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Abstract 
 

Carlsson and van Damme (1991, 93) presented a notion of a global game, which is an incomplete 
information game where the actual payoff structure is affected by a realization of a common shock 
and where each player gets noisy private information of the shock.  For n -person symmetric games 
with two possible actions characterized by strategic complementarity, they showed that equilibrium 
play in a global game with vanishing noise is uniquely determined.  The concept of global games is 
important not only as a theory of the most refined notion of equilibrium but also as a theory of 
coordination failures under private information.  From this viewpoint, this paper makes the theory 
of global games more general and more applicable to such problems.  The implications of the 
theory of global games are investigated in two specific models: a speculative attack model and a 
network externality model.  It is shown that both the monetary authority in the speculative attack 
model and the central planner in the network externality model will prefer the equilibrium in a 
global game with small noise to the worst equilibrium in the corresponding complete information 
game.  Therefore, they will welcome the existence of small noise, if they apply mini-max 
principleto multiple equilibrium problems.   
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1. Introduction 

In many coordination failure problems, it seems more plausible to assume that players do not 

exactly know other players' types.  Investors in a foreign exchange market may have some private 

information on balance-of-payments or on monetary authorities' intention to defend a fixed 

exchange rate (Krugman 1979).  Potential users of the new technology characterized by network 

externalities may face some uncertainty in other users' preference (Farrell and Saloner 1985) or in 

productivity of the new technology.   

In their seminal theoretical paper Carlsson and van Damme (1991, 93) presented a notion of a 

global game, which is an incomplete information game where the actual payoff structure is affected 

by a realization of a common shock and where each player gets noisy private information of the 

shock.  For n-person symmetric games with two possible actions characterized by strategic 

complementarity, they showed that equilibrium play in a global game with vanishing noise is 

uniquely determined.   

The concept of global games is important not only as a theory of the most refined notion of 

equilibrium but also as a theory of coordination failures under private information.  From this 

viewpoint, in Section 2 of this paper I make the theory of global games more general and more 

applicable to such problems.  First, Carlsson and van Damme (1991) assumed that the prior on the 

common shock is uniform and the payoff function is linear about the shock.1  I relax these 

assumptions.  Secondly, in order to get a unique equilibrium we do not need to assume that the 

radius of the support of the noise converges to zero.  Convergence of the variance of the noise to 

zero is sufficient.  Thirdly, the global game theory singles out an equilibrium not only when 

players observe shocks with infinitesimal noise but also when they observe the sum of a common 

shock and an infinitesimal idiosyncratic shock and each player's payoff depends on this sum.   

In the subsequent two sections, I apply the theory of global games to coordination failure 

problems.  In Section 3, I study a speculative attack model under incomplete information.  It is 

                         

1Carlsson and van Damme (1990) study a more general case for two player game.   
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shown that a monetary authority, who applies mini-max principle to multiple equilibrium problems, 

will prefer to keep investors' information on monetary authorities' intention to defend a fixed 

exchange rate incomplete.  In Section 4, by using a network externality model, I study welfare 

implications of small noise.  In the network externality model, I assume that the payoff function is 

linear about both the realization of a common shock and the number of other players who choose a 

new technology.  I also assume that the common shock and noises are independent normal random 

variables.  Under these assumptions, we can derive stronger results than in preceding sections: the 

Bayesian Nash equilibrium is uniquely determined for a certain set of pairs of standard deviation of 

common shock and that of noises. 

 

2. n-person Symmetric Global Games 

Suppose there are n players, i = 1,..., n.  The set of all the players is denoted by N.  Players' 

payoffs are affected by a common shock s.  Before the players simultaneously decide their actions, 

each player i observes the shock with noise: 
 

(1) θi = s + εi. 
 

The shock s is drawn from a distribution on [s, s ] with a strictly positive and continuously 

differentiable density h.  The noises ε1, ε2,..., εn are independent of s and have a joint distribution 

Φ with a continuous and bounded density ϕ.  ϕ is symmetric about any εi  and εj :  ϕ (ε1,.., εi,.., 

εj,.., εn) = ϕ (ε1,.., εj,.., εi,.., εn) for any i, j ∈ Ν  and any {ε1, ε2,..., εn}.  The support of Φ is 

contained in a ball around zero with radius γ.  The support of each player's private information is 

denoted by [θ, θ ]. 

Each player i has two possible actions, α and β.  Every player's payoff has an identical 

functional form and is affected by other player's action in the same way.  Each player's marginal 

gain by choosing α instead of β is expressed as 
 

            v   
 m

n − 1 , s  
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where m denotes a number of the other players who choose α.  s is a realization of the common 

shock.  v (m / (n − 1), s ) is differentiable and strictly increasing in s.  The game is characterized 

by strategic complementarity:  v (m / (n −1), s) is strictly increasing in m / (n − 1).  We also 

assume that v (m / (n − 1), s ) satisfies v (0,  s ) > − ∞, v (1, s ) < +∞, 
 

(2)      v (0, s  ) > 0, 

and 

(3)      v (1,  s ) < 0. 
 

