The 2003 RIETI-Hosei-MIT IMVP Meeting **September 12, 2003**

Recent Development of Fuel Cell Vehicles and Related Issues in Japan

Yasuhiro Daisho
Dept. of Mech. Eng., Waseda University
daisho@waseda.jp

An Example of Monitored SPM Concentration and Wind Velocity Map on the Tokyo Metropolitan Web-site (23 p.m., Feb. 28, 2001)

Hear no diesel. See no diesel. Smell no diesel.

Estimated Annual Energy Consumption in the 20th Century

Worldwide CO₂ Emission Caused by Combustion, 1998

"The Action Plan for Developing and Disseminating Low Emission Vehicles"

~ MOLIT, METI and MOE in July, 2001 ~

Disseminating 10 million LEVs for practical use by the year 2010. Included are:

- a) CNG, Electric, Hybrid and Methanol Vehicles
- b) Vehicles meeting the 2010 fuel economy standard and 2000 LEV guideline.

Developing "Next-Generation LEVs" including:

- a) FC Vehicles (50,000 FCVs introduced by 2010)
- b) Super clean diesel, advanced hybrid system and DME engine for heavy duty vehicles

Policy measures will be taken to achieve the targets.

Expected Clean Energy Vehicles in 2010

Vehicle Type	2010 (present)
Electric Vehicles	110,000 (3,800)
Hybrid Electric Vehicles (including 50,000 FCVs)	2,110,000 (80,000)
Natural Gas Vehicles	1,000,000 (12,000)
LPG Trucks	260,000 (21,000)
Total	3,480,000 (117,000)

(Agency of Natural Resources and Energy, Japan, 2001)

Roles of Alternative Vehicles and Fuels

Low or Zero Emissions, High Fuel-Efficiency, Low CO₂ Emission, **Energy Diversity**, Renewable and/or Symbolic

Batteries, Electronic Control, Lightweight Materials, Devices, and Engines

Micro EV

Fuel Cell Vehicle

Hybrid Vehicle

Variations of the Electric Vehicle

Toyota's e-com

Honda's City pal

Nissan's Hypermini

Micro Electric Cars for Urban Use

Relative Load

Efficiency as a Function of Load

"Waseda Future Vehicle"

Toyota's Hybrid "Prius" (Dual Type)

 $L \times W \times H$: 4.275 1.695 1.490 m

Vehicle curb mass: 1,240 kg

Riding capacity: 5

Hybrid system: Dual

Fuel economy: 31 km/L (10-15 mode)

Engine displacement: 1,496 cc

Motor controller: IGBT inverter

Motor type: A.C. synchronous motor Maximum power: 58 kW

Battery type: Nickel-metal hydride

Number of batteries*voltage: 38*288V Battery capacity: 6.5 Ah

Price: \(\frac{\text{\frac{42}}{150},000}{\)

Toyota's "New Prius" in September, 2003

•L × W × H: 4.445 1.725 1.490 m Vehicle curb mass: 1,250 kg

•Riding capacity: 5 Hybrid system: Dual

•Fuel economy: 35.5 km/L (10-15 mode) Engine displacement: 1,496 cc

•Motor controller: IGBT inverter

•Motor type: A.C. synchronous motor Maximum power: 50 kW

•Battery type: Nickel-metal hydride

•Number of batteries: 28 Battery capacity: 6.5 Ah

•Price: ¥2,150,000-2,570,000

Honda's Hybrid
"Insight"
(Parallel Type)

L × W × H: 3.940 1.695 1.355m Vehicle curb mass: 820 kg

Riding capacity: 2 Hybrid system: Honda IMA(parallel)

Fuel economy: 35 km/L (10-15 mode) Engine displacement: 1,000 cc

Transmission: 5MT (or AT achieving 32 km/L)

Motor type: A.C. synchronous motor Maximum power: 10.0 kW/3000 rpm

Battery type: Nickel-metal hydride Battery capacity: 6.5 Ah

Number of batteries*voltage: 20*144V

Price: \(\frac{\pma}{2}\),100,000

Engine: 1.364 L Turbocharged DI Diesel

Fuel Economy:

47 km/L (Japanese 10-15 mode)

2.7 L/100 km (37 km/L, EC mode)

 $L \times W \times H$: 3.52 × 1.63 × 1.46 m

Vehicle Weight: 700 kg, Occupancy: 4

Toyota's Prototype Diesel Hybrid Passenger Car "ES³" (Oct., 2001)

Hybrid Vehicles Developed and Sold in Japan

Source: JEVA, 2002

Type	Size	Name	Maker	Range	Battery	Motor/System
	Compact	Prius	Toyota	31 km/L	Ni-MH	AC Synch/ P/S
		Insight (MT)	Honda	35	Ni-MH	AC Synch/ P
PC		Insight(AT)	Honda	32	Ni-MH	AC Synch/ P
		CIVIC-H	Honda	29.5	Ni-MH	AC Synch/ P
	Medium	(Tino-H)	Nissan	20	Li-ion	AC Synch/ P
		Estima-H	Toyota	18	Ni-MH	AC Synch/ P/S
		Crown(Mild)	Toyota	15	Lead	AC Synch/ P
Truck	(3.5 t)	Ranger	Hino	8 (60km/h)	Lead	AC Induct/ P
	Micro	Coaster	Toyota	5.3	Lead	AC Induct/ S
Bus	Transit	Blue Ribbon city	Hino	30%	Ni-MH	AC Induct/ P

