

Temporal Evolution of Community Structure in a Japanese Credit Network*

Hiroshi Iyetomi Department of Mathematics, Niigata University

Collabortors:

Yuki Matsuura¹ and Takashi lino²

¹Graduate School of Science and Technology, Niigata University

²Faculty of Science, Niigata University

^{*}Supported by RIETI Research Project "Dynamics, Energy and Environment, and Growth of Small- and Medium-sized Enterprises.

Introduction

- ➤ Credit relationship between banks and firms → Credit network
- > Risk spreads through the credit network
- > There is a fear that a global crisis may occur in the near feature

To accurately estimate such a chain propagation of risk, we have to analyze the credit relationship between banks and firms from a network theoretic point of view.

Major Economic Events in Japan

Year	Events
1990	Burst of economic bubble
1996~2002	Financial big bang
2001	Burst of internet bubble
2008	Lehman shock
2011	Great East Japan Earthquake

> Temporal change of number of banks of several categories

After Burst of economic bubble, banks got financially damaged and even some of city banks went bankrupt.

History of City Banks in Japan

Past

Dai-ichi Kangyo

Taiyo-Kobe

Tokyo

Fuji

Mitsui

Sumitomo

Sanwa

Industrial bank of Japan

Mitsubishi

Tokai

Financial

Big

Bang

(deregulation)

Mizuho

July 2013

Mizuho Corporate

Sumitomo-Mitsui

Tokyo-Mitsubishi UFJ

Merging of the City Banks

Dai-ichi Kangyo

Fuji

Industrial Bank of Japan

July 2013

Mizuho Mizuho Corporate

Taiyo-Kobe

Mitsui

Sumitomo

1990, 2001

Sumitomo-Mitsui

Mitsubishi

Tokyo

Tokai

Sanwa

Tokyo-Mitsubishi UFJ

Appendix A: Bond Rating of Major Banks:

The most conservative rating of S&P, Moody's, JCRI and IBCA

							Phase	I	Phase	II	Phase		III	
Old	New	3/91	3/92	3/93	3/94	3/95	3/96	3/97	3/98	3/99	3/00	3/01	3/02	
Name	Name	91	92	93	94	95	96	97	98	99	00	01	02	(Year)
IBJ	IBJ	AAA	AA	AA-	A+	A+	A	A	A-	BBB	BBB +	BBB +	A	
LTCB	Shinsei	AA	AA-	A	A-	A-	BBB +	BBB +	BBB-	BB-	BBB-	BBB-	BBB-	
NCB	Aozora	AA+	AA	A	A	A	BBB-	BB+	BB+	BB-	BB-	BB	BBB-	
DKB	Mizuho	AA	AA-	AA-	A+	A+	A	A	BBB +	A	A	A	BBB	
Sakura	Sakura	AA+	AA+	AA-	AA-	AA-	A-	A-	A-	BBB	BBB	Α-	A-	
Fuji	Mizuho	AA	AA-	A+	A+	A+	A-	А-	BBB +	A	A+	A+	BBB	
Mitsubishi	Tokyo- Mitsubishi	AA+	AA	AA-	AA-	AA-	A+	A+	A	A-	A-	A-	BBB +	
Asahi	Asahi	AA+	AA	A+	A	A	A	A	A	BBB	BBB	BB+	BB+	
Sanwa	UFJ	AA	AA	AA-	AA-	AA-	A	A	A	BBB +	BBB +	BBB +	BBB	
Sumitomo	SMBC	AA+	AA	AA-	A+	A+	A	A	A-	BBB	BBB	BBB +	BBB	
Daiwa	Daiwa	AA+	A+	A+	А-	A-	BBB +	BBB +	BBB-	BB+	BB+	BB+	BB+	
Tokai	Tokai	AAA	AA+	AA-	A	A	A	A	A	BBB-	BBB-	BBB	A	
Hokkaido- Takushoku	-	AA	AA	A	A		BBB-	BBB-	BBB-					
Tokyo	-	AA+	AA+	AA+	AA+		AA+	AA+						

Ref.: H. Miyajima and Y. Yafeh. RIETI Discussion Paper Series 03-E-010 (2003).

