学術的科学研究と産業技術革新の連携についての研究

Lee Branstetter
Columbia Business School and NBER
RIETI and Hitotsubashi University

Kwon Hyeog Ug RIETI and Hitotsubashi University

RIETI BBL Presentation
April 26, 2004

学術研究はどのようにして産業の技術革新 に影響するのか?

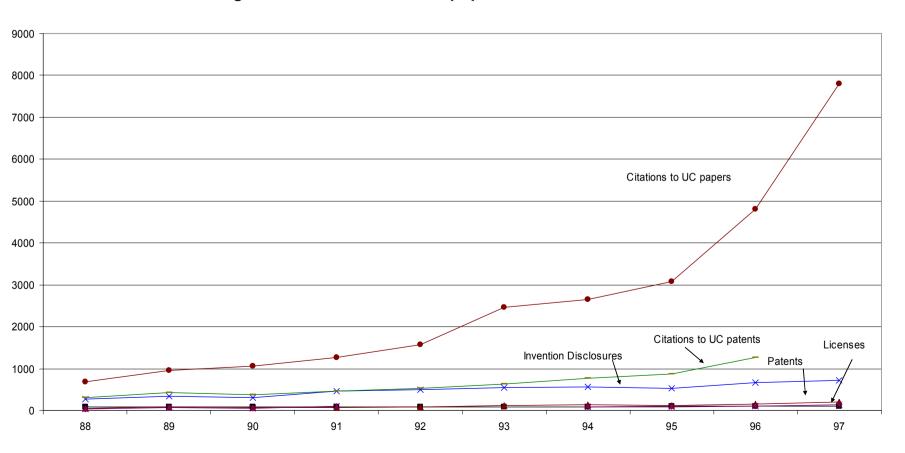
- 基礎科学での発見が、応用研究・開発の新しい道を切り開く
 - 企業R&Dにおける「科学の利用」
 - 例: 遺伝子組換え技術、組み合わせ化学、トランジスター
- 企業の研究者が、十分に確立した科学を実際の工学的問題に応用するに際して、大学教授の助けを求める
 - 「科学の利用」というよりは、むしろ「科学者の利用」
 - 例:機械工学の教授が、包装機械の改良をしようとしている小企業の手助けをする
- 大学教授が、企業の研究者と協力して、新しい科学的発見を応用した新製品を 開発する。
 - _ 「共同応用」
 - これらの大学・教授は必ずしも、その新発見を実際にした人たちではない
- 大学が、企業によりさらに開発され、マーケティングされるような発明を生み出す。
 - 大学による発明は、必ずしも新科学に関係しているわけではない。

大学が企業のR&Dに与える影響をどうしたら 計測できるか?

- 大学特許データの統計的分析
 - Henderson, Jaffe, and Trajtenberg (1993, 1998)
- 大学による技術ライセンシング、大学関連の起業
 - Thursby and Thursby (2002), Mowery et. al. (1998), Lach and Schankerman (2003)
 - Audretsch and Stephan (1996), Zucker et. al. (1998), Shane (2000, 2001)
- アンケート調査、ケーススタディー
 - Mansfield (1995), Cohen et. al. (1994), Agrawal and Henderson (2003)
 - Odagiri et. al. (2003), Okada et. al. (2003), Motohashi (2003), Walsh and Cohen (2004)

大学が企業のR&Dに与える影響をどうしたら 計測できるか?

• 共同論文


- Cockburn and Henderson (1998, 2000), Zucker et. al. (1998)
- Hicks (1993), Kobayashi (1998), Pechter (2000, 2001)

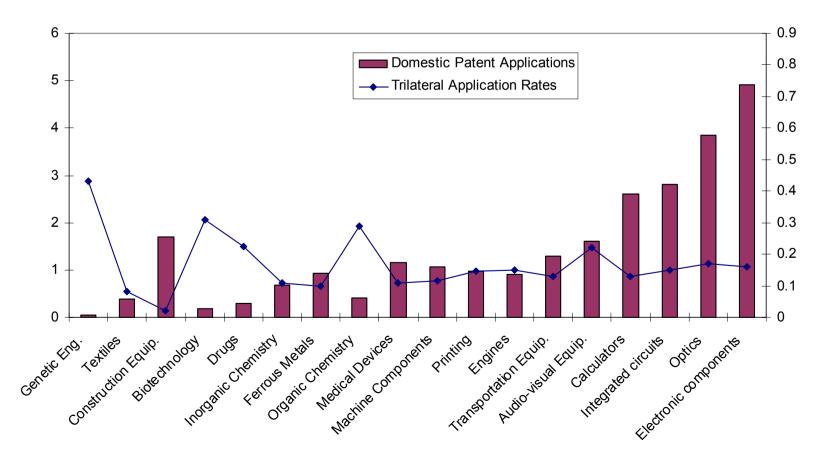
・ 特許による学術論文の引用

- Narin et. al. (1997), Branstetter (2003)
- Tamada et. al. (2003), Nagaoka (2004)

