Temporal Evolution of Community Structure in a Japanese Credit Network* # Hiroshi Iyetomi Department of Mathematics, Niigata University #### Collabortors: Yuki Matsuura¹ and Takashi lino² ¹Graduate School of Science and Technology, Niigata University ²Faculty of Science, Niigata University ^{*}Supported by RIETI Research Project "Dynamics, Energy and Environment, and Growth of Small- and Medium-sized Enterprises. ## Introduction - ➤ Credit relationship between banks and firms → Credit network - > Risk spreads through the credit network - > There is a fear that a global crisis may occur in the near feature To accurately estimate such a chain propagation of risk, we have to analyze the credit relationship between banks and firms from a network theoretic point of view. ## Major Economic Events in Japan | Year | Events | |-----------|-----------------------------| | 1990 | Burst of economic bubble | | 1996~2002 | Financial big bang | | 2001 | Burst of internet bubble | | 2008 | Lehman shock | | 2011 | Great East Japan Earthquake | > Temporal change of number of banks of several categories After Burst of economic bubble, banks got financially damaged and even some of city banks went bankrupt. ## **History of City Banks in Japan** Past Dai-ichi Kangyo Taiyo-Kobe Tokyo Fuji Mitsui Sumitomo Sanwa Industrial bank of Japan Mitsubishi Tokai **Financial** Big **Bang** (deregulation) Mizuho July 2013 Mizuho Corporate Sumitomo-Mitsui Tokyo-Mitsubishi UFJ ## **Merging of the City Banks** Dai-ichi Kangyo Fuji **Industrial** Bank of Japan July 2013 Mizuho Mizuho Corporate Taiyo-Kobe Mitsui Sumitomo 1990, 2001 Sumitomo-Mitsui Mitsubishi Tokyo Tokai Sanwa Tokyo-Mitsubishi UFJ Appendix A: Bond Rating of Major Banks: The most conservative rating of S&P, Moody's, JCRI and IBCA | | | | | | | | Phase | I | Phase | II | Phase | | III | | |------------------------|----------------------|------|------|------|------|------|----------|----------|----------|----------|----------|----------|----------|--------| | | | | | | | | | | | | | | | | | Old | New | 3/91 | 3/92 | 3/93 | 3/94 | 3/95 | 3/96 | 3/97 | 3/98 | 3/99 | 3/00 | 3/01 | 3/02 | | | Name | Name | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 00 | 01 | 02 | (Year) | | IBJ | IBJ | AAA | AA | AA- | A+ | A+ | A | A | A- | BBB | BBB
+ | BBB
+ | A | | | LTCB | Shinsei | AA | AA- | A | A- | A- | BBB
+ | BBB
+ | BBB- | BB- | BBB- | BBB- | BBB- | | | NCB | Aozora | AA+ | AA | A | A | A | BBB- | BB+ | BB+ | BB- | BB- | BB | BBB- | | | DKB | Mizuho | AA | AA- | AA- | A+ | A+ | A | A | BBB
+ | A | A | A | BBB | | | Sakura | Sakura | AA+ | AA+ | AA- | AA- | AA- | A- | A- | A- | BBB | BBB | Α- | A- | | | Fuji | Mizuho | AA | AA- | A+ | A+ | A+ | A- | А- | BBB
+ | A | A+ | A+ | BBB | | | Mitsubishi | Tokyo-
Mitsubishi | AA+ | AA | AA- | AA- | AA- | A+ | A+ | A | A- | A- | A- | BBB
+ | | | Asahi | Asahi | AA+ | AA | A+ | A | A | A | A | A | BBB | BBB | BB+ | BB+ | | | Sanwa | UFJ | AA | AA | AA- | AA- | AA- | A | A | A | BBB
+ | BBB
+ | BBB
+ | BBB | | | Sumitomo | SMBC | AA+ | AA | AA- | A+ | A+ | A | A | A- | BBB | BBB | BBB
+ | BBB | | | Daiwa | Daiwa | AA+ | A+ | A+ | А- | A- | BBB
+ | BBB
+ | BBB- | BB+ | BB+ | BB+ | BB+ | | | Tokai | Tokai | AAA | AA+ | AA- | A | A | A | A | A | BBB- | BBB- | BBB | A | | | Hokkaido-
