Discussion of "Firm-to-Firm Trade in Sticky Production Networks" by Kevin Lim

Konstantin Kucheryavyy

RIETI Workshop "Dynamics of Inter-Firm Network and Macro Fluctuation"

February 26, 2018

Summary of the Paper

- ► Theory of endogenous network formation between firms
- Combination of random chance and strategic choice
- Main contribution of the theory:
 - Tractability
 - Produces the key fact from the data that larger firms are connected to more buyers and suppliers than smaller firms
- Takeaways from the empirical/quantitative part:
 - ► Both relationship heterogeneity and endogeneous network structure are quantitatively important

Key Features of the Static Environment Overview

- Fixed number of firms: no entry and exit
- Production technology: CES combination of labor and varieties of other firms
- Every firm sells to and buys from every other firm
 - My interpretation (maybe, not correct)
- ▶ All firms sell their good to the household
- Market structure: monopolistic competition both on the firm-to-firm and firm-to-household markets

Key Features of the Static Environment

Firms and Network

- Firms characterized by fundamental productivity and demand, ϕ and δ
 - Higher $\phi \Longrightarrow$ more efficient in using labor input
 - Higher $\delta \Longrightarrow$ household buys more
- ▶ **Continuum** of firms of each type $\chi \equiv (\phi, \delta)$
- $m\left(\chi,\chi'\right)$ is a chance that type χ meets type χ'
- ▶ Since there is a continuum of firms χ , $m(\chi, \chi')$ is
 - Fraction of firms χ' that sell to type χ
 - Fraction of firms χ that buy from firm χ'
- ▶ Identities of connected firms within types χ and χ' are not important
 - Probablistic characterization similar to Eaton-Kortum

Key Features of the Static Environment

Firms and Network

My interpretation:

- lacktriangle Every firm χ is connected with every other firm χ'
- "Intensity" of connection is given by $m(\chi, \chi')$
- ▶ Without this, need to solve a large discrete choice problem

Static Equilibrium

- Network structure translates fundamental productivity ϕ and demand δ into network productivity Φ and demand Δ
- ▶ Given function $m\left(\chi,\chi'\right)$, functions $\Phi\left(\chi\right)$ and $\Delta\left(\chi\right)$ completely characterize static equilibrium

Key Features of the Dynamic Environment

- Cost $f_t = \psi \xi_t$ of maintaining a link between any two firms
 - Payed by seller in terms of labor
 - ξ_t has distribution G_{ξ} and unit mean
 - ▶ Now network is parametrized by distribution of (χ, χ', ξ_t)
- \blacktriangleright Seller is given opportunity to alter link with a buyer with probability $(1-\nu)$
 - Establish link if are not connected
 - Remove link if connected
- Given opportunity to alter link, seller makes an optimal forward-looking decision
 - ► The only intertemporal decision in the model
- ► Combination of chance (1ν) and optimal choice determine evolution of links between firms of types χ and χ' , $m_t(\chi, \chi')$
 - ▶ Function $m_t(\chi, \chi')$ is the state of the network
- ▶ Given $m_t(\chi, \chi')$, $\Phi_t(\chi)$ and $\Delta_t(\chi)$ completely characterize equilbrium in period t

Structural Estimation

▶ Parametric assumptions:

$$\begin{bmatrix} \ln \phi \\ \ln \delta \end{bmatrix} \sim \mathcal{N} \left(\begin{array}{cc} 0 \\ 0 \end{array}, \begin{bmatrix} 0 & v^2 \\ v^2 & 0 \end{bmatrix} \right),$$

and ξ_t has Weibul distribution with shape s_ξ and scale λ , i.e.,

$$G_{\xi}(x) = 1 - e^{-\left(\frac{x}{\lambda}\right)^{s_{\xi}}}$$

- Scale λ is such that $E[\xi_t] = 1$
- ▶ Focus on estimation of v, ψ , s_{ξ} , and ν
 - ▶ Other parameters are assigned plausible values

Structural Estimation

Targeted Moments

- 7 targeted distributions:
 - 1. Revenues
 - 2. Number of suppliers
 - 3. Number of customers
 - 4. Supplier retention rates
 - 5. Customer retention rates
 - 6. Supplier creation rates
 - 7. Customer creation rates
- ▶ Distributions 1-3 "identify" *v*
- ▶ Distributions 4-7 "identify" s_{ε} and ν
- $m{\psi}$ is estimated by matching the labor share devoted to production of varieties equal to 0.7
 - Motivated by the fact that degree count is continuous in the model but discrete in the data
 - Needs a better explanation
- Overall, reasonable fit

Counterfactual Exercises

- ▶ Firms are divided into 10 groups by their revenue
- Four sets of counterfactual exercises:
 - ▶ Positive/negative shock to productivity ϕ for all firms in decile 1, 2, . . . , 10
 - Positive/negative shock to demand δ for all firms in decile 1, 2, ..., 10
- Baseline result:
 - ► The bigger is the size of affected firms, the bigger is the positive/negative effect on welfare

Counterfactual Exercises

Importance of Structure and Dynamics of Network

- Relationship heterogeneity is quantitatively important
 - Without heterogeneity, welfare effects of small firms are overpredicted and those of large firms are underpredicted
- Propagation of shocks with a fixed network
 - ► First-order effect approximates well the total welfare effect
- ► The role of endogeneity of network
 - Quantitatively important

Discussion

- ▶ Firm entry and exit is important feature of data
 - Probably, not difficult to incorporate
- Continuum of firms, so shock to any paritcular firm is negligible
 - ► Goes against the "granularity" macro literature

Discussion

The exercise with shocks to a fixed network:

- ► The paper calls this exercise "Supply chain heterogeneity"
- Arguably, the model is not fit to speak to supply chain heterogeneity
 - For each firm type χ , there is a continuum of firms with the full distribution of supply chain lengths
- ► The small predicted higher-order effects of the shock are counterfactual to what is found in the data by Carvalho, Nirei, Saito, and Tahbaz-Salehi (2016)