
DP
RIETI Discussion Paper Series 03-E-014

Coordination Costs and the Optimal Partition of a Product Design

TAKIZAWA Hirokazu
RIETI

The Research Institute of Economy, Trade and Industry
http://www.rieti.go.jp/en/

http://www.rieti.go.jp/en/


RIETI Discussion Paper Series 03-E-014

Coordination Costs and the Optimal

Partition of a Product Design 1

Hirokazu TAKIZAWA

RIETI
1-3-1 Kasumigaseki, Chiyoda-ku, Tokyo 100-8901, Japan

Phone: +81-3-3501-8275
Fax: +81-3-3501-8416

June 2003

Abstract

The purpose of this paper is to analyze the problem of optimally partitioning
a design process of a complex product, and to derive several comparative statics
results by utilizing the technique developed by Topkis (1998). By partitioning the
product design and assigning each sub-design to a team, there are the benefit of
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retarded introduction of the ICT by Japanese firms in the 1970s and 1980s as
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If there are n workers on a project, there are (n2 − n)/2 interfaces across which
there may be communication, and there are potentially almost 2n teams within
which coordination must occur. The purpose of organization is to reduce the amount
of communication and coordination necessary; hence organization is a radical attack
on the communication problems treated above.

— Frederic P. Brooks, 1995, pp.78-79

1 Introduction

This paper analyzes the problem of optimally partitioning a design process of a complex

product, and derives several comparative statics results by utilizing the technique devel-

oped by Topkis (1998). A designing organization comprises design tasks, each of which

determines new design specification of a design parameter for a system product. Design

tasks/parameters are usually intricately dependent upon one another. By partitioning the

design and assigning sub-designs to design teams, there are the benefit of having many

smaller real options on the one hand, and the cost resulting from an increased incidence

of across-team coordination on the other.

The analysis in this paper is primarily relevant to organizations and/or quasi-

organizations engaged in designing a complex system, such as software or computer sys-

tem. However, it may also be applicable to organizations and/or quasi-organizations

where containing coordination costs is of major importance. Dealing with the relation-

ship between coordination costs and a design, this paper is also concerned with such

design concepts as architecture, an interface and modularity, which have been highlighted

by the outstanding development of information and communication technology (ICT) in

the recent decades.

Our analysis shows that the optimal partition will be coarser if the cost of across-team

coordination is higher, the cost of within-team coordination is lower, the uncertainty

concerning R&D activities is lower, and the ICT investment is more expensive. These

confirm the result obtained by Baldwin and Clark (2000) and Schaefer (1999). We also

endogenize the cost of across-team coordination. Our findings are as follows; (1) lower

cost of within-team coordination induces higher cost of across-team coordination (i.e.

lower level of ICT investment) and coarser partitions to be chosen; and (2) lower cost

of ICT investment induces lower cost of across-team coordination and finer partitions

to be chosen. It is argued that the former result throws some light on the retarded

introduction of new ICT by Japanese firms, while the latter result is consistent with the
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empirical finding by Brynjolfsson, Maline, Gurbaxani, and Kambil (1994) that the firm

size becomes smaller as the firms invest in the ICT. We also discuss the relation of our

analyses to the concept of modularization.

This paper is closely related to Baldwin and Clark (2000) and Schaefer (1999). To the

best of our knowledge, Baldwin and Clark’s is the most comprehensive work to elucidate

the reason that the computer industry has dramatically increased its rate of product in-

novation since the 1970’s and has been divided into many smaller sub-industries. They

identified “modularity-in-design” as the major driving force behind the heightened pace

of this change. By modularizing a system, one interdependent whole is transformed into

many independent subsystems (i.e. modules). Then the system of one large option is

turned into the sum of many smaller options, which creates more value (the value of

splitting). Of course, they do note that modularization can be costly. They argue that

modularization incurs the cost of creating and disseminating architecture, running exper-

iments, and testing the compatibility of modules. However, they do not fully formalize

these costs to analyze the determinants of optimal partition.

A first formal approach was taken by Schaefer, who combined Baldwin and Clark’s

concept of modularity-in-design with the economics of supermodular functions. In his

paper, partitioning a designing organization creates more value because each design team

can specialize in a smaller number of design tasks, while the cost aspect of his model

is based on the fundamental insight by Milgrom and Roberts (1995). He assumes that

partitioning a designing organization reduces the correlation between research shocks

in different teams. Because the value function of the whole system is assumed to be

supermodular in the values of component modules, finer partition lowers the value of the

whole system.

The model in this paper may be regarded as an extention of the model by Baldwin and

Clark in the sense that the benefit of partitioning a product design is derived from having

many smaller options instead of one large option. However our model differs from theirs

in that we explicitly model and focus upon coordination costs incurred in partitioning a

product design, which enable us to conduct a formal comparative statics analysis regarding

coordination costs. This paper is also in line with Schaefer’s in that both Schaefer’s and

ours make a comparative statics analysis with respect to communication costs. However,

he introduces communication cost as a casual parameter having effect on the cost of

buying some level of correlation between research shocks in different components, while

the coordination cost in the present paper is naturally derived from partitioning a design
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process into several sub-designs and assigning them to different teams. We also explicitly

considers an optimization problem over the set of possible partitions, which is shown to

be a lattice. Although the modeling approaches are different, Schaefer’s paper and ours

share the conclusion that a coarser partition is favored under higher cost of across-team

coordination and lower cost of within-team coordination. This paper provides further

insight into the relation between the cost of across-team and within-team coordination by

endogenizing the cost of across-team coordination.

Although we would like to restrict our present focus to the design process of a complex

product, some aspects of the results obtained in the paper seem to be relevant to a more

general argument on the division of labor (Smith 1776/1991). Adam Smith argues that

the division of labor leads to greater knowledge, while Becker and Murphy (1992) assert

that the causation may also go from greater general knowledge to a more extensive divi-

sion of labor and greater task-specific knowledge. Our results indicate that less expensive

coordination costs, as realized by the development of transportational means and/or in-

formation and communication technologies, may cause a more extensive division of labor.

It should be noted that our model focuses not on the efficiency of general production pro-

cesses but on that of R&D activities. However, the our comparative statics result on the

optimal partition is not so much dependent on the benefit from having a finer partition as

on the coordination costs. So the same logic should be applicable to broader situations.

