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Abstract

We investigate incidence and evolution of patent thickets.A theoretical model of patent-

ing encompassing complex and discrete technologies is introduced. It is shown that de-

creased technological opportunities increase patenting incentives in complex technolo-

gies. This effect gets stronger as complexity grows. In contrast, lower technological

opportunities reduce patenting incentives in discrete technologies. We also analyze under

which conditions greater complexity increases patenting incentives in complex technolo-

gies. A new measure of technological complexity is proposedthat captures density of

patent thickets. Additionally, measures of fragmentationand technological opportuni-

ties are constructed exploiting European patent citations. We employ a panel capturing

patenting behavior of 2074 firms in 30 technology areas over 15 years. GMM estimation

results show that patenting conforms to our theoretical model. The results indicate that

patent thickets exist in 9 of the 30 technology areas. We find decreasing technological

opportunities are a surprisingly strong driver of patent thicket growth.
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1 Introduction

Strong increases in the level of patent applications have been observed at the United States

Patent and Trademark Office (USPTO) (Kortum and Lerner(1998) andHall (2005)) as well

as the European Patent Office (EPO) (von Graevenitz et al.(2007)). These “patent explosions”

pose serious challenges for existing patent systems and also for competition authorities.1

Explanations for the shift in patenting behavior concentrate on changes in the legal envi-

ronment, changing management practices, the complexity ofimportant technologies such as

semiconductors, greater fecundity of technology and increased strategic behavior on the part

of firms. While it has been shown that most of these factors play a role empirically, there

are no formal models of patenting behavior that explicitly model these influences.2 This pa-

per provides a model that encompasses complexity and fecundity of technology as well as

strategic behavior. A new measure of complexity of blockingrelationships is introduced to

make the model testable. We show the predictions of the modelhold using European patent

data. Using the measure of complexity of blocking, we are also able to characterize extent and

intensity of patent thickets in Europe.

Kortum and Lerner(1998) have investigated the explosion of patenting at the USPTO,

which began around 1984 (Hall (2005)). By a process of eliminationKortum and Lerner

(1998, 1999) argue that the shift towards increased patenting is mainlythe result of changed

management practices making R&D more applied and raising the yield of patents from R&D.

In contrast,Hall and Ziedonis(2001) argue that the patenting surge is a strategic response to

an increased threat of hold-up in complex technologies. This threat resulted from the “pro-

patent” legal environment ushered in after the establishment of the Court of Appeals for the

Federal Circuit in the United States (Jaffe(2000)). In this changed environment hold-up en-

sues if blocking patents are enforced through the courts. Complexity of a technology implies

that patents are naturally complements and therefore hold-up is likely to arise in the process

of negotiations over licenses if firms enforce their patents(Shapiro(2001, 2006)). Neither

Kortum and Lerner(1998, 1999) norHall and Ziedonis(2001) find any evidence for the influ-

ence of technological opportunity on patenting in their studies.

Our model of patenting covers complex and discrete technologies. It shows how tech-

nological opportunity, complexity of a technology and patenting costs jointly determine the

rate of patenting. We model the choice between pursuing new technological opportunities and

deepened protection of existing technologies by patentingof “facets” of the technologies. The

model shows that firms in a complex technology should patentless in response to increasing

technological opportunity. Additionally, the model indicates that greater complexity of a tech-

1For extensive discussions of the policy questions surrounding current functioning of the patent systems in the
United States and in Europe refer toNational Research Council(2004); F.T.C.(2003); Jaffe and Lerner(2004);
von Graevenitz et al.(2007) andBessen and Meurer(2008).

2Formal models of patenting abound, for a survey of this literature refer toScotchmer(2005) or
Gallini and Scotchmer(2002). Formal models of patenting in patent thickets do not attempt to span both complex
and discrete technologies as we do here:Bessen(2004),Clark and Konrad(2005) andSiebert and von Graevenitz
(2006). These models usually build on the older patent race literature pioneered byLoury (1979), Lee and Wilde
(1980); Reinganum(1989) andBeath et al.(1989).
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nology will raise firms’ incentives to patent. These effectsresult from strategic interactions

of firms using a complex technology: greater technological opportunity reduces the pressure

on firms to defend their stake in existing technologies by patenting heavily, whereas greater

complexity increases the scope for hold-up and raises the need for strategic build-up of patent

portfolios.