Inequalities (2) and (3) imply that for high enough shocks, action β is strictly dominated by α, and 

for low enough shocks, action α is strictly dominated by β. 

We first study Nash Equilibria of the complete information games that correspond to our 

incomplete information games.  Suppose there is no noise in observation of the shock s and s is 

common knowledge.  Let sαβ denote the unique solution of 
 

(4)     v (1, sαβ) = 0, 
 

and let s αβ denote the unique solution of  
 

(5)     v (0, s αβ) = 0. 
 

Then we have inequalities: s < sαβ < s αβ < s .  If s ≤ s < sαβ, there is a unique Nash equilibrium 

B = (β1,..., βn), in which all the players choose β.  If s αβ < s ≤ s , then A = (α1,..., αn), in which 

all the players choose α, is the unique Nash equilibrium.  If sαβ < s < s αβ, there are two Nash 

equilibria in pure strategy, A and B, and one Nash equilibrium in mixed strategy, in which each 

player assigns identical probability q to action α. q is determined by 

(6)      ∑
  n − 1

 m = 0
 v  

 m
n − 1 ,  s  


 
n −1

m  
  q m (1 − q ) n − 1 − m = 0.

 

Figure 1 summarizes the Nash equilibrium correspondence of the complete information games.  

When sαβ < s < s αβ, both A and B are strict equilibria, i.e. equilibria in pure strategies in which 

each player actually looses if he deviates unilaterally.  Therefore both equilibria satisfy the 
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conditions imposed by almost all the refined equilibrium notion such as perfectness (Selten 1975) 

and strategic stability (Kohlberg and Mertens 1986).2 

Next we study Bayesian Nash equilibria of the incomplete information games.  Let qi (θi) 

denote player i's probability of taking action α when he observes θi.  Player i's behavioral strategy 

is a function qi (·) from [θ, θ ] to [0, 1].  When all the players except i follow strategies {q1(·),..., 

qi − 1(·), qi + 1(·),..., qn(·)}, player i with private information θi expects the following marginal gain 

by choosing α instead of β: 

(7)     Vi (θi ) ≡ 

 ∑
n −1

m = 0

 ∫
 +∞

 −∞
…∫

 +∞

 −∞
 v  

 m
n − 1 ,  s  



 


 ∑

λm
− i ∈Λm

− i

 

 


 ∏

j ∈ λm
− i

qj (s + εj ) ∏
 k  ∉ λm

− i and k  ∈ N− i

{1 − qk  (s + εk  )}

 



 




  
h (s ) ϕ(ε1,. . . ,  εi −1,  θi − s,  εi +1,…, εn )

∫
 +∞

 −∞
…∫

 +∞

 −∞
h (s ) ϕ(ε1,. . . ,  εi −1, θ i − s,  εi +1,…,  εn ) dε1

…dεi −1dεi +1
…dεnds

     dε1
…dεi −1dεi +1

…dεnds  

where N−i  is the set of all the players except i, {1, 2,..., i − 1, i + 1,..., n }.  λm−i denotes a 

selection of m players from N−i and Λm−i, the set of all such selections.  Since θj = s + εj, the 

fraction in equation (7) is the conditional joint density of the shock s and the types of player i' s 

opponents, θ1,..., θi − 1, θi + 1,..., θn, given player i' s type θi.  A Bayesian equilibrium is a set of 

strategies {q1(·),..., qn(·)} such that, for each player i and every possible value of θi, behavioral 

strategy qi (θi ) maximizes player i' s expected payoff, that is, qi (θi ) = 1 if Vi (θi ) > 0, qi (θi ) = 0 

if Vi (θi ) < 0, and qi (θi ) ∈ [0, 1] if Vi (θi ) = 0.  On the existence of a Bayesian Nash equilibrium 

in behavioral strategies, we claim the following: 

                         

2The strict equilibrium is the most refined equilibrium notion that is discussed in van Damme 

(1991a).  van Damme (1991b) surveys non-cooperative game theories that select a unique 
equilibrium from two strict equilibria in 2 ｴ 2 games.   
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Proposition 1.  In our incomplete information games, there exists a Bayesian Nash equilibrium 

point in behavioral strategies. 
 

Proof.  Theorem 1 in Milgrom and Weber (1985) shows that if a game satisfies the two 

regularity conditions, Equicontinuous payoffs (R1) and Absolutely continuous information (R2), 

then there exists a Bayesian Nash equilibrium point.  Finiteness of the number of actions for each 

player is sufficient to imply R1.  Under Assumption 1, the joint distribution of (s, θ1, θ2,...,θn ) as 

well as the marginal distribution of each θi and s has a density.  This implies R2.  

 

Our main results concerning the characteristics of the Bayesian Nash equilibria are 

summarized as follows: 
 

Theorem 1. Let sG denote the unique solution of the equation: 

(8)    G (s G) ≡ ∑
  n − 1

 m = 0
 
1
n v  

 m
n − 1 ,  s G

 
  = 0.