The next section sets up the framework for the analysis throughout the paper. Based

upon the basic insight embodied in “Design Structure Matrix (DSM) Mapping,” a grand

design is defined as a binary relation on the set of design parameters. Design teams are

introduced by partitioning design parameters (tasks) into groups. Section 3 focuses upon

the cost of coordination arising from partitioning a designing organization, and the basic

property of the cost function is derived. Section 4 turns to the analysis of the benefit

of partitioning a designing organization. In this section we follow Baldwin and Clark

and identifies the benefit of partitioning as having many smaller options instead of one

large option. In Section 5, we integrate both cost and benefit aspects to give comparative

statics results and relate those results to Baldwin and Clark’s argument of modularization.

Section 6 provides some discussion of the obtained results and concludes the paper.
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2 The model of a designing organization

According to Baldwin and Clark (2000), A design of an artifact is its complete descrip-

tion, which in turn can be broken down into smaller units called design parameters. For

example, in order to design a mug cup, such design parameters as color, material, height,

etc., have to be completely specified. Usually very intricate interdependencies among

those parameters exist, which we call design structure. The design structure can be easily

visualized by means of a technique called “Design Structure Matrix (DSM) mapping,”

which was invented by Steward (1981) and further developed by Eppinger (1991). In a

DSM matrix, design parameters are listed on the rows and columns. If ith parameter is

affected by jth parameter, then we put a mark “x” in the cell where ith row and jth

column intersect. See Figure 1. The design tasks are to choose those parameters. It is

easy to see that there is a one-to-one correspondence between a design parameter and a

design task.
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Figure 1: A generic design structure matrix (DSM)

Now consider an organization engaged in designing a complex artifact. We modify

the above definition of a DSM matrix so that each design parameter/task requires design

efforts by exactly one designer. This can be done by bundling the original design parame-

ters/tasks that are closely related to one another into a new design parameter/task in the

modified DSM matrix. Henceforth we suppose that one designer is engaged in each design

task. Thus there is a one-to-one correspondence among a design parameter, a design task
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and a designer. Suppose that there are n design parameters/tasks. Let us denote the

set of all design parameters/tasks by N = {1, · · · , n}. A grand design or architecture

is represented by a nonempty subset A of N × N with (i, i) /∈ A for each i ∈ N . We

interpret (i, j) ∈ A as expressing that design task i is dependent upon design task j so

that some coordination is necessary between them. In terms of the DSM, this corresponds

to the situation that the cell corresponding to (i, j) is marked by “x.” In what follows,

we investigate the optimal partition of N given a grand design A.

Mathematically, a partition P = {S1, · · · , Sr(P )} of N is a family of subsets of N , such

that

∀j Sj �= ∅, ∀j �= k Sj ∩ Sk = ∅, ∪r(P )
j=1 Sj = N,

where r(P ) is the number of elements in P . We introduce a binary relation on the set

of all partitions on N , denoted P(N), as follows. Let P1 and P2 be two partitions of N .

We say that P2 is coarser than P1 (alternatively P1 is finer than P2) if for each Si ∈ P1,

there exist Sj ∈ P2 such that Si ⊂ Sj ; we write this P1 � P2. Thus defined binary

relation on P(N) is easily shown to be a partial ordering, and the partially ordered set

(P(N),�) is shown to be a lattice, where P1 ∨ P2 is the finest common coarsening of P1

and P2 and P1 ∧ P2 is the coarsest common refinement of P1 and P2. This enables us

to treat the problem of optimally partitioning a product design as that of maximizing a

function on a lattice and therefore to apply the results obtained by Topkis (1998). Given

a partition, each design task belongs to one and the only one element of the partition.

Let us denote the element of partition P to which design parameter i belongs by S(i, P ),

whose cardinality we denote as #S(i, P ). Since each design task requires input of one

designer’s effort, Sj is a group of design tasks as well as a group of people, which we call

“design team.” In what follows, we will use the partition of a product design and that of

a design organization interchangeably.

Partitioning the set of design tasks and creating design teams have dual functions in

the analyses that follow. First, we assume that the coordination across design teams is

more costly than that within a design team. Thus fine partitions will be costly because of

the increased incidence of across-team coordination. Second, each design team is a unit of

decision-making regarding the adoption of new design parameters thereof. A new design

will be adopted if and only if the result of R&D in the current period is judged to be

better than the current value of the “component.” Thus the second assumption implies

that the size of design teams determine the size of real options. In sum, by partitioning
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the design, there are the benefit of having many smaller real options on the one hand, and

the cost resulting from an increased incidence of across-team coordination on the other.

3 The Cost of Partitioning a Design Process

Let us now consider the coordination cost of partitioning a designing organization. Under

a grand design A, suppose that (i, j) ∈ A. A specific partition P determines for each

(i, j) ∈ A whether j ∈ S(i, P ). Then let the cost of coordination between i and j be cij

if both i and j belong to the same design team, and let the coordination cost between

them be Cij if they belong to different design teams. We assume that 0 < cij < Cij for

each (i, j) ∈ A. That is, we assume that the coordination across design teams is more

costly than that within a design team. We write C = (Cij)(i,j)∈A and c = (cij)(i,j)∈A.

Henceforth, we suppose that R
#A is endowed with the product ordering relation based on

the usual ordering relation on the real line R
1. This makes R

#A a lattice with x′ ∨ x′′ =

(max(x′
1, x

′′
1), · · · , max(x′

#A, x′′
#A)) and x′ ∧ x′′ = (min(x′

1, x
′′
1), · · · , min(x′

#A, x′′
#A)) for x′

and x′′ in R
#A.

Throughout the paper, we will use a broader term “coordination” rather than “commu-

nication,” because resolving dependencies between design parameters can involve some-

thing more than just communication between them. Nevertheless, the cost of coordination

will necessarily depend on that of communication.

Although some may think that the assumption that C > c is not trivial, it seems to be

classical. For example, Arrow (1975) presumes that integration yields superior auditing

technology. In a context more similar to ours, Becker and Murphy (1992) also implicitly

assume this condition, for their model supposes that each division incurs more coordi-

nation costs under finer division of labor. More recently, Wernerfelt (2003) provides a

analytical model for explaining that coordination between divisions is harder than coor-

dination inside divisions. Thus, our current position is that although this condition may

needs further foundations, it is a stylized fact. As it appears in the opening quotation by

Brooks (1995), some organizational arrangement needs to be contrived to mitigate this

coordination problem. After all, the present paper aims at exploring the implication for

organization of the assumption rather than its foundations.