To test the model we use a comprehensive dataset based on EPO patent data. It comprises

information on patenting behavior between 1987 and 2003. Our paper considers patenting

across the full range of patentable technologies. This allows us to identify differences in

patenting behavior between complex and discrete technologies. We construct a novel measure

of the complexity of blocking in a technology based on information specific to European

patents. Our measure exploits the fact that patent examiners at the EPO indicate which prior

patents block or restrict the breadth of the patent application under review. We count how

often three or more firms apply for mutually blocking patentswithin a three year period.

This gives rise to a count of mutually blocking firmtriples. The measure captures effects of

complex blocking relationships which arise in technologies even if patent ownership remains

relatively concentrated. We validate this new measure by showing that greater incidence of

such complex blocking relationships corresponds well withexisting measures of technological

complexity, such as the one suggested byCohen et al.(2000).

Additionally, a measure of technological opportunity is needed to test our hypotheses. We

use the extent to which patents reference non-patent literature for this purpose. (Meyer(2000);

Narin and Noma(1985); Narin et al.(1997)) show that the share of references pointing to non-

patent literature (mostly scientific publications) can be agood proxy for strength of the science

link of a technology. Variation in the strength of the science link within a technology area will

indicate how much technological opportunity there is at a given time.

Patenting behavior is known to be highly persistent, due to the long term nature of firms’

R&D investment decisions. We control for the persistence ofpatenting which arises from

long term R&D investment decisions by including a lagged dependent variable in the em-

pirical model. The model is estimated using systems GMM estimators (Blundell and Bond

(1998); Arellano (2003) andAlvarez and Arellano(2003)) to control for endogeneity of the

lagged dependent variable. Additionally we treat our measures of technological opportunity

and complexity as predetermined. Evidence from GMM regressions as well as results from

OLS and a fixed effects estimator support theoretical predictions we derive from our model.

Our results can be used to compute quantitative measure of the extent to which patent

thickets exist within the patent system administered by theEuropean Patent Office (EPO).

Our data indicate that incidence and complexity of these thickets are increasing. There are

important institutional differences between the patent systems administered by the USPTO and

the EPO: in particular, it is claimed that examination of patents is more thorough at the EPO

and that the opposition system existing there provides a cheaper way for rival firms to weed

out weak patents than patent litigation does in the United States (Hall and Harhoff(2004),

von Graevenitz et al.(2007)). Therefore, it is not a foregone conclusion that patent thickets
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also affect the European patent system. Our results show that strategic patenting behavior

has become very important in technology areas central to productivity growth in recent years

(Jorgenson and Wessner(2007)).

The remainder of this paper is structured as follows. Section 2 provides a theoretical model

of patenting which explains firms’ patenting strategies. Wederive three hypotheses from this

model that are empirically testable. In Section3 we describe our dataset and the variables

we employ to analyze firms’ patenting behavior. As there is little cross industry evidence of

patenting trends at the EPO, Section4 provides a descriptive analysis of these trends, focusing

particularly on our measure of complexity and alternative measures thereof. Section5provides

the empirical model and results and Section6 concludes.

2 A Model of Patenting

In this section we model firms’ patenting behavior. In particular, we analyze how firms’ profit

maximizing patenting decisions are influenced by the cost ofpatenting, existing technological

opportunity and the complexity of the technology area in which firms patent. Before present-

ing our formal model we discuss the mechanisms modelled below.

2.1 Discussion

We model firms’ patenting efforts as a function of the complexity of the underlying technology.

Technological complexity is modeled by appealing to the widespread notion that products re-

late to a (potentially large) number of patents held by various different patentees in a complex

technology. In contrast a direct product-patent link dominates in a discrete technology.

In order to measure complexity, we distinguish technology opportunities(O) representing

separate sub-technologies within a technology area and facets(F ) of these sub-technologies.

For example, a technological opportunity might be constituted by research related to the de-

velopment of a certain chemical compound in organic chemistry, the search for a drug in the

pharmaceutical area or the development of a specific circuitin electronics. Complexity within

these technology opportunities arises if it is possible to patent several facetsF within an op-

portunity. Where only one facet of an opportunity can be patented, the technology is discrete.