特許による学術論文引用とその他の大学-産業間の関係の指標

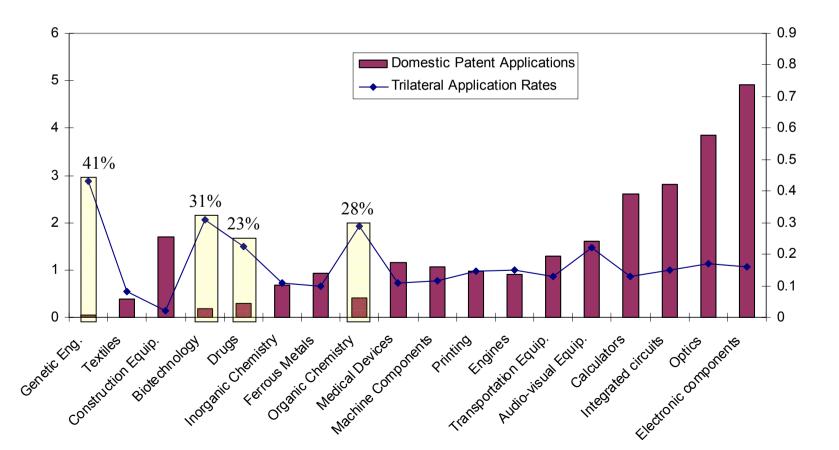
Figure 2 Citations to UC papers vs other indicators

日本企業のデータ

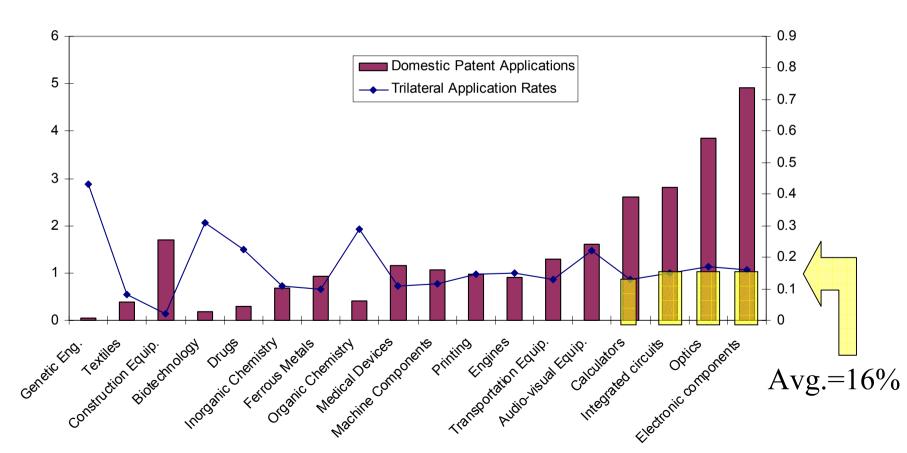

- 300社の取得特許データ
- 特許による学術論文引用のデータ
 - 引用された論文の著者名、所属機関
 - 公刊年月日
 - 論文の分野
- 企業による学術論文についての企業レベルのデータ
 - 引用された論文の著者名、所属機関
 - 公刊年月日
 - 論文の分野
- 企業別の研究開発費、売上高、海外の研究開発拠点、国際的技術アライアンス
- 電子産業、製薬産業における主要企業のR&Dマネージャーとの面談

Why use the citations found in the U.S. patents of Japanese firms?

- U.S. patent law requires inventors to make "appropriate citations to the prior art"
 - Japanese patent law does not require citations
- Patents taken out in both Japan and the U.S. are likely to be strategically important
 - Most patents have little commercial value
 - We wish to focus on the impact of science on Japan's more successful and important inventions
 - Inventors will only protect their more valuable inventions abroad


How good is the average Japanese domestic patent application?