Intuitively speaking in the present context, members in the same design team will

resort to face-to-face communication very frequently, perhaps because they are located

closely. On the other hand, coordination across design teams will require some communi-
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cation devices like a facsimile, a telephone, the Internet, etc., which may limit the use of

subtle and complicated coordination. We may realize lower cost of across-team coordina-

tion by installing such devices with some costs, the implication of which we will explore

later by making C an endogenous variable.

Suppose that the cost of coordination incurred by the whole designing organization,

under the partition P and coordination costs (C, c), is the sum of coordination costs over

(i, j)’s in A. Thus we have

K(P, C, c) =
∑

(i,j):(i,j)∈A,j∈S(i,P )

cij +
∑

(i,j):(i,j)∈A,j /∈S(i,P )

Cij

=
∑

(i,j):(i,j)∈A

cij +
∑

(i,j):(i,j)∈A,j /∈S(i,P )

(Cij − cij) (1)

Next lemma is the key to the main theorem.

Lemma 1 K(P, C, c) is decreasing and submodular in P on P(N), and has increasing

differences in (P, (−C, c)).

Proof We first show that K(P, C, c) is submodular in P on P(N). Pick any P1 and P2

from P(N). For each (i, j) ∈ A, either j ∈ S(i, P1) or not, and similarly either j ∈ S(i, P2)

or not. Therefore we can partition A into 4 subsets. The subset of A, denoted G, consists

of all (i, j)’s such that j ∈ S(i, P1) and j ∈ S(i, P2). The second subset, denoted by H ,

comprises all (i, j)’s such that j ∈ S(i, P1) but j /∈ S(i, P2). Similarly the third subset I is

composed of all (i, j)’s in A with j ∈ S(i, P2) but j /∈ S(i, P1). Finally the fourth subset

J contains all (i, j)’s with j /∈ S(i, P1) and j /∈ S(i, P2). Obviously they are disjoint and

G ∪ H ∪ I ∪ J = A.

K(P1, C, c) =
∑

(i,j):(i,j)∈G∪H

cij +
∑

(i,j):(i,j)∈I∪J

Cij

K(P2, C, c) =
∑

(i,j):(i,j)∈G∪I

cij +
∑

(i,j):(i,j)∈H∪J

Cij

Since P1 ∧ P2 = {Si ∩ Sj : Si ∈ P1 and Sj ∈ P2, Si ∩ Sj �= ∅}, we have

K(P1 ∧ P2, C, c) =
∑

(i,j):(i,j)∈G

cij +
∑

(i,j):(i,j)∈H∪I∪J

Cij

Observing that S(i, P1) ∪ S(i, P2) ⊂ S(i, P1 ∨ P2),

K(P1 ∨ P2, C, c) ≤
∑

(i,j):(i,j)∈G∪H∪I

cij +
∑

(i,j):(i,j)∈J

Cij
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Thus we have

K(P1) + K(P2) − K(P1 ∧ P2) − K(P1 ∨ P2)

≥

 ∑

(i,j):(i,j)∈G∪H

cij +
∑

(i,j):(i,j)∈G∪I

cij −
∑

(i,j):(i,j)∈G

cij −
∑

(i,j):(i,j)∈G∪H∪I

cij




+


 ∑

(i,j):(i,j)∈I∪J

Cij +
∑

(i,j):(i,j)∈H∪J

Cij −
∑

(i,j):(i,j)∈H∪I∪J

Cij −
∑

(i,j):(i,j)∈J

Cij




= 0

That K(P, C, c) is decreasing in P should be obvious. Next we show K(P, C, c) has

increasing differences in (K, (−C, c)). Pick any P ′ and P ′′ with P ′ ≺ P ′′.

K(P ′′, C, c) − K(P ′, C, c)

=
∑

(i,j)∈A,j /∈S(i,P ′′)

(Cij − cij) −
∑

(i,j)∈A,j /∈S(i,P ′)

(Cij − cij)

= −
∑

(i,j)∈A,j∈S(i,P ′′),j /∈S(i,P ′)

(Cij − cij)

which obviously is increasing in −C and c. �

Given the assumption that coordination cost is higher across design teams than within

a design team, it is obviously the least costly to have the largest partition {N}. However,

there are also benefits of partitioning a organization, to which we now turn.

4 The Benefit of Partitioning a Design Process

There can be several reasons why partitioning a design process can be beneficial. For

example, we may attribute it to the benefit of specialization as in Schaefer (1999) or in

Becker and Murphy (1992). Alternatively, as pointed out by Baldwin and Clark (2000),

it may be because we have more number of smaller real options under a finer partition of

the whole design process. We first formulate our benefit function by keeping loyal to the

original formulation by Baldwin and Clark (2000), and then deviate to a more general

benefit function.

4.1 Baldwin and Clark’s Option Value

In a designing organization, each design task i has its own R&D activity, which yields

a potential value of a new design specification. Let us denote by Xi the potential value
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created at design task i in the current period. As in Baldwin and Clark (2000), we assume

that Xi ∼ N(0, σ2
i ) and Xi’s are independently distributed. Let σ = (σ1, · · · , σn). In this

formulation, each design parameter already has a default design specification, whose value

is normalized as zero.

Consider a partition P and a design team Sj ∈ P thereof. Sj will possibly have

several design tasks. We assume that the potential value created in Sj in the current

period is the sum of the potential value created by all the design tasks belonging to

Sj . Thus XSj
=

∑
i∈Sj

Xi ∼ N(0,
∑

i∈Sj
σ2

i ). Denoting the potential value of the whole

system product by X, we thus have X =
∑n

i=1 Xi ∼ N(0,
∑n

i=1 σ2
i ). So if the results of

R&D activities in the current period are all adopted, there is no sense in partitioning the

product design.

However, recall that each design team functions as a unit of decision-making as to

the adoption of new designs in it. Also recall that the organization already has default

designs for respective design parameters whose values are normalized as zero. Then new

designs are adopted by the team Sj if and only if the sum of the potential values of new

designs in Sj turns out to be greater than the default value ex post. Thus the realized

value in Sj is a random variable X+
Sj

= max(0, XSj
). This is the reason why Baldwin and

Clark (2000) compared the value resulting from R&D activities to “real options.” The

realized value of the whole designing organization is the sum of those realized values of

Sj ’s in P , that is
∑

Sj∈P X+
Sj

. Since the realized results of R&D activities are real options,

it makes sense to partition the designing process. As we shall see, it is more profitable to

have many smaller options than to have one large option.