At least two facets must be patentable to introduce situations in which different patentees

own patent rights related to the same technology. We define a technology to be complex if

F > 1. An increase in the number of patentable facets increases the potential number of

patentees owning patents relating to the same technological opportunity. Hence, we capture

complexity of a technology by the number of patentable facets. Figure1 presents a graphical

representation of this idea.

The total set of patentable facets in a technology (Ω) consists ofO technology opportu-

nities andF facets such that:FO = Ω. Variation in the two dimensions of this set arises

for different reasons. Changes in the number of technology opportunities that are available at
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Figure 1: Relation between complexity and the number of patentable facets per technologi-
cal opportunity. Note thatO1 is discrete by definition as there is no chance of overlapping
ownership rights in this technology.

a specific time will affectO. This dimensions must be thought of a being exogenous in the

short run, but endogenous in the long run as current researchefforts will open additional new

opportunities in the future. In contrast the number of facets which are patentable on a given

opportunity depends mainly on institutional and legal factors. Most importantly the breadth

of patents will determine how many facets are patentable. The broader each patent the fewer

facets will be available on a given technological opportunity. Additionally, the ability of a

patent office to prevent overlap of patents will matter to thenumber of facets that are avail-

able. If a patent office has few resources to check patent applications carefully it is likely that

many granted patents overlap. Where firms anticipate this, the effective breadth of each patent

application is reduced and more facets become available forpatenting.

We assume each firm knows there is a contest for patents on the facets of a technologial

opportunity. The probability of obtaining a patent on a facet is inversely proportional to the

number of rivals seeking to patent the facet. This assumption introduces competition for

patents into our model; it captures the fact that a patent defines a subspace of technology

space within which rival firms cannot patent.

In our model patenting allows firms to benefit from the total value (V ) of a technological

opportunity. To capture maximum value of the technologicalopportunity a firm must obtain as

many patents as possible on facets of the opportunity. Firmsface a tradeoff between patenting

more facets per opportunity and patenting more different technology opportunities.

The benefits of patentingB are a function of the value of each technological opportunity

V and of the expected share of facetssi each firm receives a patent on:B = V ω(si). Hereω

represents a function mapping the share of received patentssi into the share of value captured

by the firm. We assume that∂ω
∂si

> 0.

Now define the expected share of facets per patent which each firm obtains assi ≡
sip

F
,

wheresi ∈ [0, 1]. Herefi is the number of facets each firm invests in per opportunity,F

represents total available facets per opportunity andp represents the probability of winning a
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patent on a given facet. The probability of obtaining granted patent on a given facet is:

p =
1

1 +
P

j 6=i fjoj

FO

. (1)

This definition of the probability of obtaining a patent on a facet of a technological opportunity

reflects our assumption that there is a contest between several firms for each such patent. Then

the probability of obtaining the patent depends on the number (n) of rival firms simultaneously

trying to obtain the patent. Each firm vying for a patent on a facet will win that patent with

p = 1

1+n
. In the expression above we assume that all rival firms make

∑

j 6=i fjoj patent

applications. Dividing these by the set of all patentable facetsFO we obtain the number of

rivals’ patent applications that compete with each firm’s own applications.

The interpretation ofsi is not entirely trivial. Consider what happens if all firms taken to-

gether only apply for patents on a subset of the facets available for a given opportunity. Then

the model, as presented here, indicates that a firm that obtained patents on all of the facets

which received at least one application, would not receiveV . It would receive only a fraction

of V equal toω(fi

/

F ). This interpretation of the model is adequate for technologies for which

we believe that each new patent protects something of value to society. If we adopt a more

cynical attitude to the value of the average patent for society, then we might be inclined to

argue that granted patents just represent bargaining chips. In this case the value of a techno-

logical opportunity is divided according to the number of facets actually patented by all firms

(F̂ ) andsi = fip
/

F̂ . We show in AppendixA that this version of the model has the same

implications as the model we present here.

