

nmn−1 − {mn − (m− 1)n} > n− 1 if and only if n ≥ 3 and m ≥ 2. (∗)
Thus, we prove (∗) instead of the original statement.

The if part: Given n ≥ 2 and m ≥ 1, define a continuous function g as
follows:

g(m) :=
{
nmn−1 − {mn − (m− 1)n}}− (n− 1)

= (m− 1)n −mn + nmn−1 − n + 1.

In order to prove the if part of (∗), for any integer n ≥ 3, it is sufficient to
show that g(m) > 0 whenever m ≥ 2.

Case 1: n ≥ 4.
By Lemma 3, in order to prove that g(m) > 0 for any m ≥ 2, it suffices to
verify that (i) g(1) ≥ 0, (ii) gi(1) > 0 for all i with 1 ≤ i ≤ n − 3, and (iii)
gn−2(m) > 0 for all m ≥ 1. Differentiating g(m) i times, we get

gi(m) = n(n− 1)(n− 2) · · · (n− (i− 1))︸ ︷︷ ︸
i

{
(m− 1)n−i −mn−i + (n− i)mn−(i+1)

}
.

First, we check g(1) ≥ 0.

g(1) = (1− 1)n − 1n + n · 1n−1 − n + 1
= 0 ≥ 0.

Second, we verify that gi(1) > 0 for all i with 1 ≤ i ≤ n− 3.

gi(1) = n(n− 1)(n− 2) · · · (n− (i− 1))︸ ︷︷ ︸
i

{
(1− 1)n−i − 1n−i + (n− i) · 1n−(i+1)

}
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= n(n− 1)(n− 2) · · · (n− (i− 1))︸ ︷︷ ︸
i

(n− (i + 1)).

Since 1 ≤ i ≤ n − 3, it must hold that 4 ≤ (n − (i − 1)) ≤ n and 2 ≤
(n − (i + 1)) ≤ n − 2. Hence, we conclude that gi(1) > 0 for all i with
1 ≤ i ≤ n− 3.

Finally, we confirm that gn−2(m) > 0 for all m ≥ 1.

gn−2(m) = n(n− 1)(n− 2) · · · (n− ((n− 2)− 1))︸ ︷︷ ︸
n−2

×
{

(m− 1)n−(n−2) −mn−(n−2) + (n− (n− 2))mn−((n−2)+1)
}

= n(n− 1)(n− 2) · · · 3︸ ︷︷ ︸
n−2

×{
(m− 1)2 −m2 + 2m

}

= n(n− 1)(n− 2) · · · 3︸ ︷︷ ︸
n−2

×1 > 0.

Therefore, gn−2(m) > 0 for all m ≥ 1.

Case 2: n = 3.
By Lemma 2, in order to show that g(m) > 0 for any m ≥ 2, it is sufficient
to check that (i) g(1) ≥ 0 and (ii) g′(m) > 0 for any m ≥ 1. In a way similar
to Case 1, we can verify that g fulfills (i) and (ii).

The only if part: Suppose not, then n = 2 or m = 1. It is easy to check
that the inequality nmn−1 − {mn − (m− 1)n} > n− 1 does not hold when
n = 2 or m = 1.

Theorem 4 gives a condition that is necessary and sufficient for the ex-
istence of a sharing rule satisfying non-constancy and strategy-proofness.
It turns out that, under the realistic assumption that each agent has more
than one type, we can design non-constant and strategy-proof sharing rules
whenever there are at least three agents, while we can never do so when
there are only two agents. This makes a critical difference between the
two-agent and n-agent cases, where n ≥ 3. The result parallels the con-
jecture of Zhou (1991), who states that there exists a rule that satisfies
non-constancy, strategy-proofness, and Pareto efficiency in n-agent pure ex-
change economies, where n ≥ 3, whereas there does not exist such a rule in
two-agent pure exchange economies.7

7To be precise, Zhou (1991) conjectured that a rule satisfies strategy-proofness and
Pareto efficiency if and only if it is inversely-dictatorial in pure exchange economies. Note
that there exists an inversely-dictatorial and non-constant rule if there are three or more
agents, while every inversely-dictatorial rule is constant (because it is dictatorial) when
there are only two agents (see Zhou (1991) or Kato and Ohseto (2002) for details).
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6 Fairness

In this section, we search for rules satisfying strategy-proofness and fairness.
As the notion of fairness, we adopt symmetry , which is one of the weakest
properties that pertain to fairness. Symmetry requires that if agents an-
nounce identical types, they should receive the same shares.