 

sG satisfies sαβ < sG < s αβ.  For every  δ ∈ (0, min [sG − sαβ, s αβ − sG]) there exists 

positive  γ, such that whenever the support of Φ is contained in a ball around zero with radius  γ, 

the equilibrium behavioral strategy qi (θi ) for every i ∈ N satisfies qi (θi ) = 0 for all  θi ∈ [θ, sG 

− δ), and qi (θi ) = 1 for all  θi ∈ (sG + δ, θ ].  
 

For the proof we will use the following lemmas. 
 

Lemma 1.  Under Assumption 1, the unconditional probability of the event "player i's type θi is 

lower than other m players' types and higher than n−1− m players' types" is equal to 1/n for every m 

∈ {0, 1, .., n −1}: 

(9)    
n −1

m  
∫

 +∞

 −∞ ∫
 +∞

 εi

…∫
 +∞

 εi
∫

 εi

 −∞
…∫

 εi

 −∞
ϕ(ε1,. . . ,  εn ) dε1

…dεi −1dεi +1
…dεndεi  =

1
n  .

 
                   
          m integrals   n −1−m integrals 
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Proof.  Let π be a permutation of {1, 2,..., n }.   Π denotes the set of all the n! permutations.  

Let Zπ be the event that the permutation of the players sorted in increasing order of their noise εj 

coincides with π.  For example, if π = {n, n −1,...,1}, then Zπ = {εn < εn −1 <····< ε1}.  Since Zπ 

and Zπ'  are mutually exclusive whenever π  ｭ π', and the density function ϕ (ε1, ε2,..., εn) is 

bounded and symmetrical about any εi  and εj, the probability of Zπ is equal to 1/ n ! for all π ∈ Π.  

For every m ∈ {0, 1,.., n −1}, there are (n − 1)! permutations in which the n − m th number is equal 

to i.  Therefore the probability of the event that εi is n − m th smaller in {ε1, ε2,..., εn} is equal to 

(n − 1)!/n!= 1/n.  The left-hand side of equation (9) denotes the probability of this event.  
 

Lemma 2.  Let hγ+(s ) and hγ−(s ) denote the maximum and minimum value of h (·) on [s − γ, s + γ].  

There exists a constant k such that for any γ ∈ (0, ( s  − s )/ 2] and s ∈ [s + γ, s  − γ], 

(10)     
h  +

γ (s )

h −
γ (s )

 ≤ 1 + k  γ ,   
 

and  

(10' )     
h  −

γ (s )

h +
γ (s )

 ≥ 1 − k  γ .   
 

Proof.   Since h (s ) is strictly positive and continuously differentiable, there exist maxs ∈ [s, 

s ] | h' (s )| and positive mins ∈ [s, s ] | h (s )|.  Let k = (2 maxs ∈ [s, s ] | h' (s )| ) / (mins ∈ [s, s ] 

| h (s )| ), and we get the two inequalities.  
 

We turn to the proof of Theorem 1. 
 

Proof of Theorem 1. Our assumptions on the marginal payoff function v (m/(n−1), s) imply 
that equation (8) always has a unique solution which satisfies sαβ<sG< s αβ. 

If we choose γ  as γ < (sαβ − s)/ 2, then type θi ≤ (sαβ + s )/ 2 is sure that s is smaller than 

sαβ and prefers β to α.  It implies that there is no equilibrium with qi (θi) > 0 for any i ∈N and any 

θi ∈ [θ, (sαβ + s )/ 2].  By a similar proof, we can show that if γ < ( s  − s αβ)/ 2, there is no 

equilibrium with qi (θi ) < 1 for any i ∈N, and any θi ∈ [( s αβ + s )/ 2, θ ].   

Now we study the equilibrium behavior for θi ∈ ((sαβ + s)/ 2, sG − δ) and θi ∈ (sG + δ, 
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( s αβ + s )/ 2).  First we look for simple equilibria of the form  
 

(11)     qi (θi ) = 


 0  if �i < x

 1  if �i > x.  

 

In such equilibria, type θi expects the following marginal gain by choosing αi instead of βi.   

(12)    Fi (θi,  x ) ≡

     ∑
n −1

m = 0

  
n −1

m  
∫

 +∞

 −∞ ∫
 +∞

 x − s
…∫

 +∞

 x − s
 ∫

 x − s

 −∞
…∫

 x − s

 −∞
v  

 m
n − 1 ,  s  



  
                        
            m integrals      n −1−m integrals 
 

    
h (s ) ϕ(ε1,. . . ,  εi −1,  θ i − s,  εi +1,…, εn )

∫
 +∞

 −∞
…∫

 +∞

 −∞
h (s ) ϕ(ε1,. . . ,  εi −1, θ i − s,  εi +1,…,  εn ) dε1

…dεi −1dεi +1
…dεnds

     dε1
…dεi −1dεi +1

…dεnds .    