As the number of facets per opportunity grows, so does the probability that different firms

will own patents related to the same opportunity. Hold up becomes increasingly likely. There-

fore, firms need to disentangle their ownership rights, giving rise to legal costs(L). We do

not explicitly model the bargaining process between firms that own patents on the same tech-

nological opportunity. The literature on patent thickets and complex technology shows that

there are many institutional arrangements that allow firms to disentangle overlapping property

rights - these include licensing, patent pools, standard setting as well as litigation (Shapiro

(2001)). Irrespective of the precise mechanism firms may use to prevent or resolve hold up,

the patenting explosion is driven primarily by the assumption that firms with larger patent

portfolios benefit substantially from the size of their portfolios in reducing the costs of hold

up. Therefore, we assume that firms which own a greater share of patents on a technology op-

portunity have lower legal costs (∂L
∂si

< 0). This assumption is consistent with the arguments

advanced byZiedonis(2004) to explain patent portfolio races in the semiconductor industry.

Three additional sources of patenting costs are recognizedin our model:

i For each opportunity a firm invests in, it faces a fixed cost ofR&D: Co.

ii For each facet which a firm patents the firm faces costs of administering and enforcing

the patent if it is granted:Ca.
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iii The coordination of R&D on different technologies imposes costsCc(oi). We assume

that ∂Cc

∂oi
> 0.

Given these benefits and costs the expected value of patenting in a technology area is:

πi = oi

[

V ω(si) − L(si, N)
]

− oiCo − oifipCa − Cc(oi) , (2)

where total legal costs of owning patents on an opportunity are L(si) which decrease in the

share of facets owned on that opportunity.ω(si) represents the share of value of a technolog-

ical opportunity obtained by firmi. It is an increasing function of the firm’s share of patents

held on a given opportunity.

Note that technological opportunities in this model are represented by the number of differ-

ent technologies (O) which offer patentable facets within a technology area. Here, increases in

technological opportunities do not directly affect the efficiency of R&D efforts as in an earlier

literature focusing on R&D efforts and spillovers (Levin and Reiss(1988)). Rather technolog-

ical opportunities in our model increase the size of the patentable domain for firms. The direct

effect is the same - in a discrete technology firms’ R&D efforts increase. We show here that in

a complex technology in which firms do R&D in order to patent the overall effect of increased

technological opportunities will be reversed: firms will direct less R&D towards patenting and

will apply for fewer patents.

2.2 Solving the model

To simplify the derivation of comparative statics results we show that the game firms are

playing is supermodular. Then we use results on supermodular games to derive comparative

statics results (Milgrom and Roberts(1990), Vives (1990, 1999)).3 We define a symmetric

game in which firms’ payoffs depend on own strategies and the aggregate strategy of their

rivals. Additionally we will assume that strategy spaces are compact. These assumptions

imply that only symmetric equilibria exist (Vives (1999)). Additionally, we can characterize

the comparative statics for these equilibria by considering cross-partial derivatives.

We begin by characterizing the game firms are playing:

• There areN + 1 firms.

• Each firm simultaneously chooses the number of technological opportunitiesoi ∈ [0, O]

and facetsfi ∈ [0, F ] to invest in. The firms’ strategy setsSn are elements ofR2.

• Each firm has the payoff functionπi, defined in equation (2), which is twice continu-

ously differentiable and depends only on rivals’ aggregatestrategies.

Firms’ payoffs depend on their rivals’ aggregate strategies because the probability of obtaining

a patent on a given facet is a function of the sum of rivals’ patent applications
∑

i6=j fjoj.

We can show that:
3For additional expositions of this method refer toCarter(2001) or Amir (2005).
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Proposition 1

The game is a smooth supermodular game.

To prove this proposition we must show that the firms’ profit functions are supermodular

(i) in their own actions and (ii) in every combination of their own actions with those of rival

firms (Milgrom and Roberts(1990)).

To begin with we derive the first order conditions characterizing the optimal number of

technological opportunities and facets firms invest in:

∂π

∂oi

= V ω(si) − L(si) − Co − fipCa −
∂Cc

∂oi

= 0 (3)

∂π

∂fi

=
[

V
∂ω

∂si

−
∂L

∂si

− FCa

]

oi

p

F
= 0 (4)

These first order conditions constitute a system of implicitrelations which determine the opti-

mal choice of opportunities (̂Oi) and facets (̂Fi) chosen by each firm in equilibrium.