Japan's International Patent Application Percentage by Technology Class


Japanese life science patents are few, but the international application rate is high

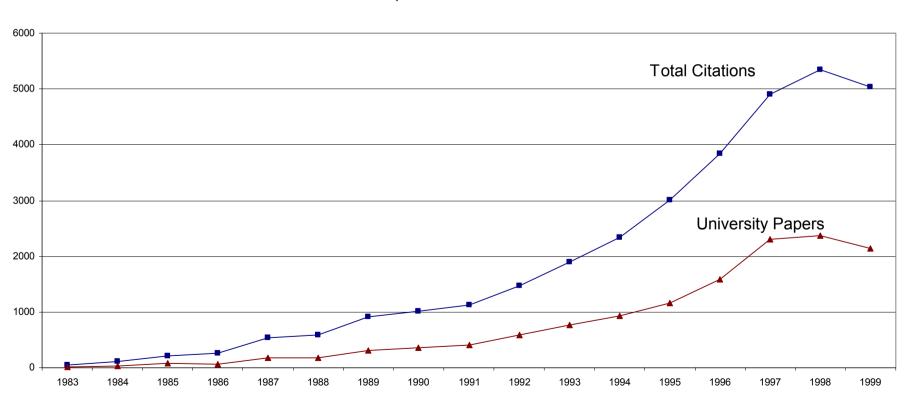
Japan's International Patent Application Percentage by Technology Class

Japanese IT patents are numerous, but the overseas application rate is relatively low