In the previous paragraph, we have made two assumptions concerning the value created

in a design organization. First, we assumed Xi’s are independently distributed. Second,

the value created in a larger unit is simply assumed to be the sum of values of smaller

units contained in it. These certainly require some justification.

As we have seen, design tasks are usually intertwined with one another in a very

complicated manner in a grand design. However, such dependencies may be considered as

resolved each time by paying appropriate coordination costs as already formulated. This

means that the interdependent design tasks decide upon a specific interface and on such a

basis they work out their part independently. Given such coordination process, the value

they create may be assumed to be independent and also summable.

Realizing that E(X+) = σ̂√
2π

for X ∼ N(0, σ̂2), E(X+
Sj

) =

√P
i∈Sj

σ2
i

2π
. Thus, the value
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created in the whole designing organization is

V (P, σ) =
1√
2π

r(P )∑
j=1

∑
i∈Sj

σ2
i (2)

This value function has the following property.

Lemma 2 V (P, σ) is strictly decreasing in P and has strictly increasing differences in

(P,−σ).

Proof Pick any P ′ and P ′′ from P(N) with P ′ ≺ P ′′. Then

V (P ′′, σ) − V (P ′, σ) =
1√
2π


r(P ′′)∑

j=1

√∑
i∈Sj

σ2
i −

r(P ′)∑
j=1

√∑
i∈Sj

σ2
i


 .

Since P ′ ≺ P ′′, there exists Sj ∈ P ′′ that is a union of at least two elements in P ′. Thus

it suffices to show that√
σ2

i1 + · · ·+ σ2
ik + σ2

ik+1 + · · ·+ σ2
im −

√
σ2

i1 + · · ·+ σ2
ik +

√
σ2

ik+1 + · · ·+ σ2
im < 0.

This is shown to be true by a simple calculation. Thus the first part of the statement

holds. Pick any l with 1 ≤ l ≤ k and differentiating the left hand side of the above

inequality with respect to any σil. This yields

σil√
σ2

i1 + · · ·+ σ2
im

− σil

2
√

σ2
i1 + · · ·+ σ2

ik

< 0.

It is easy to see the same is true for l with k + 1 ≤ l ≤ m. Thus V (P ′′, σ) − V (P ′, σ) is

strictly decreasing in σ, which complete the proof. �

V (P, σ) is decreasing in P , because finer partitions create more number of smaller real

options and the sum of their value is greater than the value of one large real option. This

is what Baldwin and Clark call the “value of splitting.” Thus partitioning a designing

organization is benefitial. At this stage, some reader may realize that V (P, σ)−K(P, C, c)

is supermodular in P if V (P, σ) is supermodular in P . Unfortunately, however, V (P, σ)

is not necessarily supermodular in P . However, this lack of supermodularity does not

prevent us from conducting comparative statics analysis if we restrict our attention to a

chain on P(N).

4.2 A More General Benefit Function

As we already stated, the benefit of partitioning a design process can stem from another

factor: specialization. Following Schaefer (1999) and Becker and Murphy (1992), we will
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not delve into the foundations here, but just choose to formulate a real-valued benefit

function in a reduced form B(P, β), where β ∈ R. We assume that B(P, β) is strictly

decreasing in P and supermodular in P . Some may wonder why we assume supermod-

ularity, although it turns out that V (P, σ) is not necessarily supermodular in P . This

assumption is rather innocuous however. Even when B(P, β) is not supermodular in P ,

the same comparative statics results obtain, if we restrict our attention to an optimization

problem over a chain on P(N) and we think this is a plausible situation.

We also assume that B(P, β) has strictly increasing differences. This means that the

marginal benefit from increase in β is higher with coarser partition. In what follows,

we interpret β as the degree of generality in overall skill investment. A higer value of β

corresponds to the situation where members of the design organization invest in skills that

are more productive when they are engaged in a wider range of design tasks. Likewise, a

lower β corresponds to the situation in which specialized skill formation is prevalent.

5 Comparative Statics of Optimal Partitions

We are now in a position to derive comparative statics results by using the properties of

cost and benefit function. First some comparative statics results regarding the optimal

partition are provided. We then go on to further analysis by endogenizing across-team

coordination costs.

5.1 Analysis of the Optimal Partition

Our objective function will be as follows, when we adopt the benefit function à la Baldwin

and Clark, V (P, σ).

ΠBC(P, σ, C, c) = V (P, σ) − K(P, C, c) (3)

As already suggested, this benefit function V (P, σ) is not generally supermodular in

P . Thus, this objective function is not necessarily supermodular in P . So we restrict the

constraint set, from which P is chosen, to a subset that is a chain rather than the set of

all possible partition of N . Let a chain on P(N) be denoted PC(N). It is easy to see

that a chain in P(N) exists. Any chain is trivially a lattice. Any function is trivially

supermodular on a chain. Thus V (P, σ) is supermodular in P .

Restricting the domain to a chain might seem to be a major setback. However, doing

so makes sense. It is widely observed that organizations usually divide further or integrate

the currently existing sections when environmental parameters change. This means that
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organizations adjust their partition on some chain more frequently than on a general sub-

set of P(N). In other words, organization cannot escape from historical path dependence.

In this setup, the next proposition obtains.

Proposition 1 Let PC(N) ⊂ P(N) be a chain. Consider the objective function

ΠBC(P, σ, C, c) as defined in (3). Then,

(a). ΠBC(P, σ, C, c) is supermodular in (P, C,−c) on PC(N) and has strictly increasing

differences in (P,−σ).

(b). arg maxP∈PC(N) ΠBC(P, σ, C, c) is increasing in (C,−c,−σ).

Proof By Lemma 1, −K(P, C, c) has increasing differences in (P, (C,−c)). Obviously

−K(P, C, c) is supermodular in C and in −c as well as in P . Furthermore it has increasing

differences in (C,−c). Thus, by Fact 2, −K(P, C, c) is supermodular in (P, C,−c). Note

that this inference is correct regardless of the domain of P . Since V (P, σ) is supermodular

in P on P(N), ΠBC(P, σ, C, c) is supermodular in (P, C,−c). Obviously, ΠBC(P, σ, C, c)

has strictly increasing differences in (P,−σ). This proves part (a).