Given this system of first order conditions we can show that firms’ profit functions are

supermodular. To see this we derive the cross partial derivatives with respect to firms’ own

actions as well as those of rival firms:

∂2πi

∂oi∂fi

= V
∂ω

∂si

p

F
−

∂L

∂si

p

F
− pCa = 0 (5)

Notice that this expression must be zero as it can be transformed to the first order condition

(4) for the optimal number of facets by multiplication withoi. Next consider effects of rivals’

actions on firms’ own actions:

∂2πi

∂oi∂oj

= V
∂ω(si)

∂si

fi

F

∂p

∂oj

−
∂L(si)

∂si

fi

F

∂p

∂oj

− fiCa

∂p

∂oj

= 0 , (6)

∂2πi

∂oi∂fj

= V
∂ω(si)

∂si

fi

F

∂p

∂fj

−
∂L(si)

∂si

fi

F

∂p

∂fj

− fiCa

∂p

∂fj

= 0 , (7)

∂2πi

∂fi∂oj

=
[

V
∂ω

∂si

− oi

∂L

∂si

− FCa

]oi

F

∂p

∂oj

+
[

oiV
∂2ω

∂si
2
− oi

∂2L

∂si
2

]pfi

F 2

∂p

∂oj

> 0 , (8)

∂2πi

∂fi∂fj

=
[

V
∂ω

∂si

−
∂L

∂si

− FCa

]oi

F

∂p

∂fj

+
[

oiV
∂2ω

∂si
2
− oi

∂2L

∂si
2

]pfi

F 2

∂p

∂fj

> 0 , (9)

where the first two conditions are transformations of the first order condition for the optimal

number of facets (4). In case of the lower two conditions notice that the first term in square

brackets is zero as it is just that same first order condition.The terms in the second set of

brackets are negative if:

i) the marginal share of value appropriated with additionalfacets of a technology is de-

creasing:∂
2ω

∂si
2 ≤ 0;

ii) legal costs fall at a decreasing rate as firms’ share of facets on a technological opportu-

nity increases:∂
2L

∂si
2 ≥ 0.
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At least one of these two conditions must be fulfilled for the game outlined above to be smooth

supermodular.

Condition (i) indicates that as a firm’s share of patents on a technologicalopportunity

increases, the marginal value of additional patents is decreasing. For this assumption to hold

a firm with some patents on a technological opportunity must be able to make use of the

technology covered to some extent in the face of blocking patents.4. Additionally, there must

be decreasing returns to additional patents. In contrast ifany one patent on a technological

opportunity blocks the use of the technology entirely, the assumption is violated.5

Condition (ii) indicates that firms’ legal costs of appropriating a share ofthe value of

a technological opportunity fall if they own a larger share of patents on that technological

opportunity. This assumption reflects the widespread belief that larger patent portfolios are

beneficial to firms operating in technology areas that fall within complex technologies because

they provide firms with bargaining chips (Hall and Ziedonis(2001)). The greater firms’ patent

portfolios, the easier it is to threaten countersuits against any firms that are holding up a firm.

Our assumption requires decreasing returns to heaping up bargaining chips.

Conditionsi andii are more likely to hold as the complexity of technologies grows. At

low levels of complexity the full nonlinearity of the share of value appropriated by firms or of

legal costs, in the share of patents firms own on a technological opportunity, is not likely to be

strong. Then the game will be at best weakly supermodular. Athigher levels of complexity

we expect at least conditionii to hold.

Note that the game will not be smooth supermodular if the technology is not complex. By

definition in that case there is only one facet(F = 1) per technological opportunity. Then

firms appropriate the whole value of the technological opportunity with one patent and the

second derivatives in (8) and (9) are zero. We will return to this case below.

Now we turn to the comparative statics effects of an increasein technological opportunity

on firms’ actions. We show that:

Proposition 2

Greater technological opportunity reduces firms’ patenting efforts as complexity of technolo-

gies grows.