Takushoku | - | AA | AA | A | A | | BBB- | BBB- | BBB- | | | | | | | Tokyo | - | AA+ | AA+ | AA+ | AA+ | | AA+ | AA+ | | | | | | | Ref.: H. Miyajima and Y. Yafeh. RIETI Discussion Paper Series 03-E-010 (2003). ## **Data for Credit Network** Source: Nikkei NEEDS (http://www.nikkeieu.com/needs/Index.aspx) Period: 1980~2012 (33 years) #### Bipartite graph #### Node 1 - Long-term credit banks - City banks - Regional banks - Secondary regional banks - Trust banks - Life insurance companies - Non-life insurance companies, etc. #### Node 2 Listed firms (Tokyo, Osaka, Nagoya, Kyoto, Hiroshima, Fukuoka, Hercules and Sapporo Stock Exchange Markets) ## **Data for Credit Network** Source: Nikkei NEEDS (http://www.nikkeieu.com/needs/Index.aspx) Period: 1980~2012 (33 years) #### Link with weight debtor-creditor relations between banks and firms with loan amounts. We study the credit network thus formed by banks and listed firms in Japan. # **Averaged Dependency of Firms on the Top Five Categories of Banks** - ➤ The predominance of **city banks** has been steadily increasing and even exceeded **50%** around 2000. - Data with "unknown" financial sources are excluded. ## **Bidirectional links** #### **Absolute loan amount** # Banks 1 2 €10 €20 €40 1 2 3 Firms #### **Relative loan amount**[1,2] Dependency of banks on firms Dependency of firms on banks → WF network - [1] Y. Fujiwara, H.Aoyama, Y. Ikeda, H.Iyetomi and W.Souma. Economics E-Journal, Vol. 3, No.2009-7 (2009). - [2] G. De Masi, Y. Fujiwara, M. Gallegati, B. C. Greenwald and J. E. Stiglitz, Evolutionary and Institutional Economics Review, Vol. 7, 209 (2010). ## **Purpose of This Study** - ➤ We analyze temporal change of the credit network between banks and firms over the last 30 years in Japan. - → Community detection #### 1. W_B network (Banks \rightarrow Firms) To find groups of banks which largely share risks due to failure of firms. #### 2. W_F network (Firms \rightarrow Banks) To find grousp of firms which largely share risks due to failure of banks. #### 3. Overlapping parts of the two community sets To find cores of the risk concentration in the credit network ## **Community Detection** **Community** is a group of nodes which are tightly connected with each other through links. **Modularity** Q is one of the criteria to evaluate how good is a given network division. **Banks** **Firms** Modularity Q for a bipartite graph: $$Q = \sum_{s=1}^{r} Q_{s} = \sum_{s=1}^{r} \left[\frac{l_{s}}{L} - \frac{d_{s}^{B} d_{s}^{F}}{L^{2}} \right]$$ Density of links in a community Expected density of links in a community Q = 0.40 $l_{s_{-}}$: number of links in community s $d_{s_{-}}^{B}$: sum of weights for banks in community s d_s^{F} : sum of weights for firms in community s *L*: sum of weights in the whole network *r*: total number of communities Ref.: M. J. Barber. *Phys. Rev. E* **76**, 066102 (2007). ## **Example of Network Division** Which is the network division with the largest modularity? Finding the optimum division → community structure in the network ## **Optimization of Modularity** #### Fast unfolding method - 1. We assign different community to each node. - 2. We randomly select a node. - 3. We evaluate the gain of modularity $\Delta Q = Q' Q$ when the selected node was replaced to adjacent community of it. The community of selected node is replaced to the community of maximam of ΔQ . - 4. We repeat step 2~4 until no further improvement of Q. - Reconstruction of the network Community→Node, the Nodes in a community→Inner link of a community, links between communities→a link of between nodes - 6. Repeat step 1~6 - [1] V. D. Blondel, J.-L. Guillaume, R. Lambiotte and E. Lefebvre, J. Stat. Mech.: Theory and Experiment, (2008), p. P10008. - [2] M. J. Barber. *Phys. Rev. E* **76**, 066102(2007). - [3] T. Ikeya and T. Murata. Computer Software, Vol. 28, No. 1, pp. 91{102, 2011. ## Network visualization The optimized configurations of the networks were obtained by molecular dynamics simulation in a spring electric model[1] **WB** network in 2011 WF network in 2011 [1] K. Kamehama, T. Iino, H. Iyetomi, Y. Ikeda, T. Ohnishi, H. Takayasu and M. Takayasu, *J. Phys.: Conf. Ser.