Note: Micro hybrid PCs and HD hybrid trucks are being developed by Japanese automakers

The Inside of a PEM Fuel Cell

Prototype FCVs Developed in Japan

1996-2001 Source: JEVA, 2002

Automaker	1996	1997	1998	1999	2000	2001	2002
Daihatsu				M		M	
Toyota	Н	M				ннвс	НВ
Nissan		M		M	Н		Н
Fuji						M	
Honda				MHM	Н	н н	Н
Mazda		Н		Н		M	
Mitsubishi				M		(M)	

Fuels- M: Methanol, H: Hydrogen,

C: Clean Hydrocarbon **B:** FC Bus (Hydrogen)

A Typical Fuel Cell System and Key Components

Tank-to-Wheel Efficiency in the FC System

(The Committee Report on FC Development Strategies, Agency of Natural Resources and Energy, August, 2001)

Technical Targets for Developing FCVs (1)

Time Frame: Prototype Demonstration in 2003-2004 Commercialization after 2010

Component	Targets
FC Stack	Efficiency: >65% at 25% load (LHV) (Vehicle based efficiency: >60%) Power Density: >1.3 kW/L Durability: >5000 hours for passenger cars 10,000-20,000 hours for buses 30,000-60,000 cycles for 10 years
Reformer	Efficiency: 83% (LHV), Higher load response Volume: <30 L/unit, Cost<\mathbf{\pm}1,000/kW
H2 Storage	H2: 5kg, Driving Range: >500 km Volume: <80 L, Weight: <90 kg
System Cost	<¥5,000/kW including a reforming system

(The Committee Report on FC Development Strategies, Agency of Natural Resources and Energy, August, 2001)

Technical Targets for Developing FCVs (2)

Material	Present Future target (2010)
Membrane	Temp. resistance: 80 120-150
	Cost: $$50,000-150,000/m^2$ $$3,000-5,000/m^2$
	Lower humidification
Electrode	Pt: 2-4 g/kW 0.2-0.4 g/kW
Catalyst	Cost: ¥4,000-8,000/kW ¥400-800/m ²
·	CO resistance: 10 ppm 10-50 ppm
Gas Diffusion	Higher durability, Low cost alternatives
Layer	Carbon paper
, and the second	Cost: $>$ ¥1,000/m ² ¥500/m ²
Separator	Carbon graphite
	Thickness: 1-5 mm <1.0 mm
	Cost: >\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

(The Committee Report on FC Development Strategies, Agency of Natural Resources and Energy, August, 2001)

"Fuel Efficiencies in PEM Fuel Cell"

Fuel Source	Natural Gas	Natural Gas	Crude Oil
Product	H 2	Methanol	Gasoline
Production %	60 ~ 72	67 ~ 71	85 ~ 90
Reforming % (Temperature)	-	78 ~ 85 (200 ~ 300)	75 ~ 83 (700 ~ 800)
Fuel Cell %	55 ~ 60	50 ~ 55	45 ~ 50
Net %	33 ~ 43	26 ~ 33	29 ~ 37

(ExxonBobil)

Overall Efficiencies (estimated by Toyota)

Type	Fuel		hicle			Over		0/
(passen- ger car)	well-to-ta	nk tank	-to-well %	0	10	20 20	wheel 30	40
Gasolin	ie V	88	16					
Electric	e V	26	80					
Gasolin	e HEV	88	30					
FCV (p	resent)	58	50					
(t	arget)	70	60					

How to store H₂?

	Advantage and Disadvantage
Compressed (at 25-70 MPa)	Lower cost More practical Lower safety Lower energy density
Liquefied (at -250)	Highest energy density High heat insulation Boil-off Loss High energy loss
Adsorbed (at 1.0-5.0 MPa)	Lower pressure and safer Lower energy density (by wt.) Longer refueling time Adsorbents to be explored

- *Announced by Bush in January, 2002
- * CAR: Cooperative Automotive Research by Big 3 and DOE in place of "PNGV"
- * Vehicles: LD trucks and passenger cars
- * Freedom:
 - from foreign oil dependence, from pollutant emissions, of vehicle choice, of mobility, and of fuel affordability and convenience
- * Development of Fuel Cell Systems and Fuel Stations

Technical Targets of "FreedomCAR"

- * Peak overall system efficiency: 45%
- * Cost: \$45/kW by 2010 and \$30/kW in 2015
- * Hydrogen storage systems:
 - '6 wt%, specific energy of 2000 Wh/kg,
 - energy density of 1100 Wh/liter at \$5/kWh
- * High volume vehicle production:
 - ·50% weight reduction, affordability, and
 - 'increased use of recyclable/renewable materials

Annual Governmental Budget for Fuel Cell-Related R&D in Japan (METI)