To determine the effects of an increase in technological opportunity O we investigate the

following cross-partial derivatives:

∂2πi

∂oi∂O
=
[

V
∂w

∂si

−
∂L

∂si

− FCa

] ∂p

∂O

fi

F
= 0 (10)

∂2πi

∂fi∂O
=
[

V
∂ω

∂si

−
∂L

∂si

− FCa

]oi

F

∂p

∂O
+
(

oiV
∂2ω

∂si
2
− oi

∂2L

∂si
2

)pfi

F 2

∂p

∂O
< 0 (11)

The terms in square brackets in both expressions above are zero by the first order condition

(4) for the optimal number of facets. The term in round bracketsin equation (11) is negative

4Such a setting is modelled inSiebert and von Graevenitz(2008, 2006)
5Clark and Konrad(2005) make such an assumption.
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if the game is smooth supermodular, i.e. if the technology iscomplex.

Therefore, greater technological opportunity lowers firms’ overall investments in patent-

ing. It reduces the intensity of competition to dominate individual technological opportunities

which lowers investments in facets and the number of new technologies which firms invest in.

Now we turn to the question how an increase in the complexity of a technology affects

firms’ incentives to patent. We find that the effect is ambiguous and depends on the relative

strength of two effects: the costs of administering more patents and the marginal benefits of

additional patents. Only if these marginal benefits are highenough will the term be positive.

To see this consider the following cross-partial derivatives:

∂2πi

∂oi∂F
=
[

V
∂w

∂si

−
∂L

∂si

− FCa

] ∂p

∂O

∂si

∂F
= 0 (12)

∂2πi

∂fi∂F
=
[

V
∂ω

∂si

−
∂L

∂si

− FCa

]oip
2

FO
+
(

V
∂2ω

∂si
2

∂si

∂F
−

∂2L

∂si
2

∂si

∂F
− Ca

)oi

fi

si (13)

Here the terms in square brackets are zero by the first order condition (4) for the optimal

number of facets. The term in round brackets in equation (13) is positive if the costs of

administration of patentsCa are insignificant.

This shows that:

Proposition 3

Greater complexity of a technology will increase firms’ patenting efforts if the costs of admin-

istering patents are low relative to their value as bargaining chips.

Finally, consider again the case of a discrete technological opportunity. HereF = fi = 1

by definition. Therefore firms’ payoffs are defined as:

πi = oiV p − oico − oipCa − Cc(oi) . (14)

We have already noted that a game with this payoff function isno longer supermodular. How-

ever we can show that under the slightly stronger assumptionthat costs of coordinating tech-

nological opportunities (Cc(oi)) are strictly convex in the number of opportunities firms invest

in, we obtain a unique equilibrium for the game. We can then demonstrate that:

Proposition 4

Greater technological opportunity increases firms’ patenting efforts in a discrete technology.

To see that this is true consider the first and second order derivatives of the payoff function

with respect to technological opportunities invested in:

∂π

∂oi

= (V − Ca)p −
∂Cc

∂oi

= 0
∂2π

∂oi
2

= −
∂2Cc

∂oi
2

. (15)

If we assume that costs of coordinating technological opportunities are strictly convex:∂
2Cc

∂oi
2 >

9



0, then Proposition4 can be proved with the help of the implicit function theorem:

∂oi

∂O
= −

∂2π

∂oi∂O

/

∂2π

∂oi
2

> 0 , (16)

where ∂2π
∂oi∂O

= (V − Ca)
∂p

∂O
> 0.

To conclude our analysis of the model we offer remarks on the relationship of Propositions

2 and4. The reversal of Proposition4 as we move fromF = 1 (Equation (14)) to F > 1

(Equation (2)) is a consequence of our assumptions about the functionω(si) which maps the

share of patents held on a technological opportunity into the share of value of that opportunity

obtained by a firm. This function captures our intuition thatin complex technologies the

marginal value share which a firm obtains through an additional patent may be decreasing in

the size of the patent stock which the firm already owns. Propositions2 and3 hold only if this

is the case. This cannot be the case if only one facet is available per technology opportunity.

3 Dataset and Variables

In this section we discuss the data used to test our theoretical model. In particular, a new

measure of complexity of a technology is discussed.

Our empirical analysis is based on the PATSTAT database (“EPO Worldwide Patent Sta-

tistical Database”) provided by the EPO.6 This database includes data on about 56 million

patent applications filed at more than 65 patent offices world-wide. It contains procedural and

bibliographic information on patents including information on referenced documents (patent

citations). We analyze all patent applications filed at the EPO between 1980 and 2003 – more

than 1,5 million patent applications with about 4.5 millionreferenced documents.