By Lebesgue's Theorem of Bounded Convergence (see Weir 1973), the continuity of ϕ (·) implies 

that Fi(θi, x) is continuous in θi.  Therefore, the equilibrium x must satisfy Fi(x, x) = 0.  By a 

simple translation, we get 
 

 (13)  Fi (x,  x ) ≤ ∑
n −1

m = 0

  
n −1

m  
  max

 




h  +
γ (x )

h −
γ (x )

v  
 m

n − 1 ,  x + γ  
 ,  

h  −
γ (x )

h +
γ (x )

v  
 m

n − 1 ,  x + γ  


 




           ∫
 +∞

 −∞ ∫
 +∞

 εi

…∫
 +∞

 εi
∫

 εi

 −∞
…∫

 εi

 −∞
ϕ(ε1,. . . ,εn ) dε1

…dεi −1dεi +1
…dεndεi .  

 
              
      m integrals   n −1−m integrals 
 

Lemma 1, 2 and the fact that v (·, s) is strictly increasing in s, imply that for small enough γ, the 

right-hand side of the equation is smaller than G (sG) = 0 on x ∈ ((sαβ + s )/ 2, sG − δ).  Therefore 

this class of equilibria with x ∈ ((sαβ + s )/ 2, sG − δ) does not exist.  A similar proof applies for x 

∈ (sG + δ, ( s αβ + s )/ 2).  

Next we study more general equilibria.  Suppose that for any γ > 0 there exists a pair of a 
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distribution Φ and a Bayesian Nash equilibrium profile {q1(·),..., qn(·)};  the support of Φ is 

contained in a ball around zero with radius γ and the equilibrium profile satisfies qi(θi ) > 0 for some 

i∈ N  and some θi ∈ ((sαβ + s)/ 2, sG − δ).  In the equilibrium, Vi(θi), type θi's expected marginal 

gain by choosing α instead of β, is expressed by equation (7).  Let Θi* be the set {θi| Vi(θi ) ≥ 0 

and (sαβ + s)/ 2 < θi < sG − δ } and let Θ*= ∪ i ∈ N Θi*.  Since qi(θi) is an optimal strategy, Vi 

(θi ) ≥ 0 if qi (θi ) > 0.  Therefore if qi (θi) > 0 for some i ∈ N and some θi ∈ ((sαβ + s)/ 2, sG − δ), 

then Θ* is non-empty.  For γ < (sαβ − s)/ 2, Θ* have a lower bound that is greater than (sαβ + s)/ 2.  

Lebesgue's Theorem of Bounded Convergence implies that Vi (θi ) is continuous in θi.  These two 

facts imply that inf(Θ*)∈ Θ* for small γ.  Without loss of generality, suppose Vi (inf(Θ*)) = 0.  

Since all the players whose type θj is smaller than inf(Θ*) will play β, Vi (inf(Θ*)) is equal to or 

smaller than Fi (inf(Θ*), inf(Θ*)), which is smaller than zero for small enough γ.  A contradiction.  

A similar proof with a contradiction applies for x ∈ (sG + δ, ( s αβ+ s )/ 2).  

The intuition for the nonexistence of the simple equilibrium that is defined by equation (11) 

with x ∈ [θ, sG − δ) or x ∈ (sG + δ,θ ] is very simple.  Suppose there exists such an equilibrium 

with x ∈ [sαβ, sG − δ), and player i gets private information θi that is infinitesimally higher than x.  

Since player i' s private information is not so favorable for action α, he would choose α only when 

he expects many other players choose α.  Infinitesimal noises make such coordination impossible.  

If the support of the noises is small compared with the support of the common shock and the density 

of the common shock is smooth, the private information θi will convey almost no information on εi.  

Player i' s posterior joint distribution of his noise and the other players' noises is very close to the 

prior joint distribution.  Therefore, he expects that one half of the other players observe θj to be 

lower than x and he can not rely on other players' coordination in choosing α.  The critical point sG 

depends on each player's expectation of the relative position of his noise with the other players' 

noises.  Since the unconditional probability of the event "player i's type θi is lower than other m  

players' types and higher than n − 1− m players' types" is equal to 1/n for every m ∈ {0, 1, .., n −1}, 
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sG is determined by equation (8).3 

Next we generalize our results.  First we show 
  

Corollary.  Assume that the support of Φ is contained in a ball around zero with radius γ, which is 

smaller than min{ (sαβ − s )/ 2, ( s  − s αβ)/ 2 }.  Then for every  δ ∈ (0, min [sG − sαβ, s αβ 

− sG]) there exists positive σ ε2 such that whenever σε2 (the unconditional variance of εi) is 

positive and smaller than σ ε2, each players' behavioral strategy  qi (θi ) satisfies qi (θi ) = 0 for 

any  θi ∈ [θ, sG − δ), and qi (θi ) = 1 for any  θi ∈ (sG + δ, θ ]. 
 

Proof.  For θi ∈ [θ, (sαβ + s)/ 2] and θi ∈ [( s αβ + s )/ 2,θ ], the same proof as in Theorem 

1 applies.  For θi ∈ ((sαβ + s)/ 2, sG − δ) and θi ∈ (sG + δ, ( s αβ + s )/ 2), we first look for simple 

equilibria of the form  
 

          qi (θi ) = 


 0  if �i < x

 1  if �i > x.  