Part (b) follows from the standard result about maximizing a supermodular function

on a lattice, i.e., Fact 4 in the Appendix. �

Next we go for a more general benefit function. The objective function in this case

will be

ΠG(P, β, C, c) = B(P, β) − K(P, C, c). (4)

For this objective function, we have the next proposition:

Proposition 2 Consider the objective as defined in (4). Then,

(a). ΠG(P, β, C, c) is supermodular in (P, β, C,−c).

(b). arg maxP∈P(N) ΠG(P, β, C, c) is increasing in (β, C,−c).

Proof As in the proof of Proposition 1, −K(P, C, c) is supermodular in (P, C,−c).

Since B(P, β) is also supermodular in (P, C,−c), ΠG(P, β, C, c) is supermodular in

(P, C,−c). Since B(P, β) has increasing differences in (P, β), so does ΠG(P, β, C, c). Fur-

thermore ΠG(P, β, C, c) has increasing differences in (β, C,−c) and β is a value on a chain.

Thus by Fact 2 in the appendix, ΠG(P, β, C, c) is supermodular in (P, β, C,−c), which

complete the proof of part (a).

Part (b) follows from part (a) by Fact 4 in the Appendix. �
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It is common to both Proposition 1 and 2 that the optimal partition is increasing in

(C,−c). This means the followings: (1) as the cost of across-team coordination increases,

the optimal partition becomes coarser; (2) as the cost of within-team coordination in-

creases, the optimal partition becomes finer. Specific to Proposition 1 is the prediction

about the effect of uncertainty on optimal partition: (3) as the uncertainty regarding

the R&D activities conducted in each design task increases, the optimal partition be-

comes finer. Proposition 2 contains the following prediction: (4) as the investment in skill

formation become more general, the optimal partition becomes coarser.

These results should be intuitive. When the cost of across-team coordination is high,

it is better to decrease the incidence of across-team coordination, namely to have a coarser

partition. If the cost of within-team coordination is low, it is better to have the coordi-

nation conducted within a team, which also means having a coarser partition. The result

on the effect of uncertainty confirms the result obtained by Baldwin and Clark (2000).

Finally, more general skills favor a large team size.

5.2 The Cost of Maintaining Coordination Devices

As has been already argued, across-team coordination is usually accomplished by means of

such coordination devices as a facsimile, telephone and the Internet etc. More generally we

may even suppose within-team coordination can be facilitated by installing some device.

However members within a team will mainly resort to face-to-face communication. Then it

would be rather natural to think that the design organization buy and install coordination

devices to reduce the cost of across-team coordination, with the cost of within-team

coordination fixed exogenously.

We introduce such a cost as the cost of maintaining some level of difference between

across-team and within-team coordination costs. Let the differences in costs between

across-team and within-team coordination be denoted by z = C − c ∈ R
#A
+ . We denote a

generic component of z by zij, where (i, j) ∈ A. The cost of maintaining a coordination

device that realizes cost differences z be denoted by κ(z, α), where α ∈ R
1 is a parameter.

In what follows, we assume the following: (1) κ(z, α) is submodular in (z,−α) and ; (2)

decreasing and concave in zij for each (i, j) ∈ A.

The first assumption of submodularity in (z,−α) means both submodularity in z and

submodularity in (zij ,−α) for each (i, j) ∈ A. The submodularity in z implies that

reduction in the cost difference at (i, j) ∈ A makes it less costly to reduce the cost

difference in (k, l) �= (i, j) in A. Such a complementarity property would be easy to
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imagine, because the communication device across design teams usually have a network

effect. On the other hand, the assumption of submodularity in (zij, α) implies that the

marginal cost incurred in decreasing the cost difference at (i, j) decreases as α increases.

In this sense, α may be regarded as measuring the inexpensiveness of ICT investment. The

second assumption that κ(z, α) is concave in zij for each (i, j) ∈ A means that allowing

larger cost differences in each (i, j) ∈ A saves increasingly more costs of maintaining

communication devices.

The following lemma gives a property of κ(C − c, α), the proof of which utilizes a

result on convex transformation of increasing supermodular functions (Topkis 1998, p.56,

Lemma 2.6.4).

Lemma 3 Suppose that κ(z, α) is submodular in (z,−α), and decreasing and concave

in zij for each (i, j) ∈ A. Then k(C − c, α) is submodular in (C,−c,−α) and decreasing

in (C,−c).

Proof Obviously, for each (i, j), zij = Cij − cij is increasing and supermodular in

(C,−c). Since κ(z, α) is submodular in z and decreasing and concave in zij for each

(i, j) ∈ A, −κ(z, α) is supermodular in z and increasing and convex in zij. Because

−κ(C − c, α) is a composite function of −κ(z, α) and zij = Cij − cij, it is supermodular

and increasing in (C,−c) by Fact 3 in the Appendix. Thus κ(C − c, α) is submodular and

decreasing in (C,−c).

By Fact 2 in the Appendix, increasing differences in variables and supermodularity in

each variable together imply supermodularity in those variables. Thus it suffices to show

that κ(C − c, α) has decreasing differences in (C,−α) and (−c,−α). Since −κ(z, α) is

supermodular in (z,−α), it has increasing differences in (z,−α) by Fact 1 in the Appendix.

Then −κ(C − c, α) has increasing differences in (C,−α) and in (−c,−α). This completes

the proof. �

Some caveats are in order here about the specification of cost function κ(C − c, α).

κ(C − c, α) may depend upon both Cij and cij in the present formulation. Some may

think that, given a partition, only cij or Cij should be included in κ(C−c, α) according to

whether (i, j) belongs to the same design team or not. However, in reality, organizations,

such as firms, do not set up communication devices specifically for each (i, j) each time,

but always have some communication devices available and apply them when coordination

is necessary. For example, the arrangement may be such that face-to-face communication

is utilized within a team and the Internet is used for across-team communication. Then
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i and j will use either face-to-face communication or the Internet, according to whether

j ∈ S(i, P ) or not. Thus choosing the level of (C, c) is choosing a specific kind of commu-

nication devices for within-team and across-team coordination. Even so, different (i, j)’s

in A may incur different coordination costs, because the difficulty of coordination may be

different among (i, j)’s.

5.3 Comparative Statics Results with Endogenous Across-Team

Coordination Costs

Now we consider extended maximization problems with endogenous across-team coordi-

nation costs. According as we adopt the benefit function à la Baldwin and Clark or a

more general benefit function, we have the following objective functions.