We classify patents using the IPC classification which allows us to analyze sectoral dif-

ferences in patenting activities. The categorization usedis based on an updated version of

the OST-INPI/FhG-ISI technology nomenclature.7 This classification divides the domain of

patentable technologies into 30 distinct technology areas.8 We also classify selected tech-

nology areas as discrete or complex using to the classification of Cohen et al.(2000). This

classification received additional support inHall (2005).

Below we show that there are clear differences between complex and discrete technologies

on the basis of this distinction. However, we also provide a new continuous variable that

captures the degree of complexity of technologies. We show that there are some differences

between this variable and the classification suggested byCohen et al.(2000).

In the following we discuss our measures of patenting, technological opportunity and com-

plexity. These are the most important variables needed to test the theoretical model. Addition-

ally, we discuss several variables that will be used as control variables in the empirical model

6We currently use the September 2006 version of PATSTAT.
7SeeOECD(1994), p. 77
8These are listed in Table8 in the appendix
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of section5. These describe additional influences on firms’ patenting intensity.

Measures of Patenting, Complexity and Technological Opportunity

Number of Patent Applications We compute the number of patent applicationsAiat filed

by applicanti separately for all OST-INPI/FhG-ISI 30 technology areasa on an annual (t)

basis. To aggregate patent applications to the firm level twochallenges must be overcome:

firm names provided in PATSTAT are occasionally misspelled and subsidiaries of larger firms

are not identified in the dataset. Therefore, we devoted a considerable amount of resources

to clean applicant names and to consolidate ownership structures.9 The aggregation of patent

applications are based on these consolidated applicants’ identities. The variables discussed

below are also based on this consolidation.

Due to the skew distribution of patent applications we transform the variable logarithmi-

cally to derive a dependent variable for estimation. Table3 shows the transformed variable is

much closer to a normally distributed variable than the raw measure of patent applications.

Technological Opportunity In our model, we establish a clear relationship between firms’

patenting levels in complex technologies and the emergenceof new technological opportuni-

ties. Unfortunately, a direct measure of existence or emergence of new technological oppor-

tunities does not exist. Instead, we use a construct that is based on the strength of the link

between R&D firms conduct within a technology area and relevant basic research as an indi-

rect measure of the emergence of new technological opportunities. This construct is based on

the assumption that basic research is more likely to open up new technological opportunities

than applied research which predominantly refines existingtechnologies.

Early stages of the evolution of a technology are characterized by a large share of basic

research often conducted in publicly-funded labs. In laterstages of a technology industry

driven development of existing technological opportunities will dominate basic research. Then

the focus is on refining existing opportunities rather than creating new ones. While there is

no perfect measure for the position of a technology area in the stylized cycle of technology

evolution, the share of references listed on a patent which point to non-patent literature (mostly

scientific publications) can be used as a good proxy for the strength of the science link of a

technology (Meyer(2000); Narin and Noma(1985); Narin et al.(1997)).

Therefore, we use the share of non-patent references relative to all references contained on

a patent as a proxy for a patent’s position in the technology cycle and hence as a measure for

the creation of new technological opportunities. As we are interested in the characterization

of technological areas with regard to the existence of new technological opportunities, we

9The aggregation of patenting activities on the firm levels involved great efforts consolidating subsidiaries of
large corporations. Detailed information on the cleaning and aggregation algorithms can be obtained from the
authors upon request. We would like to thank Bronwyn Hall forproviding us with software for this purpose. We
used this and undertook additional efforts to consolidate firm names.
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compute the average of the share of non-patent references relative to all references on a patent

on the level of OST-INPI/FhG-ISI areaa and yeart for our multivariate analysis.

Complexity of Technology Areas The distinction between discrete and complex technolo-

gies is widely accepted in the literature (Cohen et al.(2000), Kusonaki et al.(1998), Hall

(2005)). Discrete technologies are characterized by a relatively strong product-patent link,

e.g. in pharmaceuticals or chemistry, whereas in complex industries products are likely to

build upon technologies protected by a large number of patents held by various parties. It is

often held that patent filing strategies vary largely between discrete and complex industries.