 

Chebyshev's inequality implies Prob [|  εi |  ≥ σε0.5] ≤ σε.  By this inequality, we get 

                         

3If the number of players is two or the function v (m / (n  1), s) can be expressed as the sum of a 

linear function of m / (n  1) and a function of s, the unique equilibrium behavior in a global game 

with vanishing noise will be identical with the unique equilibrium behavior that is selected out of 

multiple equilibria of the corresponding complete information game by risk-dominance criterion of 

Harsanyi and Selten (1988).  But, in general, the two equilibria differ. (See Carlsson and van 

Damme 1991.)   
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(14)  Fi (x,  x ) ≤

         ∑
n −1

m = 0

  
n −1

m  


 






max

 






 

h +
 σ 0.5

ε
 (x )

( 1 − σε ) h
 −
 σ 0.5 

ε
(x ) + σεh

−
 γ (x )

v  
 m

n − 1 ,  x + σ 0.5
ε   

 ,

           
h  −

 σ 0.5
ε

 (x )

( 1 − σε ) h
 +
 σ 0.5 

ε
(x ) + σεh

 +
 γ  (x )

v  
 m

n − 1 ,  x + σ 0.5
ε   



 




         ∫
 

 ει <  σ 0.5
ε
∫

 +∞

 εi

…∫
 +∞

 εi
∫

 εi

 −∞
…∫

 εi

 −∞
ϕ(ε1,. . . ,εn ) dε1

…dεi −1dεi +1
…dεndεi  

 
                       
               m integrals    n −1−m integrals 

        +  max 
 




h +
  γ (x )

( 1 − σε ) h
 −
 σ 0.5 

ε
(x ) + σεh

−
 γ (x )

v  
 m

n − 1 ,  x + γ  
 ,  

              
h  −

  γ  (x )

( 1 − σε ) h
 +
 σ 0.5 

ε
(x ) + σεh

 +
 γ  (x )

v  
 m

n − 1 ,  x + γ  

 




          ∫
 

 ει ≥ σ 0.5
ε
∫

 +∞

 εi

…∫
 +∞

 εi
∫

 εi

 −∞
…∫

 εi

 −∞
ϕ(ε1,. . . ,εn ) dε1

…dεi −1dεi +1
…dεndεi 

 





 

 

Lemma 1 and 2 imply that for small enough σε2, the right-hand side of the equation is smaller than 

G (sG) = 0 on x ∈ ((sαβ + s)/ 2, sG − δ).  Therefore this class of equilibria with x ∈ ((sαβ + s)/ 2, 

sG − δ) does not exist.  A similar proof applies for x ∈ (sG + δ, ( s αβ + s )/ 2).  For more general 

class of equilibria, the same proof as in Theorem 1 applies.  

 

Now, we study the games in which each player's payoff is affected by the sum of a common 

shock and an infinitesimal idiosyncratic shock.  Suppose εi is not a noise but an idiosyncratic 

shock and player i' s payoff is affected by θi = s + εi  instead of s.   

            v   
 m

n − 1 , θi  
 .

 



11 

We keep all the other assumptions from our original model.  In this new model, equations, (7), (12), 

and inequality (13) will hold if we replace both the term v (m/ (n − 1), s) in equations (7) and (12) 

and the term v (m/ (n − 1), s + γ ) in inequality (13), with v (m/ (n − 1), θi).  This fact implies that 

Proposition 1 and Theorem 1 are still true.   

 

3. A Speculative Attack Model 

In this section we apply the theory of global games to a speculative attack model in which 

investors' information on monetary authorities' intention to defend a fixed exchange rate is 

incomplete.  Consider a foreign exchange market of a small open country with a fixed exchange 

rate system.  The market is opened two times, at the first and the second period.  There are three 

types of participants, investors, the domestic monetary authority, and pure traders.  There are two 

types of assets, domestic and foreign currency.  Both currencies bear zero nominal interest.  

Neither foreign residents nor foreign monetary authorities do not hold domestic currency.  All the 

investors are domestic residents.   

There are n risk neutral investors.  At the beginning of the first period, each investor owns 

A/n unit of domestic currency.  Investors consume all their assets in the second period.  To buy or 

sell one unit of foreign currency, investors pay c/ 2 unit of foreign currency as transaction cost.  In 

order to buy consumption goods, domestic currency is required.  Therefore, if an investor 

purchases one unit of foreign currency in the first period, he will resell it in the second period and 

the total transaction cost will be c.4  In the first period, each investor choose one of two actions, 

converting all the domestic currency into the foreign currency in the first period and repurchase the 

domestic currency in the second period, or holding domestic currency until the second period.  We 

call the first action speculation and the second non-speculation.  Each speculating investor will 

incur transaction cost cA/n.  Let k denote the number of investors who speculate in the first period.  

                         

4If we assume that the investors hold assets with interest, then c will consist of the transaction cost 

and interest rate differential between the two countries.   
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Then the total demand for foreign currency by the investors amounts to kA/n.   

Net purchase of foreign currency by pure traders is equal to the current account deficit of the 

country.  Let D denote the current account deficit in the first period.  D is a random variable with 

cumulative density function H (·).  The investors do not observe a realization of D when they make 

decisions on speculation in the first period.  