Data for Credit Network

Source: Nikkei NEEDS (http://www.nikkeieu.com/needs/Index.aspx)

Period: 1980~2012 (33 years)

Bipartite graph

Node 1

- Long-term credit banks
- City banks
- Regional banks
- Secondary regional banks
- Trust banks
- Life insurance companies
- Non-life insurance companies, etc.

Node 2

 Listed firms (Tokyo, Osaka, Nagoya, Kyoto, Hiroshima, Fukuoka, Hercules and Sapporo Stock Exchange Markets)

Data for Credit Network

Source: Nikkei NEEDS (http://www.nikkeieu.com/needs/Index.aspx)

Period: 1980~2012 (33 years)

Link with weight

 debtor-creditor relations between banks and firms with loan amounts.

We study the credit network thus formed by banks and listed firms in Japan.

Averaged Dependency of Firms on the Top Five Categories of Banks

- ➤ The predominance of **city banks** has been steadily increasing and even exceeded **50%** around 2000.
- Data with "unknown" financial sources are excluded.

Bidirectional links

Absolute loan amount

Banks 1 2 €10 €20 €40 1 2 3 Firms

Relative loan amount[1,2]

Dependency of banks on firms

Dependency of firms on banks

→ WF network

- [1] Y. Fujiwara, H.Aoyama, Y. Ikeda, H.Iyetomi and W.Souma. Economics E-Journal, Vol. 3, No.2009-7 (2009).
- [2] G. De Masi, Y. Fujiwara, M. Gallegati, B. C. Greenwald and J. E. Stiglitz, Evolutionary and Institutional Economics Review, Vol. 7, 209 (2010).

Purpose of This Study

- ➤ We analyze temporal change of the credit network between banks and firms over the last 30 years in Japan.
 - → Community detection

1. W_B network (Banks \rightarrow Firms)

 To find groups of banks which largely share risks due to failure of firms.

2. W_F network (Firms \rightarrow Banks)

 To find grousp of firms which largely share risks due to failure of banks.

3. Overlapping parts of the two community sets

To find cores of the risk concentration in the credit network

Community Detection

Community is a group of nodes which are tightly connected with each other through links.

Modularity Q is one of the criteria to evaluate how good is a given network division.

Banks

Firms

Modularity Q for a bipartite graph:

$$Q = \sum_{s=1}^{r} Q_{s} = \sum_{s=1}^{r} \left[\frac{l_{s}}{L} - \frac{d_{s}^{B} d_{s}^{F}}{L^{2}} \right]$$

Density of links in a

community

Expected density of links in a community

Q = 0.40

 $l_{s_{-}}$: number of links in community s

 $d_{s_{-}}^{B}$: sum of weights for banks in community s

 d_s^{F} : sum of weights for firms in community s

L: sum of weights in the whole network

r: total number of communities

Ref.: M. J. Barber. *Phys. Rev. E* **76**, 066102 (2007).

Example of Network Division

Which is the network division with the largest modularity?

Finding the optimum division → community structure in the network

Optimization of Modularity

Fast unfolding method

- 1. We assign different community to each node.
- 2. We randomly select a node.
- 3. We evaluate the gain of modularity $\Delta Q = Q' Q$ when the selected node was replaced to adjacent community of it. The community of selected node is replaced to the community of maximam of ΔQ .
- 4. We repeat step 2~4 until no further improvement of Q.

- Reconstruction of the network
 Community→Node, the Nodes in a
 community→Inner link of a
 community, links between
 communities→a link of between nodes
- 6. Repeat step 1~6
- [1] V. D. Blondel, J.-L. Guillaume, R. Lambiotte and E. Lefebvre, J. Stat. Mech.: Theory and Experiment, (2008), p. P10008.
- [2] M. J. Barber. *Phys. Rev. E* **76**, 066102(2007).
- [3] T. Ikeya and T. Murata. Computer Software, Vol. 28, No. 1, pp. 91{102, 2011.