Japan's International Patent Application Percentage by Technology Class

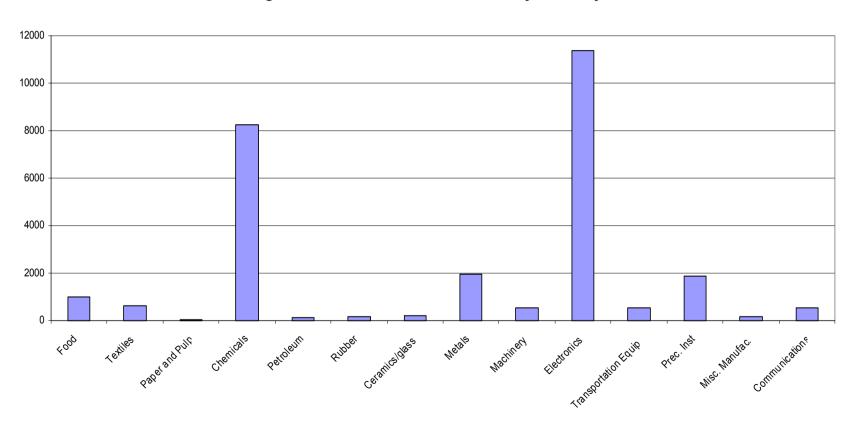
概要

• 特許による学術論文引用データのトレンドを描写


・ 特許レベルと企業レベルの回帰分析の結果

・ 他の最近の研究結果との違い

• (予備的)結論、政策的インプリケーション


日本企業の特許による学術論文引用も急増

Growth in Japanese Patent Citations to Science

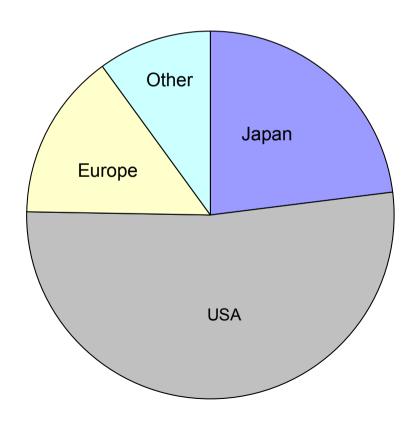
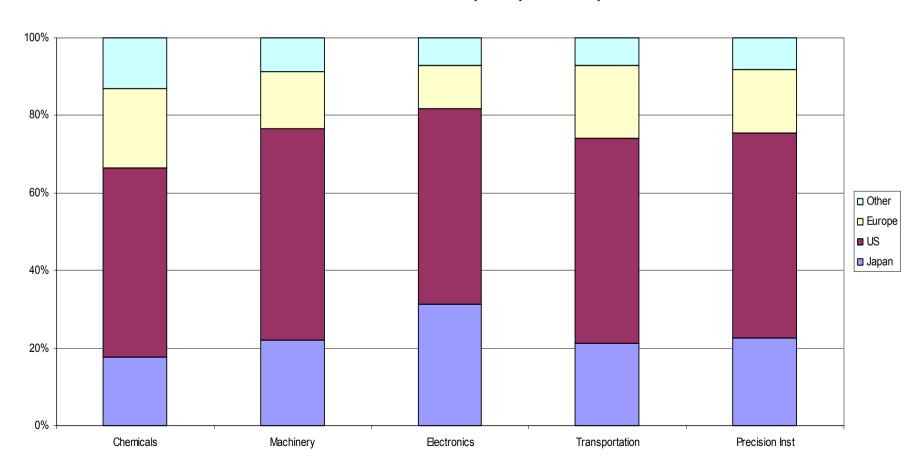
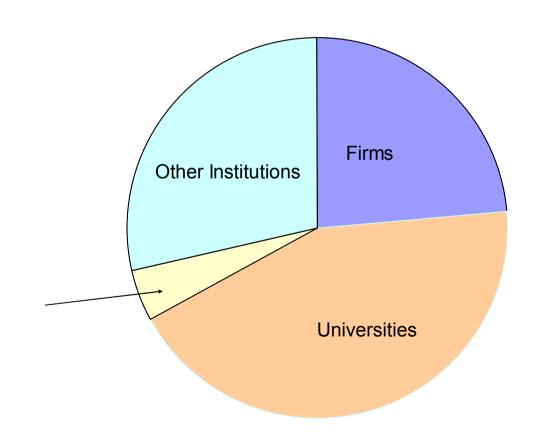

特許による学術論文引用の件数は化学産業と電子産業に集中

Figure 4 Distribution of Citations by Industry

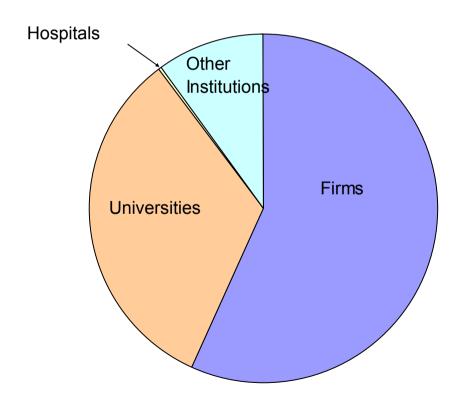

引用された論文の過半数がアメリカの著者による論文

Geographic Distribution of Cited Authors

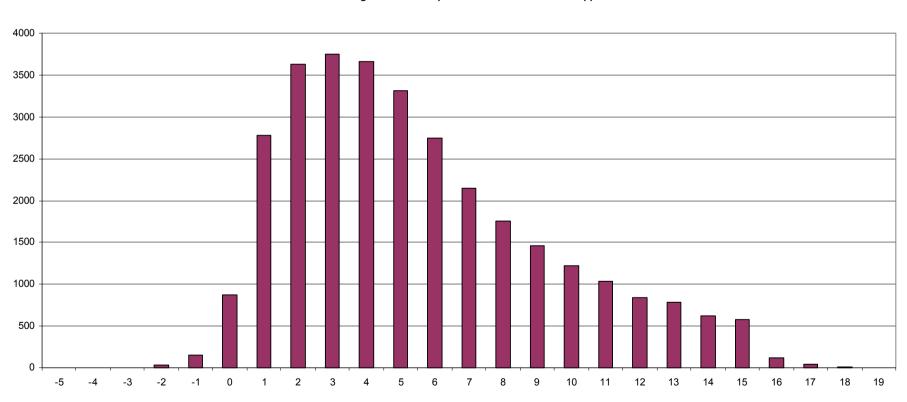

これはすべての主要産業について同様

Distribution of Cited Institutions by Industry and Nationality

大学が引用論文の主要な供給元...


Distribution of Citations by Institution Type

Hospitals


しかし、もっとも引用されている 日本の研究機関は企業

Distribution of Japanese Citations by Institution Type

特許は最近の論文を引用している

Distribution of Lags Between Paper Publication and Patent Application

計量経済学的分析

- 引用特許レベルの分析
 - 特許の性質をコントロールしながら、学術論文引用の傾向を調べる
 - Logit, Poisson, Negative Binomial regression

- ・ 引用企業レベルの分析
 - 学術論文の引用が技術開発の生産性に影響しているか?