We model the monetary authority’s behavior as follows.  Let R denote the potential reserves 

the monetary authority is willing to use to defend the initial fixed rate.  If the demand for foreign 

currency is greater than R in the first period, 

R  < 
k
n  A +D ,  

 

then the domestic currency will be devaluated 100e percent in the second period.  Otherwise the 

fixed rate will be kept constant in the second period.  R is a random variable with a support [R, R ].  

Each investor gets private information on R:  

           θ  i = R  + ε i  
 

where εi denotes noise.   

The random variables D, R, and εi satisfy the following conditions.   

 

A1) H (·), the cumulative density function of D is continuously differentiable and satisfies 

 

H '(x ) > 0     for all x  ∈ [R −A, R ], 

H (R −A ) > 0,   

H ( R ) < 1, 

−c + e {1 −H (R )} > 0, 

and 

−c + e {1 −H ( R −A)} < 0. 
 

A2)  R is drawn from a distribution on [R, R ] with a strictly positive and continuously 
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differentiable density.   

A3)  The noises ε1, ε2,..., εn are independent of s and have a joint distribution Φ with a continuous 

and bounded density ϕ.  ϕ is symmetric about any εi and εj :  ϕ (ε1,.., εi,.., εj,.., εn) = ϕ (ε1,.., εj,.., 

εi,.., εn) for any i, j ∈ Ν  and any {ε1, ε2,..., εn}.  The support of Φ is contained in a ball around 

zero with radius γ.   
 

To simplify the model, we assume that in the first period the authority keeps the initial fixed 

rate and is willing to supply the amount of foreign currency that the market wants to buy, kA/n +D.  

If we assume that the authority stops selling foreign currency as soon as it uses up R, we would have 

to model the dynamic process in the first period market.   

We assume that 

0 < c < e < 1. 

Therefore, if an investor expects devaluation, he will have an incentive to convert his domestic 

currency into foreign currency in the first period and repurchase the domestic currency in the second 

period.  The price of the consumption good is set in world markets and the foreign price level is 

constant and equal to one.  The initial fixed exchange rate is normalized to be one.  Under these 

assumptions investors' payoff is summarized by Table 1.   

The sequence of events in our model is summarized as follows.   

1)  Nature chooses the potential amount of intervention, R and the current account deficit of the 

first period, D.   

2)  Each investor gets private information on R .  He observes neither D nor R.   

3)  The foreign exchange market of the first period is opened.  The investors simultaneously 

decide whether speculate or not.  The monetary authority keeps the initial fixed rate and supplies 

the amount of foreign currency that the market wants to buy, kA/n +D, where k denotes the number 

of investors who speculate.   

4)  If monetary authority's foreign currency supply in the first period is greater than R, the authority 

will devaluate the domestic currency 100e percent in the second period.  Otherwise the authority 
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will keep the initial fixed rate.  In both cases, the authority sustains the fixed rate within the second 

period and is willing to supply the amount of foreign currency that the market wants to buy.  The 

investors consume all their wealth.   

 

We study investor i's marginal gain by choosing speculation instead of non-speculation.  Let 

m denote a number of the other investors who speculate.  If investor i does not speculate, the 

probability of devaluation will be equal to 1−F (R −m A / n).  Therefore, investor i's marginal gain 

by choosing speculation instead of non-speculation is expressed as 
 

v  
  

m
n− 1 ,  −R  

  = −c  +e 
 
  1−H  

R − 
n −1

n
m

n −1 A  

 
 .  

 

We first consider the complete information case in which the investors observe R before 

participating the first period market.  Let Rαβ and R αβ be defined by 
 

(16) −c + e {1 −H (R αβ)} = 0, 

and 

(17) −c + e {1 −H ( R αβ) −A } = 0. 
 

If Rαβ < R < R αβ, there will be two Nash equilibria in pure strategy.  The one in which all the 

investors speculate and the probability of the devaluation is 1−F (R −A) and the other in which no 

investor speculates and the probability of the devaluation is 1−F (R).   

Next we study incomplete information case.  If we replace −R with s , the marginal gain 

function v (m / (n  − 1), −R ) will satisfy all the assumptions in Section 2.  Therefore we can apply 

Theorem 1 to our speculative attack model.  The critical value of the potential intervention RG is 

determined by 
 

(18)     ∑
n − 1

m =0

 
 1
n  H  

RG − 
m
n A  

  = 1 − 
c
e  .  

 

R G satisfies Rαβ < R G< R αβ.  Assume that noise is very small.  Then Theorem 1 
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implies that if an investor gets private information that is lower than RG, he will speculate.  And if 

an investor gets private information that is higher than RG, he will not speculate.   

If actual R is smaller than RG, the probability of the devaluation will be 1−F (R −A). And if 

actual R is greater than RG, the probability of the devaluation will be 1−F (R ).  So we must be 

interested in the factors determining RG.  Equation (18) implies that as transaction cost c decreases 

or as the expected width of devaluation e increases, RG will become higher.   