Despite the widely acknowledged notion of a technology’s complexity there is no direct

measure of it nor is there an indirect construct related to complexity. Kusonaki et al.(1998)

andCohen et al.(2000) (footnote 44) provide schemes which classify industries as discrete or

complex based on ISIC codes. These classification schemes are based on qualitative evidence

gathered by the authors from various sources in order to separate different industrial sectors

into complex or discrete areas. A major drawback of a classification based on prior informa-

tion from industry codes is that is does not allow to analyze the influence of different levels of

complexity but only to distinguish the binary cases discrete and complex.

To improve on this, we measure complexity of a technology area through firms’ patenting

activities. Our measure is derived from to the degree of overlap between firms’ patent portfo-

lios. Such overlap leads to blocking dependencies among firms. If existing patents containing

prior art critical to the patentability of new inventions ina field are held by both firms, each

firm can block its rival’s use of innovations. Then, a firm can only commercialize a technology

if it gets access to a rival’s patented technology. In areas where products draw on technologi-

cal opportunities protected by numerous firms (complex technologies) we expect to observe a

large number of such dependencies. In discrete technologies the inverse should be true.

We capture blocking dependencies among firms by analyzing the references contained in

patent documents. References to older patents or to non-patent literature are included in EPO

patents in order to document the extent to which inventions satisfy the criteria of patentability

(Harhoff et al.(2006)). Often, existing prior art limits patentability of an invention. For ex-

ample, the existence of an older but similar invention can reduce the patentability of a newer

invention. In these casescritical documents containing conflicting prior art are referenced in

patent documents and are classified as X or Y references by thepatent examiner at the EPO

during the examination of the patent application.10 If the patentability of a firm A’s inventions

is frequently limited by existing patents of another firm B, it is reasonable to assume that the

R&D of A is blocked by B to a certain degree. If the inverse is also true, A and B are in a mu-

tual blocking relationship which we call a blocking pair. Ifmore than two firms own mutually

blocking patents the complexity of blocking relationshipsincreases and resolution of blocking

10A patent contains various different types of references – not all of them are critical. Often, related inventions
which are not critical for the patentability of the invention seeking patent protection are also included in the
patent document. The EPO provides a full classification of the references included in patent documents allowing
us to identify critical references which are classified as X or Y.
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Figure 2: Identification of our measures of a technology field’s complexity.

becomes increasingly costly. To capture more complex structures of blocking we compute the

numberTriples in which three firms mutually block each other’s patents. Figure2 provides a

graphical example of our complexity measure.

From a computational perspective, pairs and triples are identified using the following ap-

proach: For each firmi we analyze all critical patent references contained in firmi’s patents

applied for in a technology areaa over the current and the two preceding years (t − 2 to t)

and identify the owners of the referenced patent documents.In the next step we keep the most

frequently referenced firms (top 20) yielding annual lists of firms which are blocking firmi in

yeart.11 Pairs are then established if firmA is on firmB’s list of most frequently referenced

firms and, at the same time, firmB is on firm A’s list of most frequently referenced firms.

Finally, triples are formed if firmA and firmB, firm A and firmC and firmB and firmC

form pairs in the same year. We include the total number of existing triplesat in areaa and

yeart in our regression in order to analyze how the complexity of a technology area influences

firms patenting behavior in this area.

Control Variables

Fragmentation of Prior Art Ziedonis(2004) showed that semiconductor firms increase

their patenting activities in situations where patent holdings are largely fragmented across

different parties. Ziedonis’ fragmentation index has predominantly been studied in complex

industries (Ziedonis(2004), Schankerman and Noel(2006)) where increasing fragmentation

has been found to increase the number of firms’ patent applications. This has been attributed to

11The threshold of keeping only the 20 most frequently referenced patent owners is an arbitrary choice. Our
results are robust to different choices of the threshold level.
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firms’ efforts to reduce potential hold-up by opportunisticpatentees owning critical or block-

ing patent rights – a situation which is often associated with the existence ofpatent thickets.

We construct an index of fragmentation of patent ownership for each firm based on the

fragmentation index proposed byZiedonis(2004):

Fragiat = 1 −

n
∑

j=1

sijt (17)

wheresijt is firