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Abstract

This paper develops a structural model of trade between heterogeneous �rms in

which the network of �rm-level input-output linkages is determined both dynamically

and endogenously. Firms vary in the size of their customer and supplier bases, occupy

heterogeneous positions in di�erent supply chains, and adjust their sets of trade partners

over time. Despite the rich heterogeneity and dynamics, the model remains computa-

tionally tractable. Using both cross-sectional and panel data on trading relationships

between US �rms, I estimate the model's key parameters via a simulated method of

moments technique and assess its �t to the data. Simulations of the model are then

used to study how the structure and dynamics of the production network matter for the

propagation of �rm-level supply and demand shocks and their translation into aggregate

e�ects.
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1 Introduction

Many of the goods and services that are traded between �rms lack centralized markets or

intermediaries facilitating their exchange, and instead are traded through direct connections

between buyers and sellers.1 Firm-level supply and demand shocks propagate via these

connections, through the network of �rm-to-�rm relationships, and translate into aggregate

e�ects. The nature of this propagation depends in principle on several empirically stark

features of the production network that are often abstracted from in existing theories of

production. First, �rms vary in the extent to which they are connected to other �rms

(relationship heterogeneity). Second, �rms occupy di�erent positions in di�erent supply

chains (supply chain heterogeneity). Third, the set of active trading relationships changes

over time (relationship dynamics). In this paper, I study the extent to which accounting for

these characteristics of the production network matters for our understanding of �rm-level

supply and demand shock propagation.

To do so, I �rst develop a structural model of trade between heterogeneous �rms in which

the network of �rm-level input-output linkages is endogenously determined. In the model,

active relationships face a time-varying cost, and frictions impede the ability of forward-

looking �rms to change their sets of trade partners. These assumptions deliver a model

of a production network where �rms vary in the size of their customer and supplier bases,

occupy heterogeneous positions in di�erent supply chains, and adjust their sets of active

relationships dynamically. I develop tractable computational algorithms to solve for the

model's steady-state as well as its transition dynamics, and use both cross-sectional and panel

data on �rm-level trading relationships in the US to estimate the model's key parameters

via a simulated method of moments technique. Finally, simulations of the model are used to

study how relationship heterogeneity, supply chain heterogeneity, and relationship dynamics

matter for the aggregate welfare e�ects of shocks to �rm-level productivity and demand.

The key �ndings of the analysis are as follows. First, accounting for the heterogeneous

distribution of relationships leads to lower predicted welfare e�ects of shocks to small �rms,

and larger predicted e�ects of shocks to large �rms. This results intuitively from the fact

that large �rms are central to the production network not only because they are large in

size, but also because they are more connected to other �rms in the economy than smaller

�rms. Second, if one takes the production network as �xed, the higher-order propagation

of �rm-level shocks multiple stages upstream or downstream of supply chains appears to be

quantitatively unimportant. In the simulations studied, over 90% of the short-run welfare

1Using the Rauch (1999) classi�cation of products, for example, only about 15% of trade by US �rms
in 2014 was in goods that have organized exchanges, while another 15% was in goods that have reference
prices (implying the existence of specialized traders engaging in price arbitrage).
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e�ects of �rm-level shocks are accounted for by propagation one stage upstream or down-

stream of where the shock hits. Third, it is the dynamic propagation of �rm-level shocks that

is quantitatively important instead, as the predicted welfare e�ects can di�er dramatically

once the endogenous adjustment of the network is taken into account.

In modeling the dynamics of �rm-level trading relationships, this paper is most closely

related to the models of Ober�eld (2015) and Chaney (2014, 2015). In both of these models,

as in this paper, the network of �rm-level input-output linkages is an endogenous and dyna-

mic outcome of a stochastic process by which potential buyer-supplier pairs receive trading

opportunities over time. In Ober�eld (2015), however, the number of suppliers per �rm is

exogenously �xed, while in Chaney (2014, 2015), every �rm has the same number of suppliers

even though the number of suppliers per �rm grows over time. Relationship heterogeneity

is therefore shut down in these models.

In modeling the matching between buying and selling �rms, this paper is also closely

related to the models of Bernard, Moxnes, and Saito (2015) and Bernard, Moxnes, and

Ulltveit-Moe (2015). In both of these models, variation in the extensive margin of �rm-to-

�rm relationships is similarly generated by assuming that relationships are costly. However,

these papers address the static formation of relationships between one group of buyers and

one group of sellers, in essence capturing one tier of relationships between �rms instead of the

entire network. Supply chain heterogeneity and relationship dynamics are therefore absent

in these models.

In addition, this paper builds on the existing literature studying how microeconomic

shocks translate into aggregate �uctuations. Acemoglu et al (2012) argue that the network

structure of linkages between sectors matters for how idiosyncratic sector-level shocks trans-

late into aggregate movements, while Magerman et al (2016) make an analogous argument

by studying the production network between �rms. However, neither of these papers seeks

to explain what determines the network structure of the economy in the �rst place, nor how

the network structure evolves in response to changes in the economic environment. The

theory developed in this paper endogeneizes the formation of the production network, and

therefore allows us to address these questions.

In this last regard, the theory developed here is related to the broader theoretical lite-

rature on social and economic network formation, within which there are two qualitatively

di�erent approaches to modeling the formation of ties between atomistic agents.2 The �rst

approach posits an exogenous stochastic algorithm for the formation of links, and then pro-

ceeds to study the resulting network properties.3 As these models of network formation

2See Jackson (2005, 2011) for more in-depth surveys of the network formation literature.
3Well-known examples from the graph theory literature are the Erdös-Rényi (1959) random network, the
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are non-structural, however, they cannot be used to study how networks of trade between

�rms respond to changes in economic incentives. The second approach to modeling network

formation assumes that the creation and destruction of links are the result of strategic in-

teractions between agents.4 These game-theoretic approaches therefore explicitly take into

account optimizing behavior by the agents constituting the network, but the complexity of

solving these models beyond simple illustrative examples precludes quantitative analysis.

The modeling of network formation in this paper can thus be viewed as a combination

of the two approaches discussed above, or in the terminology of Currarini, Jackson, and

Pin (2010), a combination of �chance and choice�: �rms receive the opportunity to adjust

relationships according to an exogenous stochastic process, but the activation or termination

of a trading relationship conditional on having the opportunity to do so is an endogenous

outcome. This hybrid approach is similar in spirit to the dynamic network formation models

in Bala and Goyal (2000), Watts (2001), and Jackson and Watts (2002), but within the

context of a structural model of trade between heterogeneous producers that can be used for

quantitative analysis.5

The outline of this paper is as follows. I begin in section 2 by developing a static version

of the theoretical model, in which the set of buyer-supplier relationships is taken as given.

I characterize how �rm size, �rm-to-�rm trade volumes, and aggregate outcomes such as

household welfare depend on the existing production network, and show how to solve for

the market equilibrium of the model given any network of relationships. In section 3, I

then endogeneize the formation of linkages between �rms in the economy by introducing a

dynamic matching process between potential buyers and sellers, and discuss how to solve

for both the model's steady-state as well as its transition dynamics. In section 4, I discuss

the data used for structural estimation of the model's parameters, the simulated method of

moments estimation approach, and the �t of the model to data. Section 5 then discusses the

simulation exercises, and section 6 concludes.

Watts-Strogatz (1998) small world model, and the Barabási-Albert (1999) preferential attachment model.
In the economics literature, Atalay et al (2011) combine the random and preferential attachment algorithms
to model the buyer-supplier network in the US economy.

4Aumann and Myerson (1988) and Myerson (1991) model network formation as extensive-form and
simultaneous move games respectively. Jackson and Wolinsky (1996) adopt a cooperative game theoretic
approach, while Kranton and Minehart (2001) study buyer-seller networks in which ascending-bid auctions
are used to determine the formation of links.

5Bala and Goyal (2000), Watts (2001), and Jackson and Watts (2002) also assume for tractability that
agents are myopic in their decisions about which links to form, whereas �rms in this paper are forward-looking
and optimally select relationships taking into account their future costs and bene�ts.
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2 Static Model

To study the dynamic formation of �rm-to-�rm linkages, it is useful to �rst understand

how �rms behave conditional on these relationships. I therefore begin by describing a static

version of the model in which the network of trading relationships between �rms is �xed.

2.1 Model environment

The economy consists of a representative household and an exogenously-given unit con-

tinuum of �rms that each produce a unique good. Firms are heterogeneous over states

χ = (φ, δ), where φ and δ are what are referred to as the fundamental productivity of a �rm's

production process and the fundamental demand for a �rm's product respectively. The exo-

genous cumulative distribution function over �rm states is denoted by Gχ, with density gχ

and support Sχ a bounded subset of R2
+.

6 For brevity, I also refer to �rms with state χ as

χ-�rms.

2.1.1 Households

The representative household supplies L units of labor inelastically and has constant-

elasticity-of-substitution (CES) preferences over all goods in the economy, given by:

U =

[∫
Sχ

[δxH (χ)]
σ−1
σ dGχ (χ)

] σ
σ−1

(2.1)

Here, σ denotes the elasticity of substitution across varieties, and xH (χ) is the household's

consumption of χ-�rm varieties. Given the price pH (χ) charged by χ-�rms to the household,

household demand is given by:

xH (χ) = ∆Hδ
σ−1 [pH (χ)]−σ (2.2)

Note that conditional on prices, households demand a greater amount of goods for which

fundamental demand δ is higher. The household's demand shifter can then be written as:

∆H ≡ UP σ
H (2.3)

6Note that given the unit mass of �rms, integrals of all �rm-level variables over the distribution Gχ are
equal to both the average as well as the total value of that variable across �rms.
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and the consumer price index is equal to:

PH =

[∫
Sχ

[
pH (χ)

δ

]1−σ

dGχ (χ)

] 1
1−σ

(2.4)

2.1.2 Firm production technology

Each �rm produces its output using labor and the output of other �rms. However, �rm-

to-�rm trade is characterized by relationship frictions, such that every χ−�rm is only able

to purchase inputs from a given χ
′
-�rm with probability m

(
χ, χ

′)
. Given that there exists

a continuum of �rms of every state, m
(
χ, χ

′)
is also equal to the fraction of χ

′
-�rms that

supply a given χ-�rm, as well as the fraction of χ-�rms that purchase from a given χ
′
-�rm. I

refer to m as the matching function of the economy, which completely speci�es the extensive

margin of �rm-to-�rm trading relationships in the economy.

Given the matching function, the output of a χ-�rm is then given by the following

constant returns to scale CES production function:

X (χ) =

[
[φl (χ)]

σ−1
σ +

∫
Sχ

m
(
χ, χ

′
) [
αx
(
χ, χ

′
)]σ−1

σ
dGχ

(
χ
′
)] σ

σ−1

(2.5)

where l (χ) is the quantity of labor demanded and x
(
χ, χ

′)
is the quantity of each χ

′
-good

used as inputs. Note that the fundamental productivity φ of the �rm can be interpreted

as a measure of its labor productivity, while the parameter α captures how e�ciently the

output of one �rm can be transformed into the output of another �rm. To rule out explosive

production, it is assumed that α < 1.7 As is standard in the literature, I also assume that

the elasticity of substitution across inputs for intermediate demand is the same as that for

�nal demand.

Taking the wage as numeraire and given prices
{
p
(
χ, χ

′)}
χ′∈Sχ

charged by other �rms,

the marginal cost of each χ-�rm is therefore given by:

η (χ) =

[
φσ−1 + ασ−1

∫
Sχ

m
(
χ, χ

′
) [
p
(
χ, χ

′
)]1−σ

dGχ (χ)

] 1
1−σ

(2.6)

7When α ≥ 1, it becomes feasible for a pair of �rms that are connected to each other both as buyer
and seller to use only each other's output as inputs for production, thereby generating in�nite output and
pro�ts.
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while the quantities of labor and intermediate inputs demanded are given respectively by:

l (χ) = X (χ) η (χ)σ φσ−1 (2.7)

x
(
χ, χ

′
)

= X (χ) η (χ)σ ασ−1p
(
χ, χ

′
)−σ

(2.8)

Note that conditional on prices, �rms with greater fundamental productivity φ have lower

marginal costs.

2.1.3 Market structure and �rm pricing

The market structure for all �rm sales is assumed to be monopolistic competition. This

assumption a�ords the model a great degree of tractability, as it implies that regardless of

the complexity of the matching function, the markups that �rms charge over their marginal

costs are identical in equilibrium. This follows from the fact that every buyer (including

the household) faces a continuum of sellers, and that the demand functions (2.2) and (2.8)

exhibit a constant price elasticity. Consequently, the pro�t-maximizing price charged by

each �rm is equal to the standard CES markup over marginal cost:

pH (χ) = µη (χ) (2.9)

p
(
χ, χ

′
)

= µη
(
χ
′
)

(2.10)

where µ ≡ σ
σ−1

.

2.1.4 Market clearing

Market clearing for labor requires:∫
Sχ

l (χ) dGχ (χ) = L− Lf (2.11)

where Lf < L is the aggregate quantity of labor hired to maintain �rm-to-�rm relationships

in the economy. In this section, we take Lf as given, whereas in section 3 when the dynamic

formation of the production network is considered, Lf becomes an endogenous variable.

Finally, market clearing for the output of a χ-�rm requires:

X (χ) = xH (χ) +

∫
Sχ

m
(
χ
′
, χ
)
x
(
χ
′
, χ
)
dGχ (χ') (2.12)
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2.2 Static market equilibrium

2.2.1 Firm network characteristics

As described above, the parameters φ and δ capture exogenous productivity and demand

characteristics that are fundamental to the �rm, in the sense that they are independent of the

�rm's connection to other �rms. Firm-level outcomes in equilibrium, however, such as the

overall size and pro�t of a �rm, depend not only on a �rm's fundamental characteristics but

also on the characteristics of other �rms that it is connected to in the production network.

For an arbitrary matching function, a given �rm-level outcome may therefore in principle be

a function of very complicated moments of the production network, which would render the

model intractable.

To circumvent this problem, I rely on the structure of the CES production function

speci�ed in (2.5) to derive su�cient statistics at the �rm level, from which all variables of

interest can be easily computed. In contrast with �rm fundamental characteristics φ and δ,

it is therefore useful to characterize the static market equilibrium of the model in terms of

what I call a χ-�rm's network productivity and demand, de�ned respectively by:

Φ (χ) ≡ η (χ)1−σ (2.13)

∆ (χ) ≡ 1

∆H

X (χ) η (χ)σ (2.14)

Note that Φ (χ) is an inverse measure of a χ-�rm's marginal cost, while ∆ (χ) is the demand

shifter in a χ-�rm's intermediate demand function (2.8) relative to the household's demand

shifter ∆H .

Combining the demand equations (2.2) and (2.8), the �rm marginal cost equation (2.6),

the goods market clearing condition (2.12), and the pricing conditions (2.9) and (2.10), we

obtain the following system of equations that determines �rms' network characteristics:

Φ (χ) = φσ−1 + µ1−σασ−1

∫
Sχ

m
(
χ, χ

′
)

Φ
(
χ
′
)
dGχ

(
χ
′
)

(2.15)

∆ (χ) = µ−σδσ−1 + µ−σασ−1

∫
Sχ

m
(
χ
′
, χ
)

∆
(
χ
′
)
dGχ

(
χ
′
)

(2.16)

Note that (2.15) and (2.16) constitute a pair of decoupled linear functional equations in

Φ and ∆ respectively, and show how a �rm's network characteristics depend on both its

fundamental characteristics as well as on the network characteristics of its suppliers and

customers. Conditional on φ and δ, �rms that are connected to �rms with larger network

productivities and demands also have higher network productivities and demands themselves.
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Furthermore, since α < 1, µ > 1, andm
(
χ, χ

′) ≤ 1 for all
(
χ, χ

′) ∈ S2
χ, it is easily veri�ed

via Blackwell's su�cient conditions that (2.15) and (2.16) constitute decoupled contraction

mappings in Φ and ∆. The contraction mapping theorem therefore immediately implies the

existence and uniqueness of a solution to the �rm network characteristic functions, and also

guarantees that iteration on Φ and ∆ converges to this solution. This o�ers a tractable

method of solving for the model's static equilibrium regardless of the complexity of the

matching function.

Proposition 1. There exist unique network productivity and demand functions Φ : Sχ → R+

and ∆ : Sχ → R+ for any matching function m : Sχ × Sχ → [0, 1].

Note that we can also rewrite equations (2.15) and (2.16) to express the network pro-

ductivity and demand of a χ-�rm respectively as:

Φ (χ) =

∫
Sχ

[
∞∑
d=0

(
α

µ

)d(σ−1)

m(d)
(
χ, χ

′
)](

φ
′
)σ−1

dGχ

(
χ
′
)

(2.17)

∆ (χ) = µ−σ
∫
Sχ

[
∞∑
d=0

1

µd

(
α

µ

)d(σ−1)

m(d)
(
χ
′
, χ
)](

δ
′
)σ−1

dGχ

(
χ
′
)

(2.18)

where m(d) is the dth-degree matching function, de�ned recursively by:

m(0)
(
χ, χ

′
)

=

 1
gχ(χ)

, if χ = χ
′

0, if χ 6= χ
′

(2.19)

m(1)
(
χ, χ

′
)

= m
(
χ, χ

′)
(2.20)

m(d)
(
χ, χ

′
)

=

∫
Sχ

m(d−1)
(
χ, χ

′′
)
m
(
χ
′′
, χ
′
)
dGχ

(
χ
′′
)

(2.21)

Intuitively, one can think of m(d)
(
χ, χ

′)
for d ≥ 1 as the probability that a χ-�rm buys

indirectly from a χ
′
-�rm through a supply chain that is of length d. With this interpretation,

equations (2.17) and (2.18) show how the network characteristics of a �rm depend on its

connections to all other �rms via supply chains of all lengths. Note that the rate at which

the value of an indirect relationship decays with the length of the supply chain is decreasing

in input suitability α and increasing in the markup µ.

2.2.2 Firm size and inter-�rm trade

Once �rm network characteristics are known, the total revenue, variable pro�t, and va-

riable employment of a χ-�rm are completely determined up to the scale factor ∆H . These
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are given respectively by:

R (χ) = µ∆H∆ (χ) Φ (χ) (2.22)

π (χ) = (µ− 1) ∆H∆ (χ) Φ (χ) (2.23)

l (χ) = ∆H∆ (χ)φσ−1 (2.24)

Intuitively, if a �rm is twice as productive and produces a product for which there is twice as

much demand from the perspective of the entire networked economy, its revenue and pro�t

(gross of �xed operating costs) is quadrupled. Total output of a χ-�rm is also completely

determined by �rm fundamental and network characteristics up to a scale factor:

X (χ) = ∆H∆ (χ) Φ (χ)
σ
σ−1 (2.25)

as are the value and quantity of output traded from χ
′
- to χ-�rms:

r
(
χ, χ

′
)

=

(
α

µ

)σ−1

∆H∆ (χ) Φ
(
χ
′
)

(2.26)

x
(
χ, χ

′
)

=
ασ−1

µσ
∆H∆ (χ) Φ

(
χ
′
) σ
σ−1

(2.27)

2.2.3 Household welfare and demand

To complete characterization of the static market equilibrium, it remains to determine

the scale factor ∆H . From the labor market clearing condition (2.11) and the �rm variable

employment equation (2.24), this is given by:

∆H =
L− Lf∫

Sχ
∆ (χ)φσ−1dGχ (χ)

(2.28)

Equations (2.3) and (2.4) then give the CPI and household welfare respectively as:

PH = µ

[∫
Sχ

Φ (χ) δσ−1dGχ (χ)

] 1
1−σ

(2.29)

U = µ−σ (L− Lf )

[∫
Sχ

Φ (χ) δσ−1dGχ (χ)
] σ
σ−1∫

Sχ
∆ (χ)φσ−1dGχ (χ)

(2.30)

while household demand is given by:

xH (χ) = µ−σ∆Hδ
σ−1Φ (χ)

σ
σ−1 (2.31)
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Using equations (2.17) and (2.18) to substitute for Φ (χ) and ∆ (χ) respectively in equa-
tion (2.30), we can also express household welfare as:

U = (L− Lf )

[∫
Sχ

∫
Sχ

[∑∞
d=0

(
α
µ

)d(σ−1)
m(d)

(
χ, χ

′
)](

δφ
′
)σ−1

dGχ (χ) dGχ

(
χ
′
)] σ

σ−1

∫
Sχ

∫
Sχ

[∑∞
d=0

1
µd

(
α
µ

)d(σ−1)
m(d) (χ, χ′)

]
(δφ′)

σ−1
dGχ (χ) dGχ (χ′)

(2.32)

Note that the integrands in the numerator and denominator of (2.32) are identical except

for the term µ−d. An intuitive approximation to the value of household welfare is therefore:

U ≈ (L− Lf ) C (2.33)

where C is a measure of the total connectivity between �rms in the economy:

C ≡

[∫
Sχ

∫
Sχ

[
∞∑
d=0

(
α

µ

)d(σ−1)

m(d)
(
χ, χ

′
)](

δφ
′
)σ−1

dGχ (χ) dGχ

(
χ
′
)] 1

σ−1

(2.34)

Equation (2.33) shows how household welfare is greater when buyers of greater fundamental

quality δ are better connected with sellers of greater fundamental productivity φ
′
, with the

welfare cost of additional relationships captured by the term L − Lf . The approximation

(2.33) is exact only in the limit as µ → 1 (perfect competition), but when µ > 1, the same

general intuition applies.

2.2.4 Static market equilibrium de�nition

Given the matching function m and the associated quantity of labor Lf used for relati-

onship costs, we can now de�ne a static market equilibrium of the economy as follows.