特許による学術論文引用のロジット分析

Table 1 Logit Regression Analysis

Table I Logic	Regression Ana
Variable	Coefficient
Chemicals	890 (.202)
Materials	-1.05 (.289)
Primary Metals	.217 (.205)
Machines	-1.67 (.209)
Electrical Machines	910 (.201)
Transportation Equipment	-2.59 (.212)
Precision Instruments	-1.17 (.202)
Pharmaceuticals	.993 (.207)
Sales	.106 (.053)
Overseas R&D subsidiaries	.051 (.027)
Research alliances	.132 (.016)
Log Likelihood	-33973.191
	'

特許による学術論文引用のロジット分析

Table 1 Logit Regression Analysis

Table I Logic	11051 Coolon 11ma
Variable	Coefficient
Chemicals	890 (.202)
Materials	-1.05 (.289)
Primary Metals	.217 (.205)
Machines	-1.67 (.209)
Electrical Machines	910 (.201)
Transportation Equipment	-2.59 (.212)
Precision Instruments	-1.17 (.202)
Pharmaceuticals	.993 (.207)
Sales	.106 (.053)
Overseas R&D subsidiaries	.051 (.027)
Research alliances	.132 (.016)
Log Likelihood	-33973.191
C	

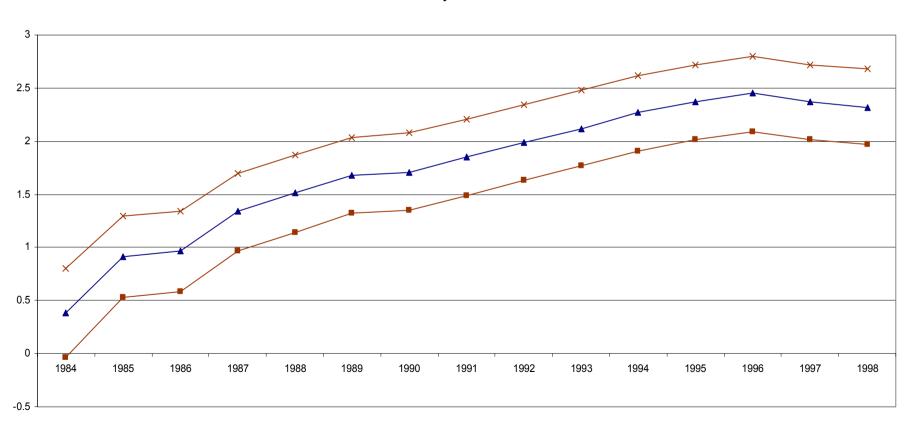
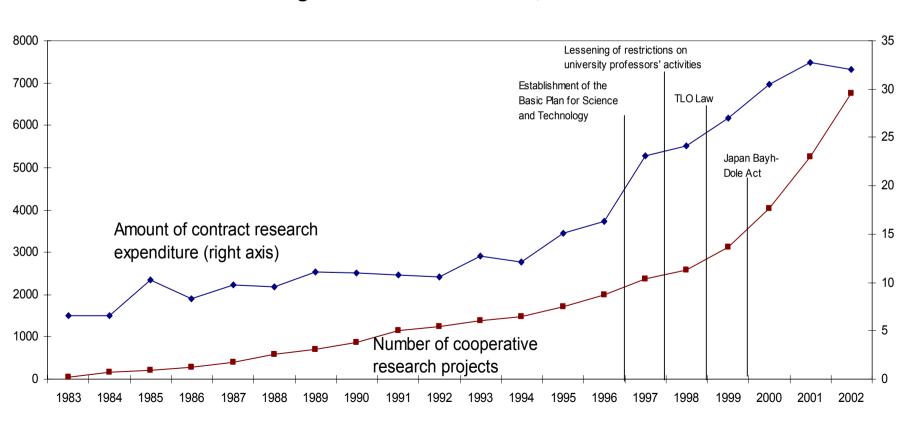

特許による学術論文引用のロジット分析

Table 1 Logit Regression Analysis

Table I Lugit	Kegi ession Ana
Variable	Coefficient
Chemicals	890 (.202)
Materials	-1.05 (.289)
Primary Metals	.217 (.205)
Machines	-1.67 (.209)
Electrical Machines	910 (.201)
Transportation Equipment	-2.59 (.212)
Precision Instruments	-1.17 (.202)
Pharmaceuticals	.993 (.207)
Sales	.106 (.053)
Overseas R&D subsidiaries	.051 (.027)
Research alliances	.132
Log Likelihood	-33973.191


特許の数の増加をコントロールした後も、学術論文の引用は急激に増加している

Growth in Intensity of Science Citations

This growth precedes many of the important "sangaku renkei" promotion policies

Sangaku Renkei Indicators, 1983-2002

Poisson と Negative Binomial Regression も 同様な傾向を示している

Table 2 Poisson and Negative Binomial Regressions

Variable	Poisson	Negative Binomial	
Late 1980s	1.54 (.049)	1.53 (.058)	
Early 1990s	2.27 (.047)	2.26 (.058)	
Late 1990s	2.77 (.046)	2.75 (.057)	
Pharmaceutical	1.97 (.029)	2.07 (.077)	
Other chemicals	.174 (.026)	.341 (.043)	
Electronics	090 (.026)	.015 (.045)	
Sales	.144 (.011)	.168 (.020)	
Overseas R&D	109 (.014)	066 (.024)	
Alliances	.100 (.009)	.082 (.016)	
Log Likelihood	-76,579	-51,780	

Poisson と Negative Binomial Regression も 同様な傾向を示している

Table 2 Poisson and Negative Binomial Regressions

Variable	Poisson	Negative Binomial		
Late 1980s	1.54 (.049)	1.53 (.058)		
Early 1990s	2.27 (.047)	2.26 (.058)		
Late 1990s	2.77 (.046)	2.75 (.057)		
Pharmaceutical	1.97 (.029)	2.07 (.077)		
Other chemicals	.174 (.026)	.341 (.043)		
Electronics	090 (.026)	.015 (.045)		
ales	.144 (.011)	.168 (.020)		
Overseas R&D	109 (.014)	066 (.024)		
Alliances	.100 (.009)	.082 (.016)		
og Likelihood	-76,579	-51,780		

Poisson と Negative Binomial Regression も 同様な傾向を示している

Table 2 Poisson and Negative Binomial Regressions

Variable	Poisson	Negative Binomial
Late 1980s	1.54 (.049)	1.53 (.058)
Early 1990s	2.27 (.047)	2.26 (.058)
Late 1990s	2.77 (.046)	2.75 (.057)
Pharmaceutical	1.97 (.029)	2.07 (.077)
Other chemicals	.174 (.026)	.341 (.043)
Electronics	090 (.026)	.015 (.045)
Sales	.144 (.011)	.168 (.020)
Overseas R&D	109 (.014)	066 (.024)
Alliances	.100 (.009)	.082 (.016)
Log Likelihood	-76,579	-51,780

計量経済学的分析

- ・ 引用特許レベルの分析
 - 特許の特徴をコントロールしつつ、学術論文引用の傾向を調べる
 - Logit, Poisson, Negative Binomial regression

- 引用企業レベルの分析
- 学術論文の引用が研究開発の生産性に影響しているか?

学術論文引用の技術革新の生産性への効果

Table 3									
	Impact	of Science C	Citations on F	irm Innovativ	e Outcomes	· · · · · · · · · · · · · · · · · · ·			
Dependent Variable:	Citation-Adj. Patents				TFP				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
Science Citations t-1	0.0072 (0.0106)				0.0189 (0.0044)				
Science Citations t-2		0.0419 (0.012)				0.0172 (0.0045)			
Science Citations t-3			0.0271 (0.01269)				0.0158 (0.0044)		
Science Citations t-4				0.0319 (0.0137)				0.0158 (0.0045)	
R&D	0.0320 (0.0298)	0.0654 (0.0255)	0.1006 (0.0275)	0.1218 (0.0061)	0.0700 (0.0092)	0.0500 (0.0094)	0.0588 (0.0095)	0.0840 (0.0098)	
Patenting	0.4962 (0.0174)	0.3151 (0.0174)	0.2051 (0.0179)	0.1325 (0.0188)	0.0178 (0.0058)	0.0152 (0.0059)	0.0169 (0.0059)	0.0206 (0.0059)	
Capital					0.1863 (0.0168)	0.2208 (0.0175)	0.2017 (0.01730)	0.1844 (0.0175)	
Employment					0.424	0.4134	0.4216 (0.0268)	0.3773	
Firm and Year Fixed Effects?	Y	Y	Y	Y	Y	Y	Y	Y	

予備的結論

 基礎科学から企業の研究開発への knowledge spillover の急激な増加

• 効果は製薬会社に極端に集中している

外国(特にアメリカ)の科学が日本の科学よりも頻繁に引用されている

 特許による学術論文引用で計測した knowledge spillover は R&D の生産性を向上させている

共同論文に関する研究のインプリケーション

Hicks (1993), Pechter (2000, 2001), Kobayashi (1998)

- ・ 大学が民間企業のR&Dに与える影響は、
 - _ ここしばらく、かなり強かった
 - ほとんどは日本の大学から
 - 中小企業が重要な役割を果たしている

計測方法が異なれば、計測の対象となる 産学連携のタイプも異なる

- パブリケーションは、企業の戦略的技術開発を完全には反映していない
 - 企業により、なにをパブリッシュするかについてかなり差がある
 - 戦略的に重要な技術を論文としてパブリッシュすることは、厳しくコントロールされている
 - 多くの共同論文は「教育と訓練」を反映している。
 - それ以外の場合は、「科学の利用」よりは、「協調的応用」の結果
- 特許による論文引用のほうが、「科学の利用」をうまく反映している

Coauthors are disproportionately Japanese. . .

		CANON	Matsushita	Sankyo	Takeda
	Japan	85.31	81.42	81.75	76.62
Papers	USA	6.94	12.09	9.82	17.83
	Other	7.75	6.49	8.43	5.55
	Japan	21.3	34.8	19.1	27.9
Patent citations	USA	51.7	43.9	55.1	53.2
to science	Other	26.9	21.3	25.8	18.9

But patent citations to science are disproportionately foreign

		CANON	Matsushita	Sankyo	Takeda
	Japan	85.31	81.42	81.75	76.62
Papers	USA	6.94	12.09	9.82	17.83
	Other	7.75	6.49	8.43	5.55
	Japan	21.3	34.8	19.1	27.9
Patent citations	USA	51.7	43.9	55.1	53.2
to science	Other	26.9	21.3	25.8	18.9

主要企業のR&Dマネージャーとの面談は、この解釈を支持している

- 主要企業は「科学の利用」をするとき、ほとんどの場合、 外国の大学の画期的研究に依存している
- 「科学者の利用」の場合は、圧倒的に地元の大学に依存する傾向がある
- 「共同応用」の場合は、外国、日本双方の大学が関係している
 - 地元大学との協力のほうがコストがずっと安い
 - 政府からの補助金、規制緩和、大学の考え方の変化などから、 地元大学との共同の利点が大きくなりつつある

Tamada et. al. (2003)のインプリケーション

学術論文の引用は、バイオテクノロジーに極端 に集中している

バイオテクノロジー関連特許による引用はアメリカの学術論文に極端に偏っている

• 他の分野(IT技術、環境技術)では、多くの場合、 日本の学術論文が引用されている

なぜ日本の特許とアメリカの特許では、論文 引用のパターンが異なるのか?

- アメリカの特許の引用は、特許弁護士や、特許審査官の 影響を反映しているかもしれない
 - しかし、学術論文の引用は研究者側から提示される傾向が強い
 - R&Dマネージャーたちによれば、アメリカの基礎科学の影響力はバイオテクノロジー以外の分野でも強い

サンプル中の特許も異なる

- Tamada et. al. (2003): examine random samples of patents in 4 technological areas, 1995-1999
- Branstetter and Kwon (2004): examine entire U.S. patent portfolio of over 330 major Japanese R&D-performing firms, 1983-1999
- 日本の電子機器関連特許の約85%は、ヨーロッパやアメリカで 特許申請されていない

この研究の政策的含意

日本企業はますます学術的研究と連携するように なってきた

最新の科学的発見の戦略的利用のためには、企業は外国の研究センターと密接な関係を築くことが必要

この研究の政策的含意

大学の科学は、大学による特許取得やライセンシングがなくても、産業界に普及しうる

- 産学連携の効果を調べるには複数のアプローチが必要
 - 特許による科学の引用は「科学の利用」を反映
 - 「科学者の利用」はしばしばインフォーマルなので、アンケート調査 やケーススタディーによる以外は、調査するのが困難である
 - 「共同応用」はフォーマルな共同研究や委託研究によって計測する のがベストかもしれない