In order to explicitly solve equation (16), (17), and (18), let us specify the probability 

distribution of the current account deficit.  Suppose that the distribution is highly concentrated 

around D =D *.5  Then we can get approximate solutions of equation (16), (17), and (18):   

 R αβ≈D *, 

 R αβ≈D *+A , 

R G ≈ D * +  
1 − 

c
e   

A .     
 

In this example, the relative sizes of the transaction cost and the possible devaluation rate determine 

the critical amount of foreign reserves.  If the transaction cost is close to the size of the possible 

devaluation, the monetary authority will only need to prepare reserves as much as the expected 

current account deficit in order to defend the fixed exchange rate.   

Assume that the monetary authority can choose one of two situations, the complete 

information case and the incomplete information case with small noise.  The authority has to make 

a decision before the authority knows realization of R, which is exogenously determined.  Also 

assume that the authority applies mini-max principle to multiple equilibrium problems.  That is, the 

authority holds the worst case in whole account.  Then the monetary authority will prefer the 

incomplete information situation with small noises over the complete information situation.6   

                         

5We assume that H(D*−ε) is close to 0 and H(D*+ε) is close to 1 for a small value ε > 0.   
6Bhattacharya and Weller (1992) constructed a model in which the central bank, when it intervenes 

in the foreign exchange market, chooses not to reveal precisely what their targets are.  In their 

model, investors are assumed to be risk averse.  Therefore, the impreciseness of investors' 
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4. The Network-Externality Model with Normal Random Shocks 

Since there is no rigorous microeconomic foundation in our speculative attack model, it is 

difficult to evaluate national welfare in each equilibrium.  In this section, by using a network 

externality model, we analyze welfare implication of small noise.   

Consider a technology characterized by network externalities.  There are n identical agents.  

The agents simultaneously decide whether to adopt the technology (action α) or not to adopt (action 

β).  The more the agents coordinate to adopt the technology, the higher their utility.  The payoff 

of the agents who do not adopt the technology is normalized to be zero.  If agent i chooses α, his 

payoff is 
 

(19)       v i   
 m

n − 1 ,  s  
  = − c  + r  

m
n − 1  + s  

 

where m  denotes the number of the other agents who choose α and s  denotes a common shock 

that affects the productivity of the technology.  r is positive.  We assume the following 

information structure.  Each agent i observes θi that consists of a common shock s and a noise εi: 
 

         θi = s + εi. 
 

s and εi are independent normal random variables with means zero and standard deviations σs > 0, 

σε > 0 respectively.  The noises, ε1,..., εn, are independent of each other.  Each agent i knows 

neither other agents' private information nor the composition of θi. 

Since the support of each noise is not bounded, we can not directly apply Theorem 1 to this 

model.  But as Carlsson and van Damme (1993) show for two player game, under the normal 

distribution assumption we can derive stronger results than in Theorem 1:  the Bayesian Nash 

equilibrium is uniquely determined for a certain set of (σε, σs).   

To begin with, we consider the complete information games that correspond to our incomplete 

                                                                        

information increases central bank's ability to manipulate the exchange rate.  For general 

discussion on central bank secrecy, see Cukierman (1992). 
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information game.  Suppose there is no noise and s is directly observable.  If s < c  − r, there is a 

unique Nash equilibrium B in which all users choose β.  If s > c , there is a unique Nash 

equilibrium A in which all users choose α.  If c  − r < s < c , there are two pure-strategy Nash 

equilibria and one mixed-strategy Nash equilibrium.   

Now we study our incomplete information game.  For low enough θi, E[vi (1, s )| θi ] < 0 

and action α (to adopt the technology) is strictly dominated. Conversely, for high enough θi, E[vi (0, 

s )| θi ] > 0 and action β (not to adopt the technology) is strictly dominated.   

First we look for simple equilibria defined by equation (11).  That is, all the agents set a 

common critical value x .  In such equilibria, agent i who observes θi expects the following gain by 

choosing α instead of β.7   

(20)          Fi ( θi ,  x ) = − c  + 
σ 2

s

σ 2
s  + σ 2

ε

 θi  + 
r 

n  − 1  ∑
j ∈ N− i

 Prob   θj ≥ x θ i    

   =  − c  + 
σ 2

s

σ 2
s  + σ 2

ε

 θ i + 
r 

n  − 1 ∑
j ∈ N− i

 
 ⌡

⌠


+∞

 1
σz  


 x − 

σ  2
s

σ  2
s  + σ  2

ε

 θi
 



 

1
√2 π  

 exp
 
  − 

u 2

2  
 
du  

 

where σz2 denotes Var[θj| θi] = (2σs2σε2 + σε4)/ (σs2 + σε2).  Since function Fi is continuous 

and ∂Fi / ∂θi > 0 for all θi and all x, Fi implicitly defines agent i' s reaction function:  when all 

of agent i' s opponents take a common switching value x, then the optimal switching value for player 

i, θi, is determined by Fi(θi, x) = 0.  The necessary and sufficient condition of an equilibrium 

switching value x is 
 

        Fi(x, x ) = 0. 
 