ΠBC
E (P, σ, C, c, α) = V (P, σ) − K(P, C, c) − κ(C − c, α) (5)

ΠG
E(P, β, C, c, α) = B(P, β) − K(P, C, c) − κ(C − c, α) (6)

As a choice variable, C has to be chosen from a set {x : x ∈ R
#A, x > c}. Rather than

having this constraint set, we assume that C is chosen from a fixed set D ⊂ R
#A such

that D is a sublattice of R
#A and each member of D is greater than any possible value

of c. When the objective function (5) is adopted, the following proposition obtains.

Proposition 3 Let PC(N) ⊂ P(N) be a chain. Suppose that, when C is a choice

variable, it is chosen from a sublattice D of R
#A
+ such that each C ∈ D is greater than

any possible value of c. Consider the objective function ΠBC
E (P, σ, C, c, α) as defined in

(5). Then,

(a). Π(P, σ, C, c, α) is supermodular in (P, C,−c,−α) and has increasing differences in

(P,−σ).

(b). arg maxP∈PC(N) Π(P, σ, C, c, α) is increasing in (−σ, C,−c,−α).

(c). arg max(C,P ):C∈D,P∈PC(N) Π(P, σ, C, c) is increasing in (−c,−α).

Proof As in the proofs of the previous propositions, −K(P, C, c) is supermodular in

(P, C,−c) and thus in (P, C,−c, α). Since V (P, σ) is supermodular in P on P(N), it is

supermodular in (P, C,−c). By Lemma 3, −κ(C − c, α) is supermodular in (C,−c,−α),

and thus in (P, C,−c,−α). These together imply that ΠBC
E (P, σ, C, c) is supermodular in

(P, C,−c,−α).
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By lemma 2, V (P, σ) has increasing difference in (P,−σ). Thus ΠBC
E (P, σ, C, c) has

increasing difference in (P,−σ). This proves part (a).

Part (b) follows from part (a) and Fact 4 in the Appendix. Part (c) follows from

application of Fact 4 and Fact 5 in the Appendix. �

In the case with a general benefit function, we have the following proposition.

Proposition 4 Suppose that, when C is a choice variable, it is chosen from a sublattice

D of R
#A
+ such that each C ∈ D is greater than any possible value of c. Consider the

objective function ΠG
E(P, β, C, c, α) as defined in (6). Then,

(a). ΠG
E(P, β, C, c, α) is supermodular in (P, β, C,−c,−α).

(b). arg maxP∈P(N) ΠG
E(P, β, C, c, α) is increasing in (β, C,−c,−α).

(c). arg max(C,P ):C∈D,P∈P(N) ΠG
E(P, β, C, c, α) is increasing in (β,−c,−α).

Proof Since B(P, β) is supermodular in P , has increasing difference in (P, β), and β is a

value on a chain, it is supermodular in (P, β). Thus it is supermodular in (P, β, C,−c,−α).

−K(P, C, c) is supermodular in (P, C,−c) and thus in (P, β, C,−c,−α). κ(C − c, α) is

supermodular in (C,−c,−α) and thus in (P, β, C,−c,−α). All these together imply that

ΠG
E(P, β, C, c, α) is supermodular in (P, β, C,−c,−α).

Part (b) follows from part (a) and Fact 4. Part (c) follows from application of Fact 4

and Fact 5 in the Appendix. �

Here we have the following additional results: (1) as the cost of within-team coordina-

tion decreases, the chosen level of across-team coordination costs becomes higher and the

partition becomes coarser; (2) as the ICT investment becomes inexpensive, the chosen

level of across-team coordination costs becomes lower and the partition becomes finer; (3)

as the skill formation becomes more general, the chosen level of across-team coordination

costs becomes higher and the partition becomes coarser.

5.4 Relation to Modularization

Baldwin and Clark (2000) defines “modularization in design” as a process of design ratio-

nalization. Suppose there are interdependencies among several design parameters, which

might involve a cycling and require complex coordination. Such intricate interdependen-

cies, however, can be eliminated by setting a “design rule” that each relevant designer

must obey. Carrying through this process results in a “modular structure” of the DSM as
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shown in Figure 5.4. Design rules are inserted at the top row and the leftmost column of

the original DSM. We now have modular blocks of design parameters. Within each block

there are interdependencies as before, while there are no interdependencies across blocks.

Design Rules

Design
Rules

Module A

Module B

Module C

Module CModule BModule A

×

×
×

××

×

×

×
×

×
×
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Figure 2: An example of modular structure (adapted from Figure 3.4 of Baldwin and Clark
(2000)).

One of the major contributions of Baldwin and Clark (2000) is that they identified

the value-enhancing aspects of a modular design in the following points:

• Modularity creates options;

• Modular designs evolve as the options are pursued and exercised.

Section 4.1 of the present paper analyzed the first point. However, we submit that the

modularization also works to reduce the coordination costs among designers.

The process of modularization can be very costly as experienced in the course of

modular design of IBM System/360, because finding all the potential interdependencies is

often difficult and takes time. However, the cost of modularizing a design will be sunk once

it has been done. At a first sight, it might appear that new costs are now to result from

the dependence of design parameters upon design rules. However they can be regarded

as negligible, because design rules are always visible to relevant designers and fixed for

a relatively long period of time. After all, design rules determine the architecture and

the interfaces among several design parameters. Therefore we can safely abstract from

the cost arising from dependencies of design parameters upon design rules, and will do so

henceforth. Then, by modularization, interdependencies among design tasks are reduced

so that the coordination costs among them may also be substantially saved in the process

of designing new products consecutively.
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Our analysis of optimal partition should be relevant to the idea of “modularization”

described above. Indeed, it can be shown that the optimal partition cannot be strictly

coarser than the partition naturally induced by modularization. This implies that modu-

larization works to set an upper bound for the optimal partition. Let us now turn to the

formalization of this idea.

Generally a unique partition of N is associated to each grand design A in the following

natural manner. Let P̂ be a partition of N such that

(i, j) ∈ A implies j ∈ S(i, P̂ )

Namely any two dependent design parameters are contained in the same element of P̂ . It

is easy to see that such a partition necessarily exists, because the largest partition {N}
satisfies the condition. Let the set of all partitions of N that satisfy the above condition

be denoted by PA(N), which is a subset of P(N) and thus finite. Now pick any P ′ and P ′′

from PA(N) and consider P ′∧P ′′. Pick any (i, j) ∈ A. Since P ′, P ′′ ∈ PA(N), j ∈ S(i, P ′)

and j ∈ S(i, P ′′). Thus j ∈ S(i, P ′)∩S(i, P ′′) = S(i, P ′∧P ′′). So P ′∧P ′′ ∈ PA(N). Since

PA(N) is finite, there exists the smallest (thus unique) element P A in PA(N), which we

call partition induced by A. It is obvious that K(P, C, c) = K(P A, C, c) for each P with

P A � P .