Definition 4 (Symmetry). A sharing rule f satisfies symmetry if, for all
θ ∈ Θm and all i, j ∈ N , if θi = θj , then fi(θ) = fj(θ).

The following theorem asserts that symmetry, strategy-proofness, and
non-constancy are jointly inconsistent.

Theorem 5. There is no sharing rule f satisfying symmetry, strategy-
proofness, and non-constancy.

Proof. Suppose to the contrary that there does exist a sharing rule f that
satisfies symmetry, strategy-proofness, and non-constancy. Consider θ1 =
(θ1

1, θ
1
2, θ

1
3, . . . , θ

1
n) ∈ Θm . Then, by symmetry, we have f(θ1) = (1/n, . . . , 1/n).

Step 1 : f(θ′i, θ
1
−i) = (1/n, . . . , 1/n) for all i ∈ N and all θ′i ∈ Θm

i .
Suppose not, then, for some i ∈ N and some θ′i ∈ Θm

i , we have f(θ′i, θ
1
−i) 6=

(1/n, . . . , 1/n).

Case 1-1 : fi(θ′i, θ
1
−i) 6= 1/n.

Theorem 1 implies fi(θ1) = fi(θ′i, θ
1
−i) = 1/n: a contradiction.

Case 1-2 : fh(θ′i, θ
1
−i) 6= 1/n for some h ∈ N \ {i}.

By the argument of Case 1-1, we have fi(θ′i, θ
1
−i) = 1/n. Symmetry implies

that fg(θ′i, θ
1
−i) = fh(θ′i, θ

1
−i) for any g, h ∈ N \{i}. Since

∑
i∈N fi(θ′i, θ

1
−i) =

1, these imply that fg(θ′i, θ
1
−i) = fh(θ′i, θ

1
−i) = 1/n for any g, h ∈ N \ {i}: a

contradiction.

Step 2 : f(θ′i, θ
′′
j , θ1

−i,j) = (1/n, . . . , 1/n) for all i ∈ N , all j ∈ N , all θ′i ∈ Θm
i ,

and all θ′′j ∈ Θm
j .

Suppose not, then there exist i ∈ N , j ∈ N , θ′i ∈ Θm
i , and θ′′j ∈ Θm

j such
that f(θ′i, θ

′′
j , θ1

−i,j) 6= (1/n, . . . , 1/n).

Case 2-1 : fi(θ′i, θ
′′
j , θ1

−i,j) 6= 1/n.

By Step 1, it holds that f(θ′′j , θ1
−j) = (1/n, . . . , 1/n). It follows from Theorem

1 that fi(θ′′j , θ1
−j) = fi(θ′i, θ

′′
j , θ1

−i,j) = 1/n: a contradiction.

Case 2-2 : fj(θ′i, θ
′′
j , θ1

−i,j) 6= 1/n.
This case follows from an argument similar to Case 2-1.

Case 2-3: fh(θ′i, θ
′′
j , θ1

−i,j) 6= 1/n for some h ∈ N \ {i, j}.
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The arguments of Cases 2-1 and 2-2 imply fi(θ′i, θ
′′
j , θ1

−i,j) = fj(θ′i, θ
′′
j , θ1

−i,j) =
1/n. By symmetry, it must hold that fg(θ′i, θ

′′
j , θ1

−i,j) = fh(θ′i, θ
′′
j , θ1

−i,j)
for any g, h ∈ N \ {i, j}. Since

∑
i∈N fi(θ′i, θ

′′
j , θ1

−i,j) = 1, it follows that
fg(θ′i, θ

′′
j , θ1

−i,j) = fh(θ′i, θ
′′
j , θ1

−i,j) = 1/n for any g, h ∈ N \ {i, j}: a contra-
diction.