De�nition 1. A static market equilibrium of the economy is a pair of �rm network cha-

racteristic functions Φ : Sχ → R+ and ∆ : Sχ → R+ satisfying equations (2.15) and

(2.16), a scalar household demand shifter ∆H satisfying (2.28), and allocation functions

{l (·) , X (·) , x (·, ·) , xH (·)} given respectively as side equations by (2.24), (2.25), (2.27), and

(2.31).

The computational algorithm used to solve for the static market equilibrium is described

in detail in section A.1 of the online appendix. Since Proposition 1 guarantees that the

network characteristic functions Φ and ∆ are uniquely determined, uniqueness of the static

market equilibrium follows immediately.

Proposition 2. The static market equilibrium exists and is unique.
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2.2.5 Static market equilibrium e�ciency

To characterize the e�ciency of the static market equilibrium, one can compare the

resulting allocation with the allocation that would be chosen by a social planner seeking to

maximize household welfare subject to the same exogenous matching function, production

technology, and resource constraints. The following proposition (proved in section B.1 of the

online appendix) summarizes the solution to the planner's problem.

Proposition 3. Given a matching function m : Sχ×Sχ → [0, 1], the network characteristic

functions under the social planner's allocation satisfy:

ΦSP (χ) = φσ−1 + ασ−1

∫
Sχ

m
(
χ, χ

′
)

ΦSP
(
χ
′
)
dGχ

(
χ
′
)

(2.35)

∆SP (χ) = δσ−1 + ασ−1

∫
Sχ

m
(
χ
′
, χ
)

∆SP
(
χ
′
)
dGχ

(
χ
′
)

(2.36)

and the allocations of output and labor are given by equations (2.24), (2.25), (2.27), and

(2.31) with µ set equal to 1.

This result implies that that any static market equilibrium allocation coincides with

the corresponding planner's allocation if and only if all �rms in the decentralized equili-

brium charge zero markups. With monopolistically-competitive �rms, the static market

equilibrium allocation is therefore ine�cient because of the distortion arising from double

marginalization. Note that the introduction of relationship frictions into the model through

the exogenous matching function m imposes no additional ine�ciency beyond this standard

distortion. Once the matching function is endogeneized in section 3, this will no longer

be true, as �rm's decisions about which relationships to keep active generate an additional

dynamic source of ine�ciency.

3 Dynamics and Endogenous Network Formation

As discussed above, solution of the model is straightforward given an arbitrary matching

function m. It is the determination of the matching function, however, that encapsulates the

decisions of �rms regarding which relationships to form with one another. In this section,

I introduce a dynamic process of �rm matching to study how the production network is

determined and how it evolves over time.
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3.1 Model environment

3.1.1 Households

Time is discrete and the representative household has preferences at date t de�ned by:

Vt =
∞∑
s=t

βs−tUs (3.1)

where Ut is given by the date t equivalent of (2.1). Since the household's value function is

linear in per-period utility, household decisions in every period are characterized exactly as

in the static model, and the discount factor β only a�ects how �rms (which are owned by

the household) discount the future.

3.1.2 Costly relationships

Observe that the CES production technology (2.5) implies two things. First, access to

additional suppliers always lowers the marginal cost of a �rm, which follows from the love of

variety feature of the production function.8 Second, access to additional customers always

increases a �rm's variable pro�t, which follows from production being constant returns to

scale. These forces generate incentives for �rms to form as many upstream and downstream

trading relationships as possible. To counterbalance these incentives and thereby model the

endogenous selection of �rm-to-�rm relationships, I therefore assume that relationships are

costly.9

In particular, it is assumed that in order for any buyer-seller relationship to be active at

date t, a �xed quantity of labor must be hired by the selling �rm, given by:

ft = ψξt (3.2)

The �rst term ψ is time-invariant, and captures the overall level of relationship costs in the

economy.10 The second term ξt, which I refer to as the cost shock, is a random variable

that is independent and identically distributed across �rm pairs and time, with cumulative

8Note that love of variety in the production technology can be reinterpreted as a �rm facing convex
costs of producing intermediate inputs using goods from any one supplier, which leads to the same demand
functions and marginal costs.

9As a practical example of the form that this cost might take, market analysts estimate that US �rms
spent more than $10bn in 2014 on relationship management software systems alone (Gartner, Inc. (2014a,
2014b)).

10Here ψ is assumed to be constant across all �rm pairs, but allowing dependence of this parameter on the
fundamental characteristics of the buying and selling �rms can easily be accommodated without increasing
the computational complexity of the model.
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distribution function Gξ and unit mean. The stochastic nature of ξt is what generates the

creation of new �rm-to-�rm linkages and the destruction of existing ones, even in steady-

state, and allows the model to address relationship dynamics.

Note that the assumption that the selling �rm always pays the full share of the relati-

onship cost is necessary to ensure that the constant-markup pricing described in section 2

remains optimal in the dynamic setting.11 Furthermore, this assumption implies that �rms

are always willing to form upstream relationships, which simpli�es analysis of the network

formation process, as this can then be considered solely from the perspective of potential

sellers.

In addition, the assumption that ξt exhibits no serial correlation is also made primarily

for tractability. While one might expect relationship costs to be persistent, allowing for ξt

to be serially correlated greatly increases the computational complexity of the model, as it

then becomes necessary to keep track of a state variable that varies across �rm pairs in each

period. Even with iid relationship cost shocks, however, the model generates non-trivial

predictions about the persistence of relationships via assumptions about how often �rms can

adjust relationships, described next.

3.1.3 Sticky relationships

It is assumed that �rm-to-�rm trading relationships are also temporally sticky in the

following sense: at each date, every relationship receives with probability 1 − ν the oppor-

tunity to be altered along the extensive margin.12 I refer to this as the reset shock, and

assume that it is independent across all �rm pairs. The assumption that �rms can only sell

to new customers with probability less than one is intended to model the fact that poten-

tial trading partners take time to meet and learn about the suitability of their output for

each other's production processes or to negotiate new trading arrangements. Similarly, the

assumption that �rms face frictions in terminating existing relationships may be interpreted

as either legal barriers to reneging on pre-negotiated contractual obligations, or more simply

as capturing the idea that winding down trading relationships also takes time.13

Although the model can easily accommodate di�erences in the probabilities with which a

�rm can create and destroy relationships, it is assumed for parsimony that these probabilities

11If a buying �rm had to pay a positive �xed cost and found a relationship undesirable given CES markup
pricing by the seller, the seller might then �nd it optimal to reduce its markup so as to incentivize the buyer
to form the relationship.

12That is, to be activated if previously inactive, and to be terminated if previously active.
13Surveys of US �rms show that the average business-to-business (B2B) deal requires approval from

more than �ve decision-makers (Schmidt et al (2015)), while data from Google reveal that employees tasked
with researching B2B purchases typically perform more than twelve online searches before engaging with a
potential business partner's website (Snyder and Hilal (2015)).
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are the same. Furthermore, note that regardless of whether a reset shock is received, selling

�rms can costlessly adjust prices every period, so that �rm-to-�rm relationships are sticky

only along the extensive margin.

3.2 Dynamic market equilibrium

3.2.1 Law of motion for the matching function

Under the assumptions described above, the matching function evolves according to the

following law of motion:

mt

(
χ, χ

′
)

= mt−1

(
χ, χ

′
)

(3.3)

+ (1− ν)
[
1−mt−1

(
χ, χ

′
)]
at

(
χ, χ

′
)

− (1− ν)mt−1

(
χ, χ

′
) [

1− at
(
χ, χ

′
)]

= νmt−1

(
χ, χ

′
)

+ (1− ν) at

(
χ, χ

′
)

where at
(
χ, χ

′)
is the endogenous probability that a χ

′
-�rm sells to a χ-�rm in period t

conditional on being given the opportunity to reset that relationship. The �rst term on the

right-hand side of (3.3) is the mass of relationships that were active in the previous period,

the second term is the mass of relationships that are newly created in period t, and the third

term is the mass of relationships that are terminated in period t. In any steady-state of the

model, the matching function is then simply given by:

m (χ, χ′) = a
(
χ, χ

′
)

(3.4)

Note that the acceptance probability at completely summarizes the dynamic strategic beha-

vior of �rms regarding which relationships to form and which to terminate. I refer to at as

the acceptance function, and turn now to its characterization.

3.2.2 Dynamic relationship activation decisions

As discussed above, the assumption that buying �rms pay none of the �xed relationship

cost implies that the desirability of a relationship depends only the pro�t that can be gene-

rated for the seller. For a χ
′
-�rm selling to a χ-�rm at date t, this pro�t value is the same

as in the static market equilibrium, given by equations (2.16) and (2.23) as:

πt

(
χ, χ

′
)

= µ−σ (µ− 1)ασ−1∆H,t∆t (χ) Φt

(
χ
′
)

(3.5)
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where Φt, ∆t, and ∆H,t are de�ned by the date t equivalents of equations (2.15), (2.16), and

(2.28).

Now, let V +
t

(
χ, χ

′|ξt
)
denote the value to a χ

′
-�rm of selling to a χ-�rm in period t

conditional on the realization of the relationship cost shock ξt, and let V −t
(
χ, χ

′)
denote the

value to the �rm of not selling.14 These value functions are given by the following Bellman

equations:

V +
t

(
χ, χ

′ |ξt
)

= πt

(
χ, χ

′
)
− ψξt (3.6)

+ β (1− ν)Et
[
V O
t+1

(
χ, χ

′ |ξt+1

)]
+ βνEt

[
V +
t+1

(
χ, χ

′|ξt+1

)]
V −t

(
χ, χ

′
)

= β (1− ν)Et
[
V O
t+1

(
χ, χ

′ |ξt+1

)]
+ βνV −t+1

(
χ, χ

′
)

(3.7)

where V O
t

(
χ, χ

′|ξt
)
denotes the value to a χ

′
-�rm of having the option to reset its relationship

with a χ-�rm customer given the relationship cost shock ξt:

V O
t

(
χ, χ

′|ξt
)

= max
{
V +
t

(
χ, χ

′ |ξt
)
, V −t

(
χ, χ

′
)}

(3.8)

Observe that if relationships are not sticky (ν = 0) or �rms are completely myopic (β = 0)

, then V +
t

(
χ, χ

′ |ξt
)
≥ V −t

(
χ, χ

′)
if and only if πt

(
χ, χ

′) ≥ ψξt. In these two special cases,

relationships are activated as long as the static pro�ts accruing to selling �rms cover the

relationship cost in each period. The probability that a χ
′
-�rm sells to a χ-�rm at date t

once it has the chance to do so is then given by:

ãt

(
χ, χ

′
)

= Gξ

[
πt
(
χ, χ

′)
ψ

]
(3.9)

The assumption of sticky relationships, however, makes the activation and termination deci-

sions facing a given �rm forward-looking. If a �rm chooses not to sell to a potential customer

despite having the chance to do so, it may be forced to wait several periods before being able

to activate the relationship. Similarly, if a �rm chooses not to terminate a relationship given

the chance to do so, it may �nd itself wishing to terminate the relationship in the future but

lacking the opportunity to do so.

