Threats to Japanese Industrial Innovation Systems and the Need for New Direction

Yaichi Aoshima Institute of Innovation Research Hitotsubashi University

Feb. 12, 2003

Some Characteristics of Innovation Systems in Japanese Firms

- Long-standing in-house development facilitated by low labor mobility
 - Existing firms change, evolve, and overcome technological discontinuity rather than new firm come in (e.g. Digital Still Camera).
- Close collaborations within firms and between related firms
 - In-house cross-functional integration
 - Close supplier relationships (keiretsu system)
- High skilled production and engineering workers
 Feb. 12, 2003
 THE JAPAN-U.S. ENTREPRENEURIAL

A History of DSC Industry

- Electronics makers, such as NEC, Toshiba, Sony, and Matsushita, took initiatives to develop CCD in 70s right after invention at Bell lab.
- Some camera and film makers started to develop electric still cameras either in the late 70s or early 80s.
- Camera or film makers took initiatives in commercializing electric camera through the late 80s and early 90s.
- Casio hit the market in 1995, with QV-10

Feb. 12, 2003

THE JAPAN-U.S. ENTREPRENEURIAL FORUM

How electric still camera engineers survived?

- Late 70s: Start R&D either for movie or electric still cameras
- Early 80s:MAVICA Shock Shift to electric still cameras
- Failure of MAVICA system: People moved to R&D dpt. or integrated into video movie businesses.
- Failure of movie businesses Still Camera
- QV-10 hit the market rushing into DSC

Most people survived for more than 20 years. Technologies were retained. THE JAPAN-U.S. ENTREPRENEURIAL

Threats to the Long-Term R&D

- Low economic growth
- High pressure to financial returns

 Withdrawing from the uncertain R&D
- Accelerated product cycle
 - Researchers and engineers devote their time to routine works.

Threats to the Japanese collaborative systems

- Shift from the engineering to sciencebased industry (e.g. semiconductor)
 - Expanded ranges of integration requires much wider collaborations across firms than before (e.g. IMEC).
 - Increased Importance of scientific knowledge (even for manufacturing).
- Emergence of modular solutions for complex R&D activities

A New Collaborative Scheme: Industrial Affiliation Program(IIAP) at IMEC

- R&D cooperation formula focused on specific and generic technology areas in the semiconductor industry.
- Various device, equipment, and material makers all over the world get together to develop advanced process and device technologies based on the bilateral contracts.
- Most IPs are co-owned b/w IMEC and partners, so that IMEC's knowledge base is evolved.

Issues

- Adaptation to the environments: firm-level vs. industry level
 - Can firms still evolve?
 - Entrepreneurs, start-ups vs. spin-off firms
- Establish the wider space for collaborations beyond firm boundaries.
 - Labor mobility for knowledge synthesis
- Emphasis on scientific knowledge and its link to application, engineering, and manufacturing.