Step 3 : f(θ′i, θ
′′
j , θ′′′k , θ1

−i,j,k) = (1/n, . . . , 1/n) for all i ∈ N , all j ∈ N , all
k ∈ N , all θ′i ∈ Θm

i , all θ′′j ∈ Θm
j , and all θ′′′k ∈ Θm

k .
The argument for Step 3 is analogous to the arguments for Steps 1 and 2.

Iteration of similar arguments for further agents establishes that, for any
θ̃ ∈ Θm ,

f(θ̃) = f(θ1) = (1/n, . . . , 1/n),

which contradicts non-constancy.

The proof of Theorem 5 implies that if a sharing rule satisfies symmetry
and strategy-proofness, then it is a equal-sharing rule. Hence, as we formal-
ize below, we can conclude that it is only the equal-sharing rule that satisfies
symmetry and strategy-proofness.

Definition 5 (The Equal-Sharing Rule). A sharing rule f is the equal-
sharing rule if, for all θ ∈ Θm ,

f(θ) = (1/n, . . . , 1/n).

Corollary 1. A sharing rule f satisfies symmetry and strategy-proofness if
and only if it is the equal-sharing rule.

Corollary 1 parallels the result of Ching (1994) in the division problem
with single-peaked preferences, which states that a rule satisfies symme-
try, strategy-proofness, and Pareto efficiency if and only if it is the uni-
form rule.8 Ching’s result is a generalization of Sprumont’s characterization
that asserts that a rule satisfies anonymity (or equivalently envy-freeness),
strategy-proofness, and Pareto efficiency if and only if it is the uniform rule
(Sprumont (1991)).9

It is easy to show that only the equal-sharing rule satisfies envy-freeness.
Combined with Corollary 1, this implies that envy-freeness is equivalent
to the conjunction of symmetry and strategy-proofness in our environment.
The equivalence between envy-freeness and symmetry plus strategy-proofness
fails to hold in Sprumont’s environment. Therefore, it is a difference between
our environment and Sprumont’s whether the equivalence holds or not.

8As mentioned in the Introduction, the uniform rule is equivalent to the equal-sharing
rule in our environment.

9Envy-freeness is a requirement that each agent should never prefer someone else’s
share to her own, which was first introduced by Foley (1967).
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7 Conclusion

In this paper, we have characterized the class of strategy-proof sharing rules,
and provided a way to find all of the strategy-proof sharing rules. In Theo-
rem 1, we have shown that only strategy-proof sharing rules have the quasi-
constancy property: each agent never changes her own share through misrep-
resentation of her types. The theorem implies that only strategy-proof and
non-bossy sharing rules are constant. Hence, combined with the fact that
strategy-proofness plus non-bossiness implies coalitional strategy-proofness,
the theorem leads to an impossibility result: there is no sharing rule that
satisfies coalitional strategy-proofness and non-constancy. Thus, Theorem 1
seems to be a possibility result, but it has a somewhat negative implication.

In Section 5, we have established a fundamental result concerning the
dimension of the solution space of the linear system constructed in Section
4: every strategy-proof sharing rule can be represented as a solution of
the linear system, only when the dimension of the solution set is greater
than or equal to the number of agents minus one. Furthermore, we have
established that more non-constant , strategy-proof sharing rules emerge, as
the dimension of the solution space, which is determined by the numbers of
agents and types, becomes greater than the number of agents minus one.
Thus, we have shown that there are non-constant, strategy-proof sharing
rules, when there are at least three agents who each have at least two types.
However, we have not yet found an algorithm for easily finding such sharing
rules (although we know that it is possible to find them by solving the linear
system constructed in Section 4). It would be an interesting area of further
research to provide such an algorithm.

The model considered in this paper is related to Sprumont’s model (Spru-
mont (1991)) and to the pure exchange economy model considered in Zhou
(1991), Barberà and Jackson (1995), Kato and Ohseto (2002), and others.
Here, we have obtained some results similar to the ones given by them. How-
ever, we have provided two results, each of which holds only in our model:
one is the inconsistency between non-constancy and strategy-proofness plus
non-bossiness (or equivalently the inconsistency between non-constancy and
coalitional strategy-proofness); and the other is the equivalence between
envy-freeness and strategy-proofness plus symmetry. The difference is due
to the fact that, in our model, no one is indifferent between any pair of
outcomes such that she receives distinct shares.