Proposition 5 Let P A be the partition induced by a grand design A. Let

ΠBC
E (P, σ, C, c, α) be as defined in (5) and suppose P ∗ ∈ arg maxP∈P(N) ΠBC

E (P, σ, C, c, α).

Then ¬P A ≺ P ∗.

Proof Suppose P A ≺ P ∗. Then

K(P A, C, c) = K(P ∗, C, c)

However, since V (P, σ) is strictly increasing in P , V (P A, σ) > V (P ∗, σ). Thus we have

Π(P A, σ, C, c, α) > Π(P ∗, σ, C, c, α), which is a contradiction. �

A modular design induces a partition of N that is strictly finer than {N}. Proposition

5 states that the optimal partition is not strictly coarser than the partition induced by a

modular design. Note that the choice set is not restricted to a chain in the hypotheses of

the above proposition. By restricting the choice set to a chain PC(N), the next corollary

holds.

Corollary 1 Let P A be the partition induced by A and let PC(N) be a chain containing

P A. Suppose that C is chosen from a sublattice D of R
#A
+ such that each C ∈ D is greater

than any possible value of c.
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(a). Then for each P ∗ ∈ arg maxP∈PC(N) ΠBC
E (P, σ, C, c, α), P ∗ � P A.

(b). arg maxC∈D ΠBC
E (P ∗, σ, C, c, α) � arg maxC∈D ΠBC

E (P A, σ, C, c, α).

Proof Part (a) follows from Proposition 5 and the assumption that PC(N) is a chain.

Part (b) follows from Proposition 1 (a). �

Thus a modular design makes the size of each team smaller. Since that in turn increases

the incidence of across-team coordination, a modular design induces more ICT investment

in order to reduce the cost of across-team coordination.

6 Discussion and Conclusion

This paper analyzes the problem of optimally partitioning a product design or a design

organization, and derives several comparative statics results. The most natural and rig-

orous interpretation of our model is that there is a single agent who faces and solve

optimization problems. In this interpretation, the results obtained are concerned with

the characteristics observed in an integrated firm such as IBM faces. We believe that

there can be another interpretation of the model. Our comparative statics results may

be considered as approximating the outcome arising from the joint arrangement among

multiple firms. Although there are plenty of factors that lead to coordination failure, it

is expected that the most efficient outcome will emerge through contractual and other

organizational arrangements.

When the coordination costs are assumed to be exogenous, our analysis shows the

followings: the optimal partition will be coarser, (1) if the cost of across-team coordination

is higher, (2) the cost of within-team coordination is lower, (3) the uncertainty concerning

R&D activities is lower, and (4) the degree of generality of skill is higher. The first result

is a confirmation of the result obtained in Schaefer (1999), and the third result coincide

with the insight by Baldwin and Clark (2000). Note however that our modeling approach

is different from theirs.

In a setting where across-team coordination costs are endogenous, the following results

are obtained: a higher level of across-team coordination costs (lower level of ICT invest-

ment) and coarser partitions are induced by (1) lower cost of within-team coordination,

(2) higher cost of ICT investment, and (3) higher degree of generality of skill formation.

In our objective functions, higher across-team coordination costs and coarser partition are

complementary, and thus a change in some factor moves them in the same direction. For

19



example, if the cost of within-team coordination is low enough, then a firm will tend to

rely more on within-team coordination than across-team coordination. Then the firm will

not want to have a finer partition. Accordingly the firm will not invest much for reducing

the cost of across-team coordination.

These results seem to be consistent with some evidences, both casual and empirical. It

is well known that Japanese firms forged an efficiently working within-firm network based

upon their workers’ cultural homogeneity by the 1970s, which often used to be regarded

as one of the sources of their strength in the 1980s. However, it has also been argued

that the very same factor worked to prevent Japanese firms from making full use of the

emerging ICT such as the Internet in the 1990s (Ikeda 1997). One possible interpretation

of lower costs of within-team coordination in our model may be cultural homogeneity

among members of the team. Thus our result may explain the Japanese firms’ retarded

introduction of ICT in the 1970s and 1980s. Furthermore, Japanese workers are known

to invest more in general communication skills than in specialized skills, which can be

interpreted as a higher degree of generality in skill formation in our model. Thus Japanese

workers’ tendency to investment in general skills might have been another cause of less

ICT investment of Japanese firms.

The same result is also instrumental to understanding the interesting comparison

of industrial regions between Silicon Valley and Route 128 by Saxenian (1994). She

observes that the Silicon Valley firms are marked by high mobility of workers, frequent

communications and substantial degrees of information sharing among different firms,

quite in contrast to the Route 128 firms. Thus it would be natural to think that the cost

of across-firm coordination is substantially lower in Silicon Valley than in Route 128. The

above result may explain why there are a lot of small independent firms in Silicon Valley,

while large integrated firms are dominant in Route 128.

Our model exhibits the property that the chosen level of across-team coordination

cost becomes lower and the corresponding partition becomes finer, as inexpensive ICT

becomes available. If we interpret this results in terms of a joint arrangement of many

firms and regard each team as an independent firm, it seems to suggest that the size of

firms decreases, as new ICT is developed and deployed by those firms. Such prediction

is in accordance with the empirical findings by Brynjolfsson, Maline, Gurbaxani, and

Kambil (1994) that ICT investment has lead to smaller firm size in the US.2

2Strictly speaking, interpreting each team in our model as an independent firm implies that the
boundary of a firm is determined by the ease of coordination. Brynjolfsson, Maline, Gurbaxani, and
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Furthermore, an interesting property of our model is that less expensive ICT, higher

cost of across-team coordination, lower cost of within-team coordination and finer parti-

tions are all complementary in the objective function. As Milgrom and Roberts (1995)

demonstrated for the emerging paradigm of modern manufacturing firms, this means ne-

cessity for a systematic response. Namely, higher cost of within-team coordination and/or

lower cost of the ICT investment lead to a systematic response: more investment in ICT;

and finer partitions of organization. Introducing the one without the other will not be

profitable, and the one will induce the other. Actually the above two factors seem to go

together in the new paradigm of ICT.