Major Projects and the Budget for Fuel Cell R&D in Japan (METI)

Budget: FY2002/FY2003 (Billion Yen)

■ R&D of:	
*PEFC Systems	5.3/5.11
*Hydrogen Safety Technologies	0/4.55
*Lithium-ion Batteries	1.0/1.95
*Stationary SOFC and MCFC Systems	3.3/3.59
*Mobile Direct-Methanol FC Systems	0/0.22
■ Testing On-road FCVs and	
Stationary FC Systems	2.5/3.86
■ Dissemination of PEFC Systems	3.1/3.87

A Scenario for Disseminating FCVs and Hydrogen Infrastructure

2005 2010 2020

FCV Numbers	50,000		5,000,000
FCV Types P	ablic PCs & Buses		Private PCs
		Light Tru Commer	icks & cial PCs
■ H2 Station	100 300 (80%-2		5-20%) 500 Nm ³ /h
<u>Capacity</u>		500 (20%)	-80%)
■ H2 Supply	200 Million		6.2 Billion Nm ³
■ Station Number	Hundreds		3,300
H2 Price			60 Yen/Nm ³

Japan Hydrogen & Fuel Cell Demonstration Project, "JHFC"

- Fiscal 2002-2004 by METI
- On-Road Tests of Fuel Cell Vehicles
- 'Automakers: Toyota, Honda, Nissan, GM and DC
- 'Five Different Hydrogen Refueling Stations for: Compressing and Liquefying Hydrogen and Reforming LPG, Desulfurized Gasoline and Methanol
- Purpose: to acquire and analyze data on vehicle performance, reliability, environmental characteristics and fuel economy as well as on the refueling stations

HONDA

Max. Speed: 150 km/h

Motor Power: 60 kW

CH2: 35 MPa (156.6 L)

Occupancy: 4

FC Power: 78 kW

Range: 355 km

(Source: http://www.jhfc.jp/fcv001_en.html)

FCVs Participating in "JHFC"

(Source: http://www.jhfc.jp/fcv001_en.html)

Max. Speed: 80 km/h, Max.

Motor Power: 80 kW \times 2, FC Power: 90 kW \times 2

Fuel: Compressed H2 at 35 MPa, MHNi batteries

Occupancy: 60 Passengers, Low Floor Deck

Hydrogen Refueling Stations for "JHFC"

Hydrogen Production	Location	Company	
Liquefied H2 Storage	Ariake,	Iwatani Int. and	
	Tokyo	Showa Shell	
LPG Reforming	Minami-senju,	Tokyo Gas and	
	Tokyo	Nippon Sanso	
Desulfurized Gasoline	Daikoku-cho,	Cosmo Oil	
Reforming	Yokohama		
Naphtha Reforming	Kami-shirane-cho,	Nippon Oil	
	Yokohama		
Methanol Reforming	Kojima-cho,	Air Liquid Japan	
	Kawasaki		
Liquefied H2	Kimitsu,	Nippon Steel	
Production	Chiba		

A Hydrogen Station Constructed for "JHFC"

Problems with FCVs to be resolved

- What is the best fuel from the viewpoints of "well-to-wheel" energy and environmental impact? · · · · Hydrogen, Clean Gasoline, Natural gas, Methanol or Renewables?
- Improving cold start and war-up performance
- Developing and improving key components
- Developing fuel, air, water and thermal management systems
- Overcoming reliability, safety and cost issues
- Enhancing public awareness

12 EIA World Conventional Oil Production Scenarios

Note: U.S. volumes were added to the USGS foreign volumes to obtain world totals.

Processes for Producing Alternative Fuels

Assessment

Options with potential over the next 20 years

Only three options appear to have a volume potential of more than 5% fuel consumption. If <u>active policy</u> is decided to promote them, their **optimistic** development scenario is (% fuel consumption):

	Biofuel	Natural gas	Hydrogen	Total
2005	2			2
2010	6	2		8
2015	(7)	5	2	14
2020	(8)	10	5	(23)

Possibility of FCV's Cost Reduction by Mass Production

Reserves of Platinum-Group Metals

Country	Reserves, tons	
United States	800	
Canada	310	
Russia	6,200	
South Africa	63,000	
Other Countries	700	
World total (rounded)	71,000	

100 g/vehicle are available.

(Source: U.S. Geological Survey, 2001)

- Public Acceptance -

- * Performance * Fuel economy
- * Affordability

* Safety

* Reliability * Zero-emission

(5,000,000 FCVs in 2020?)

< Cruising > ~Commercialized~ 20X0

- Policies -

- * Incentives * Subsidies
- * Deregulations * Public awareness
- * Standardizations

< Taxing on the runway > ~Demonstration~ 2002 - 2010(50,000 FCVs?)

4 Ascending Coexisting, competing and comparing with conventional vehicles and fuels for decades

How to Create Transitional Processes for Introducing Fuel Cell Vehicles

Future Relative Importance of Policy and R&D for EVFs

Three Key Issues for Introducing Low Emission and Energy Efficient Vehicles

Collaboration is important!

"Chicken and the Egg" Dilemma