To solve the dynamic activation decision problem of a �rm, it is instructive to �rst

consider a steady-state of the model in which the functions πt, V
+
t , V −t , and V O

t are all

14Note that since the relationship cost shocks are i.i.d. over time, the value of not selling at date t does
not depend on ξt. Furthermore, since there is no aggregate uncertainty in the model, this implies that there
is no uncertainty over the value of V −t at any date for any pair of �rms.
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constant. From equations (3.6) and (3.7), one can verify that:

E
[
V O
(
χ, χ

′|ξ
)]

=


π
(
χ,χ
′)−ψ

1−β , ∀
(
χ, χ

′) ∈ S2
+

0, ∀
(
χ, χ

′)
/∈ S2

+

(3.10)

where S2
+ ≡

{(
χ, χ

′) ⊂ S2
χ|π
(
χ, χ

′)− ψ ≥ 0
}
. That is, the option value of a relationship

is positive if and only if the pro�t from that relationship exceeds the relationship cost on

average. Substituting (3.10) into (3.6) and (3.7), we then �nd:

V +
(
χ, χ

′ |ξ
)
− V −

(
χ, χ

′
)

=
π
(
χ, χ

′)− βνψ
1− βν

− ψξ (3.11)

and therefore the probability that a χ
′
-�rm sells to a χ-�rm conditional on having the chance

to do so is given by:

a
(
χ, χ

′
)

= Gξ

[
π
(
χ, χ

′)
/ψ

1− βν
− βν

1− βν

]
(3.12)

Comparing this expression with equation (3.9), we again see that a relationship with a

greater ratio of pro�ts to the average relationship cost is more likely to form. Once the option

value of the relationship is taken into account, however, this e�ect becomes more pronounced,

with the pro�t-cost ratio scaled by a factor 1
1−βν . Note that relationships with π

(
χ, χ

′)
> ψ

have positive option values, and there is a positive probability that temporarily-unpro�table

relationships of this kind will still be activated because the relationship is pro�table enough

on average. Conversely, relationships with π
(
χ, χ

′)
< ψ have zero option value, and there is

a positive probability that temporarily-pro�table relationships will not be activated because

the relationship is not pro�table enough on average. Furthermore, observe that (3.12) implies

that �rm pairs with π
(
χ, χ

′)
< βνψ will never form trading relationships in steady-state.

To characterize the activation and termination decisions of �rms outside the steady-state,

one can then iterate forward on equations (3.6), (3.7), and (3.8), which yields the following

expression for the selling premium:

V +
t

(
χ, χ

′ |ξt
)
− V −t

(
χ, χ

′
)

= πt

(
χ, χ

′
)
− ψξt (3.13)

+
∞∑
s=1

(βν)s
[
πt+s

(
χ, χ

′
)
− ψ

]
Note that the right-hand side of (3.13) is simply the expected future stream of pro�ts net of

�xed costs until the relationship can be reset. The acceptance function at date t is therefore
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given by:

at

(
χ, χ

′
)

= Gξ

[
πt
(
χ, χ

′)
ψ

+
∞∑
s=1

(βν)s
[
πt+s

(
χ, χ

′)
ψ

− 1

]]
(3.14)

Evidently, solving for the acceptance function at date t outside of the steady-state requires

solving for the pro�t functions πt+s for all s ≥ 1. In section A.2 of the appendix, I describe

the computational algorithm that I employ to accomplish this, which involves iterating on the

path of pro�t functions {πt+s}Ts=1 for some value of T large enough such that mt+T is close to

the eventual steady-state matching function. This allows solution of the model's transition

dynamics between steady-states in about one hour on a standard personal computer.

3.2.3 Aggregate relationship costs

To close the model, it remains to determine the aggregate quantity of labor Lf,t used to

pay for relationship costs at date t, which enters into the labor market clearing condition

(2.11). Note that even though ξt is assumed to have a unit mean, �rms in the dynamic

market equilibrium select relationships based on the realized values of the relationship cost

shocks. Therefore, the total mass of labor used to pay for relationship �xed costs is given

by:

Lf,t =

∫
Sχ

∫
Sχ

[
νmt−1

(
χ, χ

′
)
ψ + (1− ν)ψξ̄t

(
χ, χ

′
)]
dGχ (χ) dGχ

(
χ
′
)

(3.15)

The �rst term in the integral re�ects the cost of relationships that cannot be reset (and hence

for which there is no selection on ξt), while the second term re�ects the cost of relationships

that are voluntarily selected by �rms. The term ξ̄t
(
χ, χ

′)
denotes the average value of the

idiosyncratic component of the cost shock amongst χ − χ′ �rm pairs that receive the reset

shock:

ξ̄t

(
χ, χ

′
)

=

∫ ξmax,t
(
χ,χ
′)

0

ξdGξ (ξ) (3.16)

and ξmax,t
(
χ, χ

′)
is the maximum value of the cost shock for which χ− χ′ relationships are

voluntarily selected:

ξmax,t

(
χ, χ

′
)

= max

{
πt
(
χ, χ

′)
ψ

+
∞∑
s=1

(βν)s
[
πt+s

(
χ, χ

′)
ψ

− 1

]
, 0

}
(3.17)

3.2.4 Dynamic market equilibrium de�nition

Having characterized the dynamics of �rm matching, we can now de�ne a dynamic market

equilibrium as follows.
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De�nition 2. Given an initial matching function m−1 : Sχ×Sχ → [0, 1], a dynamic market

equilibrium of the model is a list of sequences of matching functions {mt}∞t=0, acceptance

functions {at}∞t=0, pro�t functions {πt}
∞
t=0, and network characteristic functions {Φt,∆t}∞t=0,

as well as a list of scalars {∆Ht}∞t=0, all of which satisfy equations (2.15), (2.16), (2.28), (3.3),

(3.5), and (3.14). Given the matching function mt, the allocation at date t in a dynamic

equilibrium is as de�ned in the static model.

Similarly, we can de�ne a steady-state of the dynamic model as a dynamic market equi-

librium in which all variables in De�nition 2 are constant.

De�nition 3. A steady-state equilibrium of the dynamic model is a matching function m,

an acceptance function a, a pro�t function π, network characteristic functions {Φ,∆}, as well
as a scalar ∆H , all of which satisfy equations (2.15), (2.16), (2.28), (3.4), (3.5), and (3.12).

Given the steady-state matching function m, the allocation in a steady-state equilibrium is

as de�ned in the static model.

The computational algorithms used to solve for both the steady-state and transition dy-

namics of the dynamic market equilibrium are described in detail in section A.2 of the online

appendix. Note that once the matching function is endogeneized, Blackwell's conditions can

no longer be applied to establish the contraction mapping property of the network characte-

ristic equations (2.15) and (2.16). Therefore, establishing uniqueness of the solution to these

equations and hence of the dynamic market equilibrium is not trivial. Nonetheless, numeri-

cal solution of the steady-state of the dynamic market equilibrium is only marginally more

computationally demanding than solving for the static market equilibrium, and numerical

simulations reveal no counterexample to the supposition of uniqueness.

3.2.5 Dynamic market equilibrium e�ciency

To characterize the e�ciency of the dynamic market equilibrium, we can again compare

the resulting allocation with the allocation that would be chosen by a social planner subject

to the same static and dynamic constraints faced by �rms. Recall from Proposition 3 that

the static market equilibrium is ine�cient relative to the social planner's allocation because

of the monopoly markups charged by �rms. The same static ine�ciency characterizes the

market equilibrium allocation in each period of the dynamic model.

In the dynamic setting, however, an additional potential source of ine�ciency arises

because the criterion by which �rms select relationships may di�er from that employed by

the social planner. To study this, one can thus compare the cuto� value for the relationship

cost shock chosen by �rms, given by equation (3.17), to the cuto� value that would be
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chosen by the planner. In section B.2 of the appendix, I show that the planner's solution is

characterized by the following proposition.

Proposition 4. The cuto� value for the cost shock at date t chosen by the social planner is

given by:

ξSPmax,t

(
χ, χ

′
)

= max

π
SP
t

(
χ, χ

′
)

ψ
+

∞∑
s=1

(βν)s
(
Ct+s
Ct

)πSPt+s
(
χ, χ

′
)

ψ
− 1

 , 0
 (3.18)

where πSPt is the planner's analog of the pro�t function:

πSPt

(
χ, χ

′
)
≡
(
ασ−1

σ − 1

)
∆SP
H,t∆

SP
t (χ) ΦSP

t

(
χ
′
)

(3.19)

and Ct is a measure of the total connectivity between �rms in the economy:

Ct ≡

[∫
Sχ

∫
Sχ

[
∞∑
d=0

αd(σ−1)m
SP,(d)
t

(
χ, χ

′
)](

δφ
′
)σ−1

dGχ (χ) dGχ

(
χ
′
)] 1

σ−1

(3.20)

Comparing equations (3.17) and (3.18), we see that the criterion by which �rms select

relationships in the market equilibrium di�ers from the socially-optimal criterion in two

ways. First, because of the monopoly markup distortion discussed in section 2.2.5, the static

social value of a given relationship (measured by πSP ) di�ers from the value of pro�ts by

which selling �rms value relationships in the market equilibrium. Note that holding �xed

the network productivity of the selling �rm and the network quality of the buying �rm, the

functions πSPt and πt di�er only by a constant term µ−σ.

Second, the planner internalizes the e�ect of each relationship on all other �rms in the

production network whereas �rms in the market equilibrium do not. To better understand

the nature of this network externality, it is useful to consider the social value of a given

relationship at date t, which can be characterized by the static marginal change in household

utility resulting from a marginal increase in the mass of active relationships between �rms

of given states. In the proof of Proposition 4, I show that this is given by:

dUt
dm̄t (χ, χ′)

= Ct
[
πSPt

(
χ, χ

′
)
− ψ

]
(3.21)

where m̄t

(
χ, χ

′) ≡ mt

(
χ, χ

′)
gχ (χ) gχ

(
χ
′)

denotes the total mass of connections between

χ-�rm buyers and χ
′
-�rm sellers. From equation (3.21), we see that the social value of each

relationship is equal to the di�erence πSPt −ψ ampli�ed by the aggregate connectivity measure

Ct. Intuitively, when �rms are more connected to each other (Ct is larger), the activation
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or termination of a single relationship has larger aggregate e�ects. Since the ampli�cation

term Ct potentially varies across time, the planner values changes in the extensive margin of

�rm relationships accordingly. This e�ect appears through the term Ct+s
Ct in equation (3.18)

but is absent in �rms' decision making processes about which relationships to activate and

terminate at each date.