The enormous impact of the recent development of ICT on economy has highlighted the

importance of such concepts as architecture, an interface, compatibility, standardization,

information encapsulation, modularization and so forth. All of these concepts concern the

process of designing a complex system. Today there seems to be a widespread belief that

they are indispensable for understanding the way that we conduct economic transactions.

The literature on this subject has begun to proliferate. The present paper can be regarded

as one of such contributions.

With respect to the concept of modularization, our model indicates that modulariza-

tion makes finer partitions more favorable in the sense that it sets an upper bound for the

optimal partitions, and thus induces higher ICT investment to reduce the cost of across-

team coordination. In this loose sense, modularization, ICT investment and smaller size

of firms are all complementary.

The analysis in this paper sheds some light on the relationship between modulariza-

tion, ICT investment and smaller size of firms by considering the coordination costs in a

designing organization. However, our analysis is a static one. Probably more interesting

and important theme is to explore the dynamics of how a complex system evolves. That

will be a subject of another paper however.

Kambil (1994) explains this assertion by broadly interpreting coordination costs as “transaction cost” in
general. However this is the converse of the assertion that coordination becomes easier within a firm, for
which, to the best of our knowledge, there is no established theory. Our point is that the result is still
suggestive of the current tendency for the size of firms to decrease.
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Appendix

This appendix presents basic properties of supermodular functions and their maxi-

mization problems used in the paper for those who are not familiar with these analytical

tools. For more detailed exposition and the proofs, see Topkis (1998).

A binary relation � on a set X specifies for all x′ and x′′ in X either x′ � x′′ is true

or false. We usually write x′ ≺ x′′ if x′ � x′′ and x′ �= x′′. A binary relation � is reflexive

if x � x for each x ∈ X, antisymmetric if x′ � x′′ and x′′ � x′ imply x′ = x′′, and

transitive if x′ � x′′ and x′′ � x′′′ imply x′ � x′′′. A binary relation is called a partial

ordering if it is reflexive, antisymmetric and transitive. A partially ordered set is a

set X on which there is a partial ordering �. A partially ordered set is a chain if it does

not contain an unordered pair of elements.

Let X be a partially ordered set and X ′ be its subset. If x′ ∈ X and x � x′ (x′ � x)

for each x ∈ X ′, then x′ is an upper (lower) bound for X ′. If x′ in X ′ is an upper

(lower) bound for X ′, then x′ is the greatest (least) element of X ′. If two elements, x′

and x′′, of a partially ordered set X have a least upper bound (greatest lower bound) in

X, it is their join (meet) and is denoted x′ ∨ x′′ (x′ ∧ x′′). A partially ordered set that

contains the join (least upper bound) and the meat (greatest lower bound) of each pair

of its elements is called a lattice. If X ′ is a subset of a lattice X and X ′ contains the join

and meet with respect to X of each pair of elements of X ′, then X ′ is a sublattice of X.

Let X and T be partially ordered sets and f(x, t) be a real-valued function on X ×T .

f(x, t) has increasing differences, strictly increasing differences if f(x, t′′)−f(x, t′)

is increasing, strictly increasing in x for all t′ ≺ t′′. Suppose Xα is a partially ordered

set for each α ∈ A and f(x) is a real-valued function on ×α∈AXα. f(x) has increasing

differences, strictly increasing differences on ×α∈AXα if for all distinct α′ and α′′

in A, f(x) has increasing differences, strictly increasing differences in (xα′ , xα′′). Now

suppose X is a lattice and f(x) is a real-valued function on X. f(x) is supermodular if

f(x′) + f(x′′) ≤ f(x′ ∨ x′′) + f(x′ ∧ x′′)

for all x′ and x′′ in X. f(x) is submodular if −f(x) is supermodular. If f(x) and g(x)

are supermodular on X, then f(x) + g(x) is supermodular on X.

Fact 1 shows that supermodularity implies increasing differences, while the converse

hold under certain conditions.
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Fact 1 If Xα is a lattice for each α ∈ A, X is a sublattice of ×α∈AXα, and f(x) is

supermodular on X, then f(x) has increasing differences on X.

Fact 2 If Xi is a lattice for i = 1, · · · , n, f(x) has (strictly) increasing differences on

×n
i=1Xi and f(x) is (strictly) supermodular in xi on Xi for i = 1, · · · , n, then f(x) is

(strictly) supermodular on ×n
i=1Xi.

Fact 3 shows that increasing and convex transformation of increasing supermodular

functions results in a supermodular function.

Fact 3 If X is a lattice, fi(x) is increasing and supermodular on X for i = 1, · · · , k,

Zi is a convex subset of R
1 containing the range of fi(x) on X for i = 1, · · · , k, Zi, and

g(z1, · · · , zk, x) is supermodular in (z1, · · · , zk, x) on (×k
i=1Zi) × X and is increasing and

convex in zi on Zi, then g(f1(x), · · · , fk(x), x) is supermodular on X.

In order to conduct comparative statics, we have to compare the set of maximizers.

Suppose X is a lattice with ordering relation �. The induced set ordering � is defined

on the collection of nonempty members of the power set of X such that X ′ � X ′′ if x′ ∈ X ′

and x′′ ∈ X ′′ imply that x′ ∧ x′′ ∈ X ′ and x′ ∨ x′′ ∈ X ′′. Let L(X) be the collection of all

nonempty sublattices of a lattice X. It is easy to see that if X is a lattice, then L(X) is

a partially ordered set with the ordering relation �. A function whose range is included

in the collection of all subsets of some set is a correspondence. A correspondence St is

increasing in t on T if the domain T is a partially ordered set, the range {St : t ∈ T}
is in L(X), and t′ ≺ t′′ implies St′ � St′′ in L(X). The next fact is the main tool for

conducting comparative statics for the maximization problem on a lattice.

Fact 4 If X and T are lattices, S is a sublattice of X × T , St is a section of S at t in

T , and f(x, t) is supermodular in (x, t) on S, then arg maxx∈St f(x, t) is increasing in t

on {t : t ∈ T, arg maxx∈St f(x, t) is not empty}

The next fact implies that if one optimizes a system of complementary variables with

respect to any subset of the variables then the remaining variables would still be comple-

mentary.

Fact 5 If X and T are lattices, S is a sublattice of X × T , St is a section of S at t in

T , and f(x, t) is supermodular in (x, t) on S, and g(t) = supx∈St
f(x, t) is finite on the

projection ΠT S of S on T , then g(t) is supermodular on ΠT S.
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