Strategy-proofness is closely related to Nash implementability, since strategy-
proofness is implied by monotonicity that is both necessary and sufficient for
Nash implementation in our environment.10 It is easy to show that mono-

10Necessity follows immediately from Maskin (1999) who showed that monotonicity is
necessary for Nash implementation. In the case of three or more agents, sufficiency also
follows from Maskin (1999), who proved that monotonicity and no veto power are sufficient
for Nash implementation, together with the fact that no veto power is automatically satis-
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tonicity is equivalent to constancy in our environment. Therefore, every
strategy-proof sharing rule is Nash implementable when there are only two
agents, since it is a constant sharing rule. On the other hand, when there
are three or more agents, not all strategy-proof sharing rules are Nash im-
plementable. Indeed, none of the bossy and strategy-proof sharing rules are
implementable in Nash equilibria, because they violate monotonicity in our
environment. In short, only constant sharing rules are Nash implementable
no matter how many agents there are.

It is also easy to check that, in our environment, monotonicity is equiva-
lent to the rectangular property which is a necessary and sufficient condition
for secure implementation, i.e., double implementation in Nash and domi-
nant strategy equilibria (see Saijo, Sjöström, and Yamato (2003) for details
of secure implementation). Hence, we reach a conclusion similar to one
about Nash implementation: only constant sharing rules are secure imple-
mentable, whereas none of the non-constant and strategy-proof sharing rules
are secure implementable. As already remarked, constant sharing rules are
distinguished from the other sharing rules by many properties, such as fair-
ness, coalitional strategy-proofness, implementability, etc. This appears to
be a reason why non-constant sharing rules are not used in practice, even if
they satisfy strategy-proofness.

In this paper, we have searched for bossy and strategy-proof rules by
constructing a system of linear equations. The way of finding such rules
developed here could help in the search for bossy, strategy-proof rules in
other environments, including in pure exchange economies where non-bossy ,
strategy-proof rules have been sought.

fied in our environment. In the two-agent case, sufficiency follows from the fact that only
the constant sharing rule satisfies strategy-proofness which is implied by monotonicity, a
necessary condition for Nash implementation.
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Appendix

In the Appendix, we first provide a remark, which concerns constant sharing
rules, and then provide some proofs.

Remark 1. Every constant sharing rule can be written as a vector

(x̄1, x̄1, . . . , x̄1︸ ︷︷ ︸
mn−1

, x̄2, x̄2, . . . , x̄2︸ ︷︷ ︸
mn−1

, x̄3, x̄3, . . . , x̄3︸ ︷︷ ︸
mn−1

, . . . , x̄n, x̄n, . . . , x̄n︸ ︷︷ ︸
mn−1

)t

for some (x̄1, x̄2, x̄3, . . . , x̄n) ∈ X, where the constant sharing rule always
assigns x̄1 to agent 1, x̄2 to agent 2, x̄3 to agent 3, . . . , x̄n to agent n.

Proof of Lemma 1-(i). Given n ≥ 2 and m ≥ 1, define matrix Ar by

ar
pq =

{
apq if q ∈ {

(r − 1)mn−1 + 1, (r − 1)mn−1 + 2, . . . , rmn−1
}

,

0 otherwise,

where ar
pq and apq denote the pq-th elements of Ar and A, respectively.

Then, we obtain the following matrices A1, A2, . . . , An.

A1 =




1 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0
1 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0...

...
. . .

...
. . .

...
...
. . .

...
...
...
. . .

...
. . .

...
...
. . .

...
. . .

...
...
. . .

...
...
...
. . .

...
. . .

...
...
. . .

...
. . .

...
1 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0
0 1 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0
0 1 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0...

...
. . .

...
. . .

...
...
. . .

...
...
...
. . .

...
. . .

...
...
. . .

...
. . .

...
...
. . .

...
...
...
. . .

...
. . .

...
...
. . .

...
. . .

...
0 1 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0...

...
. . .

...
. . .

...
...
. . .

...
...
...
. . .

...
. . .

...
...
. . .

...
. . .

...
...
. . .

...
...
...
. . .