4 Data and Structural Estimation

4.1 Data

The data used for structural estimation of the model's parameters are sourced from two

overlapping datasets. The �rst is provided by Standard and Poor's Capital IQ platform,

which collects fundamental data on a large set of companies worldwide, covering over 99%

of global market capitalization. For a subset of these �rms, both public and private but

located mostly in the US, the database also records supplier and customer relationships

based on a variety of sources, such as publicly available �nancial forms, company reports,

and press announcements. From this database, I select all �rms in the continental US for

which relationship data is available and average revenue from 2003-2007 is positive. This

gives me a dataset comprising 8,592 �rms with $16.3 trillion in total revenue, accounting for

54% of total non-farm US business revenue.

The second dataset is based on information from the Compustat platform, which is also

operated by Standard and Poor. The Compustat database contains fundamental informa-

tion for publicly-listed �rms in the US, compiled solely from �nancial disclosure forms, and

includes �rms' own reports of who their major customers are. In accordance with Financial

Accounting Standards No. 131, a major customer is de�ned as a �rm that accounts for

at least 10% of the reporting seller's revenue. The Compustat relationship data has been

processed and studied by Atalay et al (2011), and contains 103,379 �rm-year observations

from 1979 to 2007.

Both the Capital IQ and Compustat datasets have their advantages and disadvantages.

The Capital IQ platform o�ers greater coverage of �rms with relationship data, as the data-

base includes both public and private �rms and records relationships based on sources other

than �nancial disclosure forms. However, the main drawback of the dataset is that it is

not possible to tell whether a particular relationship reported in a given year is still active

at a later date. The Compustat data, on the other hand, is in panel form and therefore

allows one to track the creation and destruction of trading relationships across time. The

main weakness of the Compustat data is the 10% truncation level, which implies that a
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�rm cannot have more than 10 customers reported in a given year, although there is still

substantial variation in the number of recorded suppliers a �rm has. For these reasons, I

treat the capital IQ data as cross-sectional and primarily use it to estimate the steady-state

of the model. I use the Compustat data to measure dynamic moments that are also used in

the estimation.

4.2 Parametric assumptions

To proceed with the structural estimation, I �rst impose two sets of parametric assumpti-

ons, one concerning the distribution of fundamental �rm states Gχ, and the other regarding

the distribution of the stochastic component of the relationship cost Gξ.

First, given that the empirical �rm size distribution has a log-normal shape (see Figure

2 below), I assume that the log of fundamental �rm productivities and demands, φ and

δ, are also jointly Gaussian. Note that in the empty network with m
(
χ, χ

′)
= 0 for all

χ, χ
′ ∈ Sχ, this assumption would imply that �rm revenue is exactly log-normally distributed.

Furthermore, one can easily verify that the model is invariant to jointly scaling the population

size L, the mean relationship cost ψ, and the mean of �rm fundamental characteristics. As

such, the mean of the distribution of �rm fundamental characteristics is normalized to zero.

In addition, I adopt a sparse parameterization of the model by assuming that φ and δ are

uncorrelated, and that their marginal distributions share the same variance parameter v2.

Parameterization of the �xed relationship cost is as follows. First, I assume that the

stochastic component of the cost shock ξt has a Weibull distribution with shape parameter

sξ. The Weibull distribution has a simple economic interpretation as the minimum amongst

a series of cost draws for a given relationship. The scale parameter of the distribution is

then chosen so that the mean of ξt is equal to one.

4.3 Estimation procedure

With these parametric assumptions, the model developed in sections 2 and 3 has 8 pa-

rameters: (1) the variance of fundamental �rm characteristics, v2; (2) the mean relationship

cost, ψ; (3) the shape of the relationship cost distribution, sξ; (4) the reset friction, ν; (5)

the household discount factor, β; (6) the labor supply, L; (7) the elasticity of substitution,

σ; and (8) the input suitability parameter, α.

I �rst describe the set of parameters for which values are not estimated from data.

First, observe from either equation (3.12) or (3.14) that the parameters β and ν cannot be

separately identi�ed, as it is only the product βν that matters for the dynamic optimization

problem of the �rm. Since the Compustat data is of annual frequency, I therefore set β = .95
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and estimate ν from data. Second, since the model is scale invariant, the labor supply L is

normalized to one. Third, since the Capital IQ and Compustat data do not contain trade

transaction values from which substitution elasticities are typically estimated, I set the value

of σ to 4, which is a typical value estimated in the literature.15

Finally, note that the input suitability parameter α can in principle be estimated from

the available data, as it has an intuitive connection to a moment that can be empirically

observed: when α is larger, more �rm-to-�rm relationships are likely to form. A potential

indeterminacy arises, however, from the fact that a large number of active relationships

can also be rationalized in the model by a low value of the mean relationship cost ψ. To

avoid this indeterminacy in the estimation procedure, I therefore normalize α to a value

arbitrarily close to but less than one, and rely on data to estimate the magnitude of the

mean relationship cost instead. This approach can be interpreted as assuming that the

cost of forming a relationship embodies not only the resources that need to be devoted

to managing that relationship, but also the costs of technological innovation - design of

prototypes and customization of products, for example - that are required for the seller's

good to be used in the buyer's production process.

The remaining 4 parameters of the model - v, ψ, sξ, and ν - are then estimated from the

Capital IQ and Compustat data using a simulated method of moments approach, targeting

the following four sets of moments. First, the distribution of �rm revenue normalized by its

mean. Second, the distributions of in-degree (number of suppliers) and out-degree (number

of customers). Third, the joint distributions of �rm size and relationship retention rates (the

fractions of suppliers and customers that are retained year-to-year). Fourth, the joint distri-

bution of �rm size and relationship creation rates (the fractions of suppliers and customers

that are new year-to-year). The �rst two sets of moments (static) are computed from the

Capital IQ data, while the remaining two sets of moments (dynamic) are computed from the

Compustat data.

Note that the dispersion of the �rm and degree distributions are directly in�uenced

by the dispersion of �rm fundamental characteristics v, while the dynamic moments are

directly impacted by the volatility of the relationship cost shock sξ and the reset friction ν.

These three parameters therefore have clear and intuitive connections to the data. The mean

relationship cost ψ, which controls the overall level of connectivity in the production network,

also has in principle a direct connection to the empirical average degree count. However, this

is complicated by the fact that the degree count is continuous in the model but discrete in

the data. To deal with this problem, I adopt a slight modi�cation to the standard simulated

method of moments approach in order to estimate ψ. Speci�cally, given a set of values for

15See for example Broda and Weinstein (2006).
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(v, sξ, ν), the estimation algorithm searches for the value of ψ that generates a labor share

of 0.7 in the model instead. In addition, the targeted degree distributions are normalized by

their mean. For a detailed description of the estimation algorithm, refer to section C of the

online appendix.

4.4 Estimation results

4.4.1 Parameter values

The estimated parameter values are shown in Table 1, together with standard errors

that are computed using a bootstrapping technique described in section C of the online

appendix. Figure 1 also shows contour plots of the objective function minimized by the

estimation algorithm in (v, sξ, ν) space. The objective function is well-behaved within a

neighborhood of the estimated parameter value set, and starting the estimation algorithm

from di�erent initial parameter values yields almost identical parameter estimates.

Parameter Value Standard Error

standard deviation of (φ, δ) distributions v .887 .029
mean relationship cost ψ .216 .027
shape of ξ distribution sξ .957 .135

reset friction ν .164 .011

Table 1: Estimated parameter values

4.4.2 Model �t

Targeted moments Figures 2-5 show the model's �t of the �rm size distribution, degree

distributions, relationship retention rates, and relationship creation rates respectively. First,

note that even though the distribution of fundamental �rm characteristics (φ, δ) in the model

is assumed to be log-normal, the resulting �rm size distribution deviates from log-normality

because the distribution of linkages is heterogeneous across �rms. Nonetheless, the model

generates a reasonably close approximation to the empirical �rm size distribution, with the

deviation growing larger only in the lower tail.

Second, the model matches well the shape of the normalized degree distributions, alt-

hough it underpredicts the extent of connectivity of the most connected �rms. Third, the

model's predictions are consistent with the empirical observation that larger �rms tend to

retain larger fractions of their customers and suppliers year-to-year, and also have smaller

fractions of new relationships relative to the size of their existing customer and supplier

bases. The model's �t of the joint distributions of �rm size and relationship retention and
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Figure 1: Contour plots of objective function in (v, sξ, ν) space
Asterisks indicate estimated parameter values
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Figure 2: Firm revenue distribution

creation rates is not exact, but it matches well the average relationship retention and creation

rates implied by these dynamics16

Untargeted moments As an overidenti�cation check on the model's predictions, I exa-

mine here the �t to moments that are untargeted in the estimation procedure. First, Figure

6 shows the �t of the �rm employment distribution. As with the empirical distribution of

�rm revenue, the distribution of employment in the dataset is well-approximated by a log-

normal distribution, which the model approximately replicates. Second, Figure 7 shows the

model's �t of the joint distributions of �rm size and degree. While the �t is not exact, the

model is nonetheless consistent with the empirical pattern that larger �rms tend to have

more customers and suppliers, as might be expected.

Finally, Figures 8 and 9 show the model's �t of the matching assortativity between �rms,

which characterizes whether larger and more connected �rms are connected to �rms that

are also larger and more connected (positive matching), or to �rms that are smaller and

less connected (negative matching). Here, the empirical pattern of matching assortativity

di�ers depending on whether matching is characterized by �rm size or by connectedness.

Measured by revenue, larger �rms tend to have larger customers and suppliers than smaller

�rms, so that matching is positive. However, measured by degree, �rms with more suppliers

16Mean retention rates are .59 for suppliers and .65 for customers in the data, .64 for suppliers and .66
for customers in the model. Mean creation rates are .44 for suppliers and .36 for customers in the data, and
.36 and .34 in the data.
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Figure 3: Firm degree distributions

Figure 4: Joint distribution of �rm size and supplier/customer retention rates
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Figure 5: Joint distribution of �rm size and fraction of new suppliers/customers

tend to have suppliers that have fewer suppliers themselves, and similarly with matching

to customers, so that matching assortativity in this case is negative. With the assumed

parametric form for the distribution of the relationship cost, the model replicates the latter

pattern but not the former.17

5 Counterfactual Exercises

I now employ the model to study the aggregate e�ects of �rm-level supply and demand

shocks, with the goal of understanding how accounting for relationship heterogeneity, sup-

ply chain heterogeneity, and relationship dynamics in the production network a�ects the

magnitudes of these e�ects. In what follows, I focus on a particular set of counterfactual

exercises. Starting from the steady-state of the model corresponding to the parameter values

estimated above, I �rst group the set of �rms in the economy according to deciles of the �rm

size distribution. The model is then simulated to study the e�ects on household welfare of

permanent and unanticipated changes in the fundamental productivities φ (supply shocks)

or fundamental demands δ (demand shocks) of each group of �rms.