*, **221** (2010), 012013. ## Community structures > Nodes in the same community are colored identically The community detection works well! ## From Firms to Banks The results of community detection on WB network We have generated 1000 samples for the community decomposition The variations in the samples are so small \rightarrow The results are quite robust # Temporal Change of the Community Structure of the WB Network - Belt-like structures - → Continuous evolution of the communities (birth, growth, death and decay) - Most of the city banks belong to the largest community over 30 years →The city banks largely share risks due to failure of firms. #### Mizuho Dai-ichi Kangyo, Mizuho△ Fuii ▽ Mizuho Corporate \diamondsuit ## Hokkaido-Takushoku Bank - Hokkaido-Takushoku bank was one of the city banks in Japan. - It was the main bank in Hokkaido prefecture and went bankrupt in November, 1997. Loan amount: 354 billion yen (1985); 13th in 13 city banks How did Hokkaido-Takushoku bank behave in the credit network? #### Behavior of Hokkaido-Takushoku Bank ➤ Hokkaido-Takushoku bank went away from the city bank community 6 years prior to its bankruptcy! Promising applicability of the present analysis to risk control in financial systems! ## From Banks to Firms The results of community detection on WF network We have generated 1000 samples for the community decomposition The variations in the samples are so small \rightarrow The results are quite robust ## Temporal Change of the Community Structure of the WF Network > Each of the city banks forms its own community #### **Tracks of the City Banks: WF Network** Each of the city banks forms its own community. ### **Intersection of the Two Community Sets** Cores of the risk concentration in the credit network Community set of WB network Community set of WF network # Overlapping Parts between the WB and WF Communities - > The credit network is fragmented into much smaller pieces. - ➤ The relatively thick bands continuously exist →Those steady bands correspond to the communities individually led by the city banks #### Mizuho Dai-ichi Kangyo, Mizuho△ Fuji ▽ Mizuho Coporate ◇ Industrial bank of Japan #### All of major three groups of city banks are depicted by different symbols # Change of the Community Structure on Reconstruction of the City Banks 2002 2003 | City bank that let the community | Community size | |----------------------------------|----------------| | Dai-ichi Kangyo | 130 | | Fuji | 101 | | Industrial Bank of Japan(IBJ) | 67 | #### From Dai-ichi Kangyo | number of
nodes | City bank that let the community | |--------------------|----------------------------------| | 51 | Mizuho | | 27 | | | 22 | Mizuho Corporate | | 2 | Sumitomo-Mitsui | | 1 | | #### From Fuji com. | number of
nodes | City bank that let the community | |--------------------|----------------------------------| | 32 | Mizuho Corporate | | 28 | Mizuho | | 5 | | | 4 | Saitama Resona | | 3 | Mitsubishi-Tokyo | #### From IBJ com. | number of
nodes | City bank that let the community | |--------------------|----------------------------------| | 36 | Mizuho Corporate | | 6 | | | 3 | Mizuho | | 2 | | | 2 | | ## Summary We have initiated a network-theoretic study on temporal change of the credit relationship formed by banks and listed firms in Japan. - > WB network - →Nodes in a community share risk when firms go wrong. - →Existence of the large city bank community - → Detection of abnormal behavior of the city bank 6 years before its bankruptcy - WF network - → Nodes in a community share risks due to failure of banks - → Each of the city banks has its own community - Overlapping parts of the two community sets - →Cores of the risk concentration - →The respective communities of the city banks still survive. We hope that the present results would open a new door for approaching to the systemic risk problem in financial systems.