Discussion of “Firm-to-Firm Trade in Sticky Production Networks” by Kevin Lim

Konstantin Kucheryavyy

RIETI Workshop “Dynamics of Inter-Firm Network and Macro Fluctuation”

February 26, 2018
Summary of the Paper

▶ Theory of endogenous network formation between firms

▶ Combination of random chance and strategic choice

▶ Main contribution of the theory:
 ▶ Tractability
 ▶ Produces the key fact from the data that larger firms are connected to more buyers and suppliers than smaller firms

▶ Takeaways from the empirical/quantitative part:
 ▶ Both relationship heterogeneity and endogenous network structure are quantitatively important
Key Features of the Static Environment

Overview

➡️ Fixed number of firms: no entry and exit

➡️ Production technology: CES combination of labor and varieties of other firms

➡️ Every firm sells to and buys from every other firm
 ➤ My interpretation (maybe, not correct)

➡️ All firms sell their good to the household

➡️ Market structure: monopolistic competition both on the firm-to-firm and firm-to-household markets
Key Features of the Static Environment

Firms and Network

- Firms characterized by fundamental productivity and demand, ϕ and δ
 - Higher $\phi \implies$ more efficient in using labor input
 - Higher $\delta \implies$ household buys more

- Continuum of firms of each type $\chi \equiv (\phi, \delta)$

- $m(\chi, \chi')$ is a chance that type χ meets type χ'

- Since there is a continuum of firms χ, $m(\chi, \chi')$ is
 - Fraction of firms χ' that sell to type χ
 - Fraction of firms χ that buy from firm χ'

- Identities of connected firms within types χ and χ' are not important
 - Probabilistic characterization similar to Eaton-Kortum
My interpretation:

- Every firm χ is connected with every other firm χ'
- “Intensity” of connection is given by $m(\chi, \chi')$
- Without this, need to solve a large discrete choice problem
Static Equilibrium

- Network structure translates *fundamental* productivity ϕ and demand δ into *network* productivity Φ and demand Δ

- Given function $m(\chi, \chi')$, functions $\Phi(\chi)$ and $\Delta(\chi)$ completely characterize static equilibrium
Key Features of the Dynamic Environment

- Cost $f_t = \psi \xi_t$ of maintaining a link between any two firms
 - Payed by seller in terms of labor
 - ξ_t has distribution G_ξ and unit mean
 - Now network is parametrized by distribution of (χ, χ', ξ_t)
- Seller is given opportunity to alter link with a buyer with probability $(1 - \nu)$
 - Establish link if are not connected
 - Remove link if connected
- Given opportunity to alter link, seller makes an optimal forward-looking decision
 - The only intertemporal decision in the model
- Combination of chance $(1 - \nu)$ and optimal choice determine evolution of links between firms of types χ and χ', $m_t (\chi, \chi')$
 - Function $m_t (\chi, \chi')$ is the state of the network
- Given $m_t (\chi, \chi')$, $\Phi_t (\chi)$ and $\Delta_t (\chi)$ completely characterize equilibrium in period t
Structural Estimation

- Parametric assumptions:

\[
\begin{bmatrix}
\ln \phi \\
\ln \delta
\end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 & \nu^2 \\ \nu^2 & 0 \end{bmatrix} \right),
\]

and \(\xi_t \) has Weibul distribution with shape \(s_\xi \) and scale \(\lambda \), i.e.,

\[
G_{\xi}(x) = 1 - e^{-\left(\frac{x}{\lambda}\right)^{s_\xi}}
\]

- Scale \(\lambda \) is such that \(E[\xi_t] = 1 \)

- Focus on estimation of \(\nu, \psi, s_\xi, \) and \(\nu \)
 - Other parameters are assigned plausible values
Structural Estimation

Targeted Moments

▶ 7 targeted distributions:
 1. Revenues
 2. Number of suppliers
 3. Number of customers
 4. Supplier retention rates
 5. Customer retention rates
 6. Supplier creation rates
 7. Customer creation rates

▶ Distributions 1-3 "identify" ν
▶ Distributions 4-7 "identify" s_ξ and ν
▶ ψ is estimated by matching the labor share devoted to production of varieties equal to 0.7
 ▶ Motivated by the fact that degree count is continuous in the model but discrete in the data
 ▶ Needs a better explanation

▶ Overall, reasonable fit
Counterfactual Exercises

- Firms are divided into 10 groups by their revenue

- Four sets of counterfactual exercises:
 - Positive/negative shock to productivity ϕ for all firms in decile 1, 2, ..., 10
 - Positive/negative shock to demand δ for all firms in decile 1, 2, ..., 10

- Baseline result:
 - The bigger is the size of affected firms, the bigger is the positive/negative effect on welfare
Counterfactual Exercises
Importance of Structure and Dynamics of Network

- Relationship heterogeneity is quantitatively important
 - Without heterogeneity, welfare effects of small firms are overpredicted and those of large firms are underpredicted

- Propagation of shocks with a fixed network
 - First-order effect approximates well the total welfare effect

- The role of endogeneity of network
 - Quantitatively important
Discussion

- Firm entry and exit is important feature of data
 - Probably, not difficult to incorporate

- Continuum of firms, so shock to any particular firm is negligible
 - Goes against the “granularity” macro literature
The exercise with shocks to a fixed network:

- The paper calls this exercise “Supply chain heterogeneity”
- Arguably, the model is not fit to speak to supply chain heterogeneity
 - For each firm type χ, there is a continuum of firms with the full distribution of supply chain lengths
- The small predicted higher-order effects of the shock are counterfactual to what is found in the data by Carvalho, Nirei, Saito, and Tahbaz-Salehi (2016)