As a standardization, the magnitude of the shock in each simulation is equal to one

17With alternative parametric choices for Gξ, the model can generate positive revenue matching. An
example is the Gompertz or log-Weibull distribution, although economic interpretation of this functional
form is less straightforward.
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Figure 6: Firm employment distribution

Figure 7: Joint distributions of �rm revenue and degree
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Figure 8: Firm matching assortativity (revenue)

Figure 9: Firm matching assortativity (degree)
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Figure 10: Baseline welfare e�ects of one standard deviation supply and demand shocks

standard deviation of the log of the relevant �rm characteristic distribution.18 Each shock is

also assumed to occur at t = 0 after all relationships in that period have been set, with �rms

allowed to adjust their sets of active relationships only from t = 1 onwards. This allows us to

disentangle the short-run e�ects of the shock (with the production network taken as �xed)

from its long-run e�ects (once endogenous relationship adjustment is taken into account).

The baseline results of these simulations are summarized in Figure 10, which shows

the percentage changes in the present value of welfare (integrated over the corresponding

transition paths) resulting from each counterfactual shock. As might be expected, shocks

to large �rms have much greater e�ects on household welfare than small �rms. We now

examine how the structure and dynamics of the production network matter for these welfare

responses.

5.1 Relationship heterogeneity

In both the model and the data, relationships are distributed heterogeneously across

�rms, with larger �rms connected to more buyers and suppliers than smaller �rms. To

examine the quantitative importance of accounting for this feature of the production network,

I consider an alternative model of production where the matching function is exogenously

given asm
(
χ, χ

′)
= m̄ for all

{
χ, χ

′} ∈ S2
χ, so that �rms are identical in their connectivity to

other �rms regardless of their characteristics. Note that this is equivalent to the assumption

18For example, a decline in φ for the set of �rms considered by a factor of e−v.
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that all �rms produce using labor and a common composite intermediate input, which is a

standard assumption in many models featuring intermediate input trade. One can therefore

interpret this as a �market model� of production instead of the �network model� developed

in this paper.

Taking this market model, I then re-estimate the relevant structural parameters using

the same simulated method of moments approach, targeting the �rm size distribution in the

data (which pins down the variance of �rm fundamental characteristics v2) and an aggregate

labor share of 0.7 (which pins down the common level of connectivity m̄). Simulations of

the market model are then used to compute the welfare e�ects of the same counterfactual

�rm-level shocks described above.

The results of these simulations are summarized in Figure 11, which shows for each coun-

terfactual shock the percentage changes in welfare in both the network and market models.

The key takeaway from this analysis is that accounting for the heterogeneous distribution

of relationships across �rms leads to lower predicted e�ects of shocks to small �rms and

larger predicted e�ects of shocks to large �rms. This is intuitive, as large �rms are central

to the production network not only because they have the best fundamental characteristics,

but also because shocks to these �rms a�ect a larger number of other �rms either upstream

or downstream. In terms of magnitudes, the deviations of the predicted welfare e�ects in

the network and market models can be large. The market model under-predicts the welfare

e�ects of shocks to �rms in the largest decile by between 10%− 20%, while over-predicting

the welfare e�ects of shocks to small �rms by even greater percentages.

5.2 Supply chain heterogeneity

Not only are relationships heterogeneously distributed across �rms, but �rms also occupy

di�erent positions in supply chains of varying lengths. A decline in a �rm's labor productivity,

for example, leads to an increase in its marginal cost and induces it to raise the price of its

output, which in turn leads to an increase in the marginal costs of �rms that it supplies and

hence to further changes in prices downstream. The structure of the model developed above

o�ers a simple way of decomposing the aggregate e�ects of such shocks into changes along

each stage of the relevant supply chains.

To illustrate, consider the short-run e�ects (�xed m) of a shock to �rm fundamental

productivities, whereby a �rm with original state {φ, δ} has post-shock state
{
φ̂ (φ) , δ

}
.

The immediate consequence of this shock is to change the marginal costs of the �rms directly

a�ected by the shock. If no �rms change their intermediate input prices in response, however,
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Figure 11: Market model versus network model welfare e�ects
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the change in network productivities is then given by:

Φ̂(0) (χ) = φ̂ (φ)σ−1 +

(
α

µ

)σ−1 ∫
Sχ

m
(
χ, χ

′
)

Φ (χ) dGχ

(
χ
′
)

(5.1)

where Φ is the pre-shock network productivity function and the superscript (0) denotes the

zeroth-order e�ect of the shock. Now, if only �rms that are directly a�ected by the shock

change their intermediate input prices, the �rst-order change in network productivities is

then given by:

Φ̂(1) (χ) = φ̂ (φ)σ−1 +

(
α

µ

)σ−1 ∫
Sχ

m
(
χ, χ

′
)

Φ̂(0) (χ) dGχ

(
χ
′
)

(5.2)

Extending this logic, the e�ect on �rm network productivities due to price changes occur-

ring up to n stages downstream of the set of �rms directly a�ected by the shock is given

recursively by:

Φ̂(n) (χ) = φ̂ (φ)σ−1 +

(
α

µ

)σ−1 ∫
Sχ

m
(
χ, χ

′
)

Φ̂(n−1) (χ) dGχ

(
χ
′
)

(5.3)

with initial condition Φ̂(−1) = Φ. Analogously, following a demand shock in which a �rm

with original state {φ, δ} has post-shock state
{
φ, δ̂ (δ)

}
, the e�ect on �rm network demands

due to propagation of the shock up to n stages upstream of the set of �rms directly a�ected

by the shock is given recursively by:

∆̂(n) (χ) = µ−σ δ̂ (δ)σ−1 + µ−σασ−1

∫
Sχ

m
(
χ
′
, χ
)

∆̂(n−1) (χ) dGχ

(
χ
′
)

(5.4)

with initial condition ∆̂(−1) = ∆.

In other words, each value function iteration (which is already employed to solve the

model in the �rst place) captures successively higher-order e�ects of shock propagation do-

wnstream or upstream. To quantify the importance of �rms' heterogeneous positions in their

respective supply chains, one can therefore simply study the e�ects of a shock at each stage

in this iterative process. The results of this exercise are summarized in Figure 12, which

shows the zeroth- and �rst-order e�ects relative to the overall short-run e�ect.

As might be expected, the zeroth-order e�ect provides a poor approximation to any

supply or demand shock. Perhaps somewhat surprisingly, however, the analysis also sug-

gests that the higher-order propagation of �rm-level productivity and demand shocks is

quantitatively unimportant. In particular, �rst-order approximations that account for shock
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propagation only one stage upstream or downstream typically deviate from the overall ge-

neral equilibrium short-run e�ect by less than 5%, and e�ects of subsequently higher order

quickly approach the total e�ect.

Intuition for this �nding is provided by the expressions for the �rm network characteristics

in equations (2.17) and (2.18) or for welfare in equation (2.32). From this, one observes that

the rate at which shocks to �rm fundamental characteristics decay downstream and upstream

of a supply chain are governed by the values of µ1−σ and µ−σ respectively.19 The downstream

decay parameter µ1−σ is strictly decreasing in σ, and even for a value of σ as low as 2, the

decay parameter is only as large as 0.5. The upstream decay parameter µ−σ, on the other

hand, is strictly increasing in σ, but even for a value of σ as large as 30, the decay parameter

is only as large as 0.36. Consequently, for reasonable values of σ, higher-order e�ects diminish

rapidly relative to the direct e�ect of the shock.

5.3 Relationship dynamics

While higher-order propagation of shocks upstream or downstream of supply chains ap-

pears to be quantitatively unimportant with the network held �xed, the same need not be

true of the dynamic propagation of shocks once the endogenous response of the production

network is taken into account. To examine this, I compare for each counterfactual simulation

the percentage changes in the present value of welfare following adjustment of the network

(the long-run e�ect) with the corresponding changes in the initial period of the shock with

the matching function held �xed (the short-run e�ect).

The results of this analysis are summarized in Figure 13. Here, we see that the predicted

welfare e�ects of �rm-level shocks can di�er greatly once the dynamic response of the network

is taken into account. For example, the welfare gains from positive supply and demand shocks

to the smallest decile of �rms are more than three times as large in the long-run versus the

short run (although in absolute terms both e�ects are small), and are 50% larger in the long-

run for similar shocks to �rms in the middle of the size distribution. The simulations suggest

that the discrepancy between the long- and short-run e�ects are greater in percentage terms

for smaller �rms, but since the absolute magnitude of the welfare response following shocks

to large �rms is typically also large, taking into account the dynamic network response can

be important in this case as well. For instance, the short-run welfare loss following a negative

supply shock to the largest decile of �rms leads to a 32% welfare loss in the short-run, but

adjustment of the network leads to a long-run welfare loss that is �ve percentage points

lower.

19The decay rate also depends on the value of ασ−1, but here we normalized α ≈ 1, which would make
the decay rate as slow as possible given other model parameters.
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Figure 12: Propagation of shock e�ects holding the production network �xed

36



Interestingly, one also observes that the ability of �rms to adjust trading relationships

in response to shocks need not imply that the welfare losses following negative shocks are

smaller in the short-run than in the long-run. In fact, we see from the simulations that for

negative shocks to smaller �rms in the economy, the converse is true. This follows from

the fact that the market equilibrium is ine�cient, as discussed above, and therefore there

is no guarantee that removing the constraint of a �xed network will lead to greater welfare.

In simulations of the planner's solution to the same supply and demand shocks, short-run

welfare is always weakly lower than long-run welfare.

6 Conclusion

This paper o�ers a new theory of how heterogeneous �rms create and destroy trading

relationships with one another, and how these �rm-level decisions in�uence the structure

of the production network and its evolution over time. Despite the rich heterogeneity in

relationships and endogenous dynamics, tractability is preserved, which enables structural

estimation of the model and �exibility in simulating a range of counterfactual exercises.

The numerical analysis highlights how the structure and dynamics of the production

network matter for the propagation of �rm-level supply and demand shocks, with three key

takeaways. First, the largest �rms are also the most connected, and taking this relationship

heterogeneity into account implies stronger e�ects of shocks to these �rms. Second, although

�rms are heterogeneous in their supply chains, supply and demand shocks dissipate quickly

upstream and downstream, and �rst-order approximations capturing e�ects only one stage

along a supply chain account for a large fraction of the short-run e�ects. Third, the dynamic

propagation of shocks is quantitatively important, as the aggregate e�ects of �rm-level shocks

can di�er markedly once the endogenous adjustment of the production network is taken into

account.

The issues discussed in this paper also provide scope for future research, with two areas in

particular warranting further investigation. First, given that the market equilibrium of the

model is shown to be ine�cient, a natural question is whether there are market structures

which lead to e�cient outcomes. In this paper, the assumption of monopolistic competition

and the associated constant markups is essential for tractability. Nonetheless, one must

wonder whether tractable bargaining games between a large number of �rms in a network

can be developed. Moving away from constant markups would also allow the study of

competition e�ects in production networks, which has not been addressed in depth in the

literature.

Second, the modeling of relationship stickiness in this paper is a reduced-form approach
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Figure 13: Long-run versus short-run welfare e�ects
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towards capturing the idea that various frictions impede the creation and destruction of

trading relationships. Understanding the microfoundations of these frictions requires further

work and would likely yield new insights. For example, if these frictions have to do with the

availability of information about potential buyers and sellers, then the frictions themselves

must be endogenous, since surely information propagates through the network in a way that

depends on its structure and dynamics.
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Online Appendix to �Firm-to-Firm Trade in

Sticky Production Networks�

A Computational Algorithms

A.1 Static algorithm

Given the matching function m and the associated quantity of labor Lf used for relati-

onship costs, the static market equilibrium speci�ed in De�nition 1 can be solved for using

the following algorithm.

1. Make initial guesses Φ̂ and ∆̂ for the network productivity and quality functions, and

iterate on equations (2.15) and (2.16) until convergence.

2. Solve for ∆H using equation (2.28).

3. Compute the allocation
{
l (χ) , X (χ) , x

(
χ, χ

′)
, xH (χ)

}
χ∈Sχ

using (2.24), (2.25), (2.27),

and (2.31) respectively.

Since the functional equations (2.15) and (2.16) constitute contraction mappings with Lip-

schitz constants
(
α
µ

)σ−1

and ασ−1

µσ
respectively, the iteration procedure in step 1 of the algo-

rithm is guaranteed to converge at those rates. In practice, numerical solution of the model

requires discretization of the state space Sχ into a mesh grid, of say Ngrid × Ngrid points.

One can then solve for the functions Φ (·) and ∆ (·) in step 1 at each point in the mesh grid,

and then use bilinear interpolation to obtain numerical approximations of these functions

for any desired value of χ ∈ Sχ.

A.2 Dynamic algorithm

I �rst describe the computational algorithm used to solve for the steady-state equilibrium

speci�ed in De�ntion 3, which is as follows.

1. Make initial guesses Φ̂ and ˆ∆H∆ for the network productivity function and the network

quality function scaled by the household demand shifter.

2. Compute the implied pro�t function π̃ from equation (3.5).
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3. Compute the implied matching and acceptance functions, m̃ and ã, from equations

(3.4) and (3.12).

4. Compute the implied network productivity and quality functions, Φ̃ and ∆̃, from equa-

tions (2.15) and (2.16).

5. Compute the implied household demand shifter ∆̃H from equations (2.28), (3.15),

(3.16), and (3.17), and obtain the implied guess for the scaled network quality function,
˜∆H∆ = ∆̃H∆̃.

6. Compute the residual R ≡ max {RΦ,R∆}, where:

RΦ ≡ max
χ∈Sχ

∣∣∣Φ̂ (χ)− Φ̃ (χ)
∣∣∣

R∆ ≡ max
χ∈Sχ

∣∣∣ ˆ∆H∆ (χ)− ˜∆H∆ (χ)
∣∣∣

If R > ε for some tolerance level ε, update the guesses for the network productivity

and scaled quality functions according to Φ̂
′

= Φ̃ and ˆ∆H∆
′

= ˜∆H∆, and repeat from

step 1 until R ≤ ε.

I now discuss the computational algorithm used to solve for the model's transition dynamics

as speci�ed in De�nition 2. Suppose that the matching and pro�t functions at date 0 are given

by m0 and π0 respectively, and that the economy is not in steady-state. The goal is to solve

for the model's transition path to the eventual steady-state characterized by the matching

function denoted by mss. Note that given the matching function mt, it is straightforward

to solve for the static market equilibrium at date t using the algorithm discussed in section

A.1. The challenge in solving the model's transition dynamics therefore lies in computing

the matching function at date t given the matching function at date t − 1. As we see from

equation (3.14), doing so requires solving for the pro�t functions {πt+s}s≥0. To accomplish

this, I employ an algorithm that iterates on the path of pro�t functions {πt}Tt=1 for some

value of T large enough such that the matching function at date T is close enough to the

eventual steady-state matching function mss. Formally, the algorithm is as follows.

1. Make a guess T̂ for the number of periods that it takes for convergence to the steady-

state.

2. Make an initial guess for the pro�t functions {π̂t}T̂t=2 (e.g. π̂t = 1
2

(π0 + πss) for all

t ∈
{

2, · · · , T̂
}
).

3. At each date t ∈
{

1, · · · , T̂
}
, given m̂t−1 (with m̂0 = m0):
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(a) Make initial guesses Φ̂t and ˆ∆H∆t for the network productivity function and the

network quality function scaled by the household demand shifter.

(b) Compute the implied pro�t function π̃t from equation (3.5).

(c) Compute the implied acceptance function ãt (3.12), setting πt+s = π̂t+s for s ∈{
1, · · · , T̂ − t

}
and πt+s = πss for s > T̂ − t.

(d) Compute the implied matching function m̃t from equation (3.3).

(e) Compute the implied network productivity and quality functions, Φ̃t and ∆̃t, from

equations (2.15) and (2.16).

(f) Compute the implied household demand shifter ∆̃H,t from equations (2.28), (3.15),

(3.16), and (3.17), and obtain the implied guess for the scaled network quality

function, ˜∆H∆t = ∆̃H,t∆̃t.

(g) Compute the residual R ≡ max {RΦ,R·}, where:

RΦ ≡ max
χ∈Sχ

∣∣∣Φ̂t (χ)− Φ̃t (χ)
∣∣∣

R∆ ≡ max
χ∈Sχ

∣∣∣ ˆ∆H∆t (χ)− ˜∆H∆t (χ)
∣∣∣

IfR > ε for some tolerance level ε, update the guesses for the network productivity

and scaled quality functions according to Φ̂
′
t = Φ̃t and ˆ∆H∆

′

t= ˜∆H∆t, and repeat

from step (a) until R ≤ ε, then set m̂t = m̃t.

4. Compute the residual:

Rπ ≡ max
t∈{2,··· ,T̂}

max
(χ,χ′)∈S2

χ

∣∣∣π̂t (χ, χ′)− π̃t (χ, χ′)∣∣∣
If Rπ > επ for some tolerance level επ, update the guesses for the pro�t functions

according to π̂
′
t = π̃t for all t ∈

{
2, · · · , T̂

}
, and repeat from step 2 until Rπ ≤ ε.

5. Compute the residual:

Rm ≡ max
(χ,χ′)∈S2

χ

∣∣∣m̂T̂

(
χ, χ

′
)
−mss

(
χ, χ

′
)∣∣∣

If Rm > εm for some tolerance level εm, increment T̂ and repeat from step 1.

As in solving for the static market equilibrium, numerical solution of the dynamic market

equilibrium requires discretization of the state space Sχ into a mesh grid of Ngrid × Ngrid
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points, and bilinear interpolation can then be used to obtain numerical approximations of

�rm-level equilibrium variables o� the grid points. Note that given the guess of future pro�t

functions, step 3 of the algorithm has the same computational complexity as solving for the

model's steady-state, and this part of the computation can be sped up by using the terminal

guesses at the previous date when initializing the guesses for the network characteristic

functions in step 3(a). Furthermore, upon increasing the guess for T̂ to T̂ + 1 in step

5, the new guess for the pro�t functions up to date T̂ used in step 2 can be set at the

previous terminal guesses for the pro�t functions up to that date, which also speeds up the

computation.

With a grid size of Ngrid = 20 and tolerance levels ε = επ = εm = 10−4, executing

the steady-state algorithm typically takes around 30 seconds, while solving for a transition

path such as those discussed in the main text typically takes about one hour on a standard

computer. Since estimation of the model's parameters only requires solving for steady-

state equilibria, the complexity of executing the dynamic algorithm does not factor into the

tractability of estimating the model.

B E�ciency of the market equilbrium

B.1 Static e�ciency

To chacaterize the e�ciency of the static market equilibrium, I compare the resulting

allocation with the allocation that would be chosen by a social planner whose goal is

to maximize household welfare subject to the production technology and market clearing

constraints. Given the matching function m, the social planner chooses the allocation

A ≡
{
l (χ) , X (χ) ,

{
x
(
χ, χ

′)}
χ′∈Sχ

, xH (χ)
}
χ∈Sχ

according to :

U = max
A

[∫
Sχ

[δxH (χ)]
σ−1
σ dGχ (χ)

] σ
σ−1

subject to the following constraints:

X (χ) =

[
[φl (χ)]

σ−1
σ +

∫
Sχ

m
(
χ, χ

′
) [
αx
(
χ, χ

′
)]σ−1

σ
dGχ

(
χ
′
)] σ

σ−1

(B.1)

X (χ) = xH (χ) +

∫
Sχ

m
(
χ
′
, χ
)
x
(
χ
′
, χ
)
dGχ (χ') (B.2)∫

Sχ

l (χ) dGχ (χ) = L− Lf (B.3)

4



where Lf is taken as given.

Denoting the Lagrange multipliers on constraints (B.2) and (B.3) by(
U

∆H

) 1
σ
η (χ)Gχ (χ) and

(
U

∆H

) 1
σ
respectively, the �rst-order conditions for the planner's pro-

blem can be expressed as:

xH (χ) = ∆Hδ
σ−1η (χ)−σ (B.4)

l (χ) = X (χ) η (χ)σ φσ−1 (B.5)

x
(
χ, χ

′
)

= X (χ) η (χ)σ ασ−1η
(
χ
′
)−σ

(B.6)

Substituting these equations into (B.1) and (B.2), one obtains:

Φ (χ) = φσ−1 + ασ−1

∫
Sχ

m
(
χ, χ

′
)

Φ
(
χ
′
)
dGχ

(
χ
′
)

(B.7)

∆ (χ) = δσ−1 + ασ−1

∫
Sχ

m
(
χ
′
, χ
)

∆
(
χ
′
)
dGχ

(
χ
′
)

(B.8)

where Φ (χ) ≡ η (χ)1−σand ∆ (χ) ≡ 1
∆H
X (χ) η (χ)σ.

Note that equations (B.4)-(B.8) are identical to equations (2.2), (2.7), (2.8), (2.15), and

(2.16) respectively only when µ = 1. This tells us that the static market equilibrium alloca-

tion is identical to the planner's allocation if and only if the markups charged by all �rms

are equal to one. With a �nite elasticity of substitution σ, the static market equilibrium

is therefore ine�cient relative to the planner's allocation because of the monopoly markup

distortion.

B.2 Dynamic e�ciency

To study the e�ciency properties of the dynamic market equilibrium, we consider the

problem of a social planner that chooses the set of relationships to activate and terminate

at each date so as to maximize the present discounted value of household welfare, subject

to the same dynamic frictions faced by �rms in the market equilibrium. From the results

in section B.1, we know that given the matching function mt and the total mass of labor

used to pay relationship costs Lf,t, household utility at date t under the planner's optimal

allocation can be written as:

Ut = (L− Lf,t) Ct (B.9)

where Ct measures the total connectivity of the static production network:
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Ct ≡

[∫
Sχ

∫
Sχ

[
∞∑
d=0

αd(σ−1)m
(d)
t

(
χ, χ

′
)](

δφ
′
)σ−1

dGχ (χ) dGχ

(
χ
′
)] 1

σ−1

(B.10)

=

[∫
Sχ

Φt (χ) δσ−1dGχ (χ)

] 1
σ−1

(B.11)

=

[∫
Sχ

∆t (χ)φσ−1dGχ (χ)

] 1
σ−1

(B.12)

and Φt and ∆t are given by the date t equivalents of equations (B.7) and (B.8) respectively.

To study the planner's dynamic optimization problem, let Vt (mt−1) denote the present

value of discounted household utility at date t under the planner's optimal dynamic allocation

when the matching function in the previous period is given by mt−1. At each date t, the

planner's choice about which relationships to activate and terminate is equivalent to a choice

over the values{ξmax,t (χ, χ′)}(χ,χ′)∈S2
χ
, where ξmax,t (χ, χ′) speci�es the maximum value of

the idiosyncratic relationship cost shock component for which χ− χ′ �rm pair relationships

are accepted. The Bellman equation for the planner's problem can therefore be written as:

Vt (mt−1) = max
{ξmax,t(χ,χ′)}(χ,χ′)∈S2χ

[Ut + βVt+1 (mt)] (B.13)

where the maximization is subject to ξmax,t
(
χ, χ

′) ≥ 0 for all t and
(
χ, χ

′) ∈ S2
χ, as well as

the following constraints:

Ut = (L− Lf,t) Ct (B.14)

Ct =

[∫
Sχ

Φt (χ) δσ−1dGχ (χ)

] 1
σ−1

(B.15)

Φt (χ) = φσ−1 + ασ−1
∫
Sχ

mt

(
χ, χ

′
)

Φt

(
χ
′
)
dGχ

(
χ
′
)

(B.16)

Lf,t = ψ

∫ ∫
Sχ

νmt−1

(
χ, χ

′
)

+ (1− ν)

∫ ξmax,t
(
χ,χ
′)

0

ξdGξ (ξ)

 dGχ (χ) dGχ

(
χ
′
)

(B.17)

mt

(
χ, χ

′
)

= νmt−1

(
χ, χ

′
)

+ (1− ν)Gξ

[
ξmax,t

(
χ, χ

′
)]

(B.18)

For brevity, denote ξ∗max,t ≡ ξmax,t
(
χ∗, χ∗

′)
and m∗t ≡ mt

(
χ∗, χ∗

′)
for a given �rm pair(

χ∗, χ∗
′)
. The �rst step in solving the dynamic planner's problem is to �nd an expression

for the derivative of Ut with respect to ξ∗max,t. First, we di�erentiate (B.17) with respect to
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ξ∗max,t to get:
dLf,t
dξ∗max,t

= (1− ν)H
(
χ∗, χ∗

′
, ξ∗max,t

)
ψξ∗max,t (B.19)

where H
(
χ, χ

′
, ξ
)
≡ gχ (χ) gχ

(
χ
′)
gξ (ξ) is the product of three probability densities. Next,

di�erentiating (B.18) for
(
χ, χ

′)
=
(
χ∗, χ∗

′)
with respect to ξ∗max,t gives:

dm∗t
dξ∗max,t

= (1− ν)Gξ

(
ξ∗max,t

)
(B.20)

Di�erentiating the functional equation (B.8) with respect to ξ∗max,t, we then obtain:

dΦt (χ)

dξ∗max,t
=
dΦt (χ)

dm∗t

dm∗t
dξ∗t

(B.21)

= (1− ν)Gξ
(
ξ∗max,t

)
× (B.22)ασ−1Φt

(
χ∗
′
)
1χ∗ (χ) + ασ−1

∫
Sχ

mt

(
χ, χ

′
) dΦt

(
χ
′
)

dξ∗max,t
dGχ

(
χ
′
) (B.23)

= (1− ν)H
(
χ∗, χ∗

′
, ξ∗max,t

)[ ∞∑
d=0

αd(σ−1)m
(d)
t

(
χ, χ

∗
)]

ασ−1Φ
(
χ∗
′
)

(B.24)

where 1χ∗ (χ) is the indicator function that equals 1 if χ = χ∗ and 0 otherwise. (Note
that equation (B.24) summarizes the e�ect of a change in the mass of connections between
χ∗ − χ∗

′
�rm pairs on the network productivities of all �rms that are downstream of χ∗

�rms.) Di�erentiating equation (B.14) with respect to ξ∗max,t and using (B.19) and (B.24),
we then get:

dUt
dξ∗max,t

= (1− ν)H
(
χ∗, χ∗

′
, ξ∗max,t

)
Ct
[
π̃t

(
χ∗, χ∗

′
)
− ψξ∗max,t

]
(B.25)

where we have de�ned:

π̃t

(
χ∗, χ∗

′
)
≡ ασ−1

σ − 1
∆H,t∆t (χ∗) Φt

(
χ∗
′
)

(B.26)

Note that conditional on the network characteristic functions, π̃t di�ers from the pro�t

function πt in the dynamic market equilibrium (given by equation (3.5)) only by a constant

fraction µ−σ.

The next step in solving the planner's problem is to derive an expression for the derivative

of the continuation value Vt+1 (mt) with respect to ξ∗max,t. First, we note that:

dVt+1

dξ∗max,t
= (1− ν)Gξ

(
ξ∗max,t

) dVt+1

dm∗t
(B.27)
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The envelope condition then gives us:

dVt+1

dm∗t
=
dUt+1

dm∗t
+ βν

dVt+2

dm∗t+1

(B.28)

Using the same approach as in solving for dUt
dξ∗max,t

, it is straightforward to show that:

dUt+1

dm∗t
= νGχ (χ∗)Gχ

(
χ∗
′
)
Ct+1

[
π̃t+1

(
χ∗, χ∗

′
)
− ψ

]
(B.29)

Combining (B.27), (B.28) and (B.29), we then obtain:

dVt+1

dξ∗max,t
= ν (1− ν)H

(
χ∗, χ∗

′
, ξ∗max,t

) ∞∑
s=0

(βν)
s Ct+1+s

[
π̃t+1+s

(
χ∗, χ∗

′
)
− ψ

]
(B.30)

Piecing together equations (B.25) and (B.30), we can �nally write the �rst-order condition

with respect to ξmax,t
(
χ, χ

′)
in the planner's problem as:

ξmax,t

(
χ, χ

′
)

= max

{
π̃t
(
χ, χ

′)
ψ

+
∞∑
s=1

(βν)s
(
Ct+s
Ct

)[
π̃t+s

(
χ, χ

′)
ψ

− 1

]
, 0

}
(B.31)

C Estimation Procedure

To estimate the key parameters of the model, a simulated method of moments technique is

employed. Targeted moments are computed from both the data and the model, as discussed

in section C.1. A pattern search algorithm is then executed to search over the parameter

space for the set of parameter values that minimizes a measure of distance between the

empirical and simulated moments, as discussed in section C.2.

C.1 Calculation of moments

C.1.1 Firm revenue distribution

In the data, I �rst compute the log of �rm revenue normalized by average revenue. This

normalization is employed due to the scale invariance of the model. I then compute the

empirical CDF of log normalized revenue, and use linear interpolation to obtain the value

of the inverse CDF at the midpoints of Nbin evenly-space quantile bins. The same moments

are calculated in the model, where �rm size is given by equation (2.22). This yields a vector

of moments Rm ≡{Rm
b }

Nbin
b=1 .
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C.1.2 Firm degree distributions

In the data, I �rst normalize the empirical in- and out-degree distributions by their mean.

As with the �rm size distribution, I then compute the empirical CDF of normalized degree,

and use linear interpolation to obtain the value of the inverse CDF at the midpoints of Nbin

evenly-spaced quantile bins. The same moments are calculated in the model, where the in-

and out-degree of a �rm are given respectively by:

Nsup (χ) =

∫
Sχ

m
(
χ, χ

′
)
dGχ

(
χ
′
)

(C.1)

Ncus (χ) =

∫
Sχ

m
(
χ
′
, χ
)
dGχ

(
χ
′
)

(C.2)

This yields two vectors of moments Nm
sup ≡

{
Nm
sup,b

}Nbin
b=1

and Nm
cus ≡

{
Nm
cus,b

}Nbin
b=1

.

C.1.3 Relationship retention and creation rates

In the data, I �rst consider the set of �rms Sint with positive in-degree for each year

t ∈ {1, · · · , Nyear − 1}, where Nyear is the number of years of observations in the Compustat

data. Within this sample, I compute the revenue quantile qinit of each �rm i ∈ Sint . In

addition, I also compute the fraction of each �rm's suppliers ρsup,it that are retained in year

t + 1. I then construct Nbin evenly-spaced quantile bins, and for each bin, I compute the

average of the mean supplier retention rate ρsup,it for all �rms that have revenue quantile qinit
falling within the bin, pooling the data across years. Analagous moments are computed for

the customer retention rates. The same moments are then computed in the model, where

the supplier and customer retention rates are given by:

ρsup (χ) =

∫
Sχ

[
νm
(
χ, χ

′)
+ (1− ν)m

(
χ, χ

′)
a
(
χ, χ

′)]
dGχ

(
χ
′)

Nsup (χ)
(C.3)

ρcus (χ) =

∫
Sχ

[
νm
(
χ
′
, χ
)

+ (1− ν)m
(
χ
′
, χ
)
a
(
χ
′
, χ
)]
dGχ

(
χ
′)

Ncus (χ)
(C.4)

For the relationship creation rates, moments are calculated from the data in the same fashion.

In the model, the relationship creation rates are given by:

ηsup (χ) =

∫
Sχ

(1− ν)
[
1−m

(
χ, χ

′)]
a
(
χ, χ

′)
dGχ

(
χ
′)

Nsup (χ)
(C.5)

ηcus (χ) =

∫
Sχ

(1− ν)
[
1−m

(
χ
′
, χ
)]
a
(
χ
′
, χ
)
dGχ

(
χ
′)

Ncus (χ)
(C.6)
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This yields four vectors of moments ρmsup ≡
{
ρmsup,b

}Nbin
b=1

, ρmcus ≡
{
ρmcus,b

}Nbin
b=1

, ηmsup ≡
{
ηmsup,b

}Nbin
b=1

,

and ηmcus ≡
{
ηmcus,b

}Nbin
b=1

.

C.2 Optimization algorithm

The procedure described above yields a vector of Nbin× 7 moments computed from both

the model and the data:

M ≡
[
Rm Nm

sup Nm
cus ρmsup ρmcus ηmsup ηmcus

]T
(C.7)

I then compute the distance between the vector of empirical moments Memp and its simulated

counterpart Msim according to:

D = (|Memp −Msiml|)T W (|Msim −Msim|) (C.8)

The weighting matrix W is computed as the pseudo-inverse of the covariance matrix of the

empirical moment vector, which is estimated by resampling with replacement 500 times from

the set of �rms for the Capital IQ dataset, and from the set of �rm-years for the Compustat

dataset.

Starting from an arbitrary initial choice of parameter values, I then execute a pattern

search optimization algorithm to search for the set of parameter values that minimize D .

Standard errors are computed using a bootstrap procedure, in which I repeat the estimation

procedure after replacing Mdata by the corresponding moments from a resampling of the

original data.
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