Network visualization

The optimized configurations of the networks were obtained by molecular dynamics simulation in a

spring electric model[1]

WB network in 2011

WF network in 2011

[1] K. Kamehama, T. Iino, H. Iyetomi, Y. Ikeda, T. Ohnishi, H. Takayasu and M. Takayasu, *J. Phys.: Conf. Ser.*, **221** (2010), 012013.

Community structures

> Nodes in the same community are colored identically

The community detection works well!

From Firms to Banks

The results of community detection on WB network
We have generated 1000 samples for the community decomposition

The variations in the samples are so small \rightarrow The results are quite robust

Temporal Change of the Community Structure of the WB Network

- Belt-like structures
 - → Continuous evolution of the communities (birth, growth, death and decay)
- Most of the city banks belong to the largest community over 30 years

→The city banks largely share risks due to failure of firms.

Mizuho

Dai-ichi Kangyo, Mizuho△ Fuii ▽

Mizuho Corporate \diamondsuit

Hokkaido-Takushoku Bank

- Hokkaido-Takushoku bank was one of the city banks in Japan.
- It was the main bank in Hokkaido prefecture and went bankrupt in November, 1997.

Loan amount: 354 billion yen (1985); 13th in 13 city banks

How did Hokkaido-Takushoku bank behave in the credit network?

Behavior of Hokkaido-Takushoku Bank

➤ Hokkaido-Takushoku bank went away from the city bank community 6 years prior to its bankruptcy!

Promising applicability of the present analysis to risk control in financial systems!

From Banks to Firms

The results of community detection on WF network
We have generated 1000 samples for the community decomposition

The variations in the samples are so small \rightarrow The results are quite robust

Temporal Change of the Community Structure of the WF Network

> Each of the city banks forms its own community

Tracks of the City Banks: WF Network

Each of the city banks forms its own community.

Intersection of the Two Community Sets

Cores of the risk concentration in the credit network

Community set of WB network

Community set of WF network

Overlapping Parts between the WB and WF Communities

- > The credit network is fragmented into much smaller pieces.
- ➤ The relatively thick bands continuously exist
 →Those steady bands correspond to the communities individually led by the city banks

Mizuho

Dai-ichi Kangyo, Mizuho△ Fuji ▽ Mizuho Coporate ◇ Industrial bank of Japan

All of major three groups of city banks are depicted by different symbols

Change of the Community Structure on Reconstruction of the City Banks

2002 2003

City bank that let the community	Community size
Dai-ichi Kangyo	130
Fuji	101
Industrial Bank of Japan(IBJ)	67

From Dai-ichi Kangyo

number of nodes	City bank that let the community
51	Mizuho
27	
22	Mizuho Corporate
2	Sumitomo-Mitsui
1	

From Fuji com.

number of nodes	City bank that let the community
32	Mizuho Corporate
28	Mizuho
5	
4	Saitama Resona
3	Mitsubishi-Tokyo

From IBJ com.

number of nodes	City bank that let the community
36	Mizuho Corporate
6	
3	Mizuho
2	
2	

Summary

We have initiated a network-theoretic study on temporal change of the credit relationship formed by banks and listed firms in Japan.

- > WB network
 - →Nodes in a community share risk when firms go wrong.
 - →Existence of the large city bank community
 - → Detection of abnormal behavior of the city bank 6 years before its bankruptcy
- WF network
 - → Nodes in a community share risks due to failure of banks
 - → Each of the city banks has its own community
- Overlapping parts of the two community sets
 - →Cores of the risk concentration
 - →The respective communities of the city banks still survive.

We hope that the present results would open a new door for approaching to the systemic risk problem in financial systems.