...
. . .

...
...
. . .

...
. . .

...
0 0 ··· 1 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0
0 0 ··· 1 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0...

...
. . .

...
. . .

...
...
. . .

...
...
...
. . .

...
. . .

...
...
. . .

...
. . .

...
...
. . .

...
...
...
. . .

...
. . .

...
...
. . .

...
. . .

...
0 0 ··· 1 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0...

...
. . .

...
. . .

...
...
. . .

...
...
...
. . .

...
. . .

...
...
. . .

...
. . .

...
...
. . .

...
...
...
. . .

...
. . .

...
...
. . .

...
. . .

...
0 0 ··· 0 ··· 1 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0
0 0 ··· 0 ··· 0 1 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0...

...
. . .

...
. . .

...
...
. . .

...
...
...
. . .

...
. . .

...
...
. . .

...
. . .

...
...
. . .

...
...
...
. . .

...
. . .

...
...
. . .

...
. . .

...
0 0 ··· 0 ··· 0 0 ··· 1 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0




,

A2 =




0 0 ··· 0 ··· 0 0 ··· 0 1 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0
0 0 ··· 0 ··· 0 0 ··· 0 0 1 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0...

...
. . .

...
. . .

...
...
. . .

...
...
...
. . .

...
. . .

...
...
. . .

...
. . .

...
...
. . .

...
...
...
. . .

...
. . .

...
...
. . .

...
. . .

...
0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 1 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0
0 0 ··· 0 ··· 0 0 ··· 0 1 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0
0 0 ··· 0 ··· 0 0 ··· 0 0 1 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0...

...
. . .

...
. . .

...
...
. . .

...
...
...
. . .

...
. . .

...
...
. . .

...
. . .

...
...
. . .

...
...
...
. . .

...
. . .

...
...
. . .

...
. . .

...
0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 1 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0...

...
. . .

...
. . .

...
...
. . .

...
...
...
. . .

...
. . .

...
...
. . .

...
. . .

...
...
. . .

...
...
...
. . .

...
. . .

...
...
. . .

...
. . .

...
0 0 ··· 0 ··· 0 0 ··· 0 1 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0
0 0 ··· 0 ··· 0 0 ··· 0 0 1 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0...

...
. . .

...
. . .

...
...
. . .

...
...
...
. . .

...
. . .

...
...
. . .

...
. . .

...
...
. . .

...
...
...
. . .

...
. . .

...
...
. . .

...
. . .

...
0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 1 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0...

...
. . .

...
. . .

...
...
. . .

...
...
...
. . .

...
. . .

...
...
. . .

...
. . .

...
...
. . .

...
...
...
. . .

...
. . .

...
...
. . .

...
. . .

...
0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 1 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0
0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 1 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0...

...
. . .

...
. . .

...
...
. . .

...
...
...
. . .

...
. . .

...
...
. . .

...
. . .

...
...
. . .

...
...
...
. . .

...
. . .

...
...
. . .

...
. . .

...
0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 1 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0




,

...

20



An =




0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 1 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0
0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0 1 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0...

...
. . .

...
. . .

...
...
. . .

...
...
...
. . .

...
. . .

...
...
. . .

...
. . .

...
...
. . .

...
...
...
. . .

...
. . .

...
...
. . .

...
. . .

...
0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 1 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0
0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 1 0 ··· 0 ··· 0 0 ··· 0 ··· 0
0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 1 ··· 0 ··· 0 0 ··· 0 ··· 0...

...
. . .

...
. . .

...
...
. . .

...
...
...
. . .

...
. . .

...
...
. . .

...
. . .

...
...
. . .

...
...
...
. . .

...
. . .

...
...
. . .

...
. . .

...
0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 1 ··· 0 0 ··· 0 ··· 0...

...
. . .

...
. . .

...
...
. . .

...
...
...
. . .

...
. . .

...
...
. . .

...
. . .

...
...
. . .

...
...
...
. . .

...
. . .

...
...
. . .

...
. . .

...
0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 1 0 ··· 0 ··· 0
0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 1 ··· 0 ··· 0...

...
. . .

...
. . .

...
...
. . .

...
...
...
. . .

...
. . .

...
...
. . .

...
. . .

...
...
. . .

...
...
...
. . .

...
. . .

...
...
. . .

...
. . .

...
0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 1 ··· 0...

...
. . .

...
. . .

...
...
. . .

...
...
...
. . .

...
. . .

...
...
. . .

...
. . .

...
...
. . .

...
...
...
. . .

...
. . .

...
...
. . .

...
. . .

...
0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 1
0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 1 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0...

...
. . .

...
. . .

...
...
. . .

...
...
...
. . .

...
. . .

...
...
. . .

...
. . .

...
...
. . .

...
...
...
. . .

...
. . .

...
...
. . .

...
. . .

...
0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 0 0 ··· 0 0 0 ··· 0 ··· 0 0 ··· 0 ··· 1




.

Note that A1 + A2 + · · ·+ An = A. Let
(

v
w

)
:= v!

w!(v−w!) .
Consider matrix A1. By means of Gaussian elimination, we obtain

rank A1 = mn−1.

Consider (A1 + A2). By Gaussian elimination, we have

rank(A1 + A2) = 2mn−1 − (mn−2)

= 2mn−1 −
(

2
2

)
mn−2(−1)2.

Consider (A1 + A2 + A3). By applying Gaussian elimination, we get

rank(A1 + A2 + A3) = 3mn−1 − (3mn−2 −mn−3)

= 3mn−1 −
{(

3
2

)
mn−2(−1)2 +

(
3
3

)
mn−3(−1)3

}

= 3mn−1 −
3∑

h=2

(
3
h

)
mn−h(−1)h.

Thus, by the construction of A, we can find that

rank(A1 + A2 + · · ·+ Ar) =





mn−1 if r = 1,

rmn−1 −
r∑

h=2

(
r

h

)
mn−h(−1)h if r ≥ 2.

Therefore, we establish that

rank A = rank(A1 + A2 + · · ·+ An)

= nmn−1 −
n∑

h=2

(
n

h

)
mn−h(−1)h

= nmn−1 −
n∑

h=2

(
n

h

)
mn−h(−1)h + (mn −mn)
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= mn −
{

n∑

h=2

(
n

h

)
mn−h(−1)h − nmn−1 + mn

}

= mn −
{

n∑

h=2

(
n

h

)
mn−h(−1)h +

n!
1!(n− 1)!

mn−1(−1)1 +
n!

0!n!
mn(−1)0

}

= mn −
{

n∑

h=2

(
n

h

)
mn−h(−1)h +

(
n

1

)
mn−1(−1)1 +

(
n

0

)
mn(−1)0

}

= mn −
n∑

h=0

(
n

h

)
mn−h(−1)h

= mn − (m− 1)n,

whenever n ≥ 2.

Proof of Lemma 1-(ii). Let c1 := (1, 1, . . . , 1︸ ︷︷ ︸
mn−1

, 0, 0, . . . , 0)t be a constant shar-

ing rule where agent 1 gets the entire share of the good. Since the constant
sharing rule satisfies strategy-proofness, c1 is a particular solution of the
linear system Ax = 1. So, the solution set of the linear system is the affine
space

{
x ∈ Rnmn−1

∣∣∣ x = c1 + w for some w ∈ Null(A)
}

.

Since the dimension of the affine space is equal to that of Null(A), and since
dimNull(A) is equal to the number of variables nmn−1 minus rank(A), the
dimension of the solution space is equal to nmn−1 − {mn − (m− 1)n}.

Proof of Theorem 2. Suppose to the contrary that the dimension of the so-
lution space of the linear system is less than n−1, i.e., dim Null(A) < n−1.
Except for the particular solution c1 defined in the proof of Lemma 1-(ii),
the linear system Ax = 1 must have n− 1 kinds of solutions such that

c2 = (0, 0, . . . , 0︸ ︷︷ ︸
mn−1

, 1, 1, . . . , 1︸ ︷︷ ︸
mn−1

, 0, 0, . . . , 0︸ ︷︷ ︸
mn−1

, . . . , 0, 0, . . . , 0︸ ︷︷ ︸
mn−1

)t,

c3 = (0, 0, . . . , 0︸ ︷︷ ︸
mn−1

, 0, 0, . . . , 0︸ ︷︷ ︸
mn−1

, 1, 1, . . . , 1︸ ︷︷ ︸
mn−1

, . . . , 0, 0, . . . , 0︸ ︷︷ ︸
mn−1

)t,

...
cn = (0, 0, . . . , 0︸ ︷︷ ︸

mn−1

, 0, 0, . . . , 0︸ ︷︷ ︸
mn−1

, 0, 0, . . . , 0︸ ︷︷ ︸
mn−1

, . . . , 1, 1, . . . , 1︸ ︷︷ ︸
mn−1

)t,
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because each of the solutions c2, c3, . . . , cn is a constant sharing rule, which
satisfies strategy-proofness. It follows from the definition of the solution set
provided in the proof of Lemma 1-(ii) that the vectors

c2 − c1 = (−1,−1, . . . ,−1︸ ︷︷ ︸
mn−1

, 1, 1, . . . , 1︸ ︷︷ ︸
mn−1

, 0, 0, . . . , 0︸ ︷︷ ︸
mn−1

, . . . , 0, 0, . . . , 0︸ ︷︷ ︸
mn−1

)t,

c3 − c1 = (−1,−1, . . . ,−1︸ ︷︷ ︸
mn−1

, 0, 0, . . . , 0︸ ︷︷ ︸
mn−1

, 1, 1, . . . , 1︸ ︷︷ ︸
mn−1

, . . . , 0, 0, . . . , 0︸ ︷︷ ︸
mn−1

)t,

...
cn − c1 = (−1,−1, . . . ,−1︸ ︷︷ ︸

mn−1

, 0, 0, . . . , 0︸ ︷︷ ︸
mn−1

, 0, 0, . . . , 0︸ ︷︷ ︸
mn−1

, . . . , 1, 1, . . . , 1︸ ︷︷ ︸
mn−1

)t

are all contained in Null(A). Since the n−1 vectors c2−c1, c3−c1, . . . , cn−c1

are linearly independent, dim Null(A) = n − 1: a contradiction because we
have assumed that dimNull(A) < n− 1.

Proof of Theorem 3. The if part: Suppose not, then there exists a non-
constant sharing rule satisfying strategy-proofness. Let c′ denote the non-
constant sharing rule. Then c2 − c1, c3 − c1, . . . , cn − c1, and c′ − c1 are
linearly independent; otherwise, for some (r2, r3, . . . , rn), it must hold that

c′ − c1 = r2(c2 − c1) + r3(c3 − c1) + · · ·+ rn(cn − c1)
c′ = {1− (r2 + r3 + · · ·+ rn)}c1 + r2c2 + r3c3 + · · ·+ rncn,

which contradicts the fact that c′ is a non-constant sharing rule. Conse-
quently, Null(A) has n linear independent vectors c2−c1, c3−c1, . . . , cn−c1,
and c′ − c1, so dimNull(A) = n: a contradiction because dim Null(A) =
n− 1.

The only if part: Suppose that only the constant sharing rule satisfies
strategy-proofness. Then the linear system Ax = 1 must have the solu-
tions c1, c2, . . . , cn defined in the proofs of Lemma 1-(ii) and Theorem 2,
because each of the solutions is a constant sharing rule satisfying strategy-
proofness. It follows from the same argument as in the proof of Theorem
2 that dim Null(A) = n − 1. Since any other constant sharing rule can be
written as c1 plus a linear combination of c2 − c1, c3 − c1, . . . , cn − c1, the
dimension of Null(A) still remains n− 1.

Proof of Lemma 3. Since gl−3(1) > 0 and gl−2(s) > 0 for all s ≥ 1 by
Conditions (ii) and (iii) respectively, it must hold that gl−3(s) > 0 for all
s ≥ 1. In conjunction with gl−4(1) > 0, this implies that gl−4(s) > 0 for all

23



s ≥ 1. Similarly together with gl−5(1) > 0, this implies that gl−5(s) > 0 for
all s ≥ 1. Iterations of this argument implies that g1(s) > 0 for all s ≥ 1.
Combining Condition (i), i.e., g(1) ≥ 0, we conclude that g(s) > 0 for any
s ≥ 2.
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