                         

7Note that 

    E[ s  θi ] = 
σ 2

s

σ 2
s  + σ 2

ε
 θi ,

    
E[ θj  θi ] = 

σ 2
s

σ 2
s  + σ 2

ε
 θi ,

    

and   Var[ θj  θi ] = 
2 σ 2

s  σ 2
ε  + σ 4

ε

σ 2
s  + σ 2

ε
 θi .

 
(See Hoel 1962, p. 200.) 
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Fi(x, x) is strictly concave up at x > 0 and concave down at x < 0.  Therefore, we get a sufficient 

condition for a unique equilibrium switching value x:8 
 

(21) 
dFi (x, x )

dx  x = 0 =
σ 2

s

σ 2
s  + σ 2

ε

 − 
r

2√2π  (n − 1)
 

σ  2
ε

{ 2 σ 2
s  σ 2

ε  + σ 4
ε  }

1
2  { σ 2

s  + σ 2
ε  }

1
2

 ≥ 0.

In the same way as in Theorem 1, we can show that under this condition there is no other Bayesian 

Nash equilibrium of a more complicated form.  The shaded region of Figure 2 represents the set of 

(σε, σs) that satisfies the sufficient condition (21).  If condition (21) is not satisfied and Fi (0, 0) = 

− c + r / 2 is close to zero, then we will have three simple form equilibria.   

To carry out welfare analysis, consider agent i's expected payoff evaluated before the 

revelation of θi.  Suppose all the agents, including agent i, take a simple behavioral strategy 

defined by equation (11) with a switching value x.  Then agent i expects the following payoff: 
 

(22)        Wi (x ) = ∫
 + ∞

 x
Fi (θi ,  x ) ψ(θi ) dθi  

 

where ψ(θi ) denotes the density function of θi.  By a differentiation, we get 
 

(23)     
dWi (x )

d x  = − Fi (x ,  x ) ψ(x ) − 
r 

n  − 1 ∑
j ∈ N− i

∫
 + ∞

 x
g (x θi ) ψ(θi ) dθi 

 

where function g (θj | θi ) is the conditional density of θj  given θi.  The second term in the right 

hand side of equation (23) denotes a spillover effect:  a decrease in the switching value of all but 

one agent bestows an external benefit upon the remaining agent.9  This fact implies that the unique 

Bayesian Nash equilibrium is not Pareto optimal and all the agents will gain by coordinating to 

decrease their common switching value.   

Next we compare our Bayesian Nash equilibrium with Nash equilibria of the corresponding 

                         

8This condition is almost identical with Carlsson and van Damme's (1990). 
9For a more detailed discussion on spillover effects, see Cooper and John (1988).   
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complete information games.  Suppose there is no noise and s is directly observable.  Then the 

economy can get stuck at a set of inefficient equilibria in which no agent adopts the technology at all 

s ∈ (−･, c ].  In such a worst case scenario the expected welfare of a representative agent evaluated 

before the revelation of s is  
 

          ∫
 + ∞

 c
(− c  + r  + s ) h (s ) ds 

 
 

where h (s ) is the density function of s.  On the other hand, in the incomplete information game 

with infinitesimal noises there is a unique Bayesian Nash equilibrium.  Equation (20) implies that 

the switching value is close to c − r / 2.  This value is identical with the solution of equation (8).  

Equation (20) and (22) imply that the expected welfare of a representative agent in this equilibrium 

is 
 

            ∫
 + ∞

 c − r
2

 
(− c  + r  + s ) h (s ) ds  + O(σε)

 
 

which is greater than the expected welfare in the worst case of the complete information games for 

small enough σε.  Therefore a central planner, who applies mini-max principle to multiple 

equilibrium problems will prefer the incomplete information situation with small noises over the 

complete information situation.   

 

5. Concluding Remarks 

As more economists interested in coordination failure problems, the question how one of 

multiple equilibria is selected becomes more important.  By generalizing Carlsson and van 

Damme's theory of global games, this paper studied a selection mechanism under incomplete 

information.  The implications of the theory of global games are investigated in two specific 

models: a speculative attack model and a network externality model.   

Even when the monetary authority possesses relatively large foreign exchange reserves, the 

speculative attack can be a self-fulfilling equilibrium under the complete information situation.  
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Each investor finds speculation profitable, when he believes that many other investors will speculate.  

Suppose that there is a common shock and each investor gets noisy private information.  The noise 

is small.  Then each investor expects that one half of other investors get worse news for speculation 

than his.  This expectation makes coordinative speculative attack impossible.  It is shown that the 

monetary authority in the speculative attack model and the central planner in the network externality 

model will prefer the equilibrium in a global game with small noise to the worst equilibrium in the 

corresponding complete information game.  Therefore, they will welcome the existence of small 

noise, if they apply mini-max principle to multiple equilibrium problems.   
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Figure 1.  The Nash-equilibrium correspondence of the complete information games. 
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 under devaluation under no devaluation 

speculate ( 1 −c  ) A / n ( 1 −c  ) A / n 

not specuate ( 1 −e  ) A / n A / n 

Table 1. Investors' payoff in the speculative attack model 
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Figure 2. The set of (σε, σs ) that satisfies the sufficient condition (21) for a unique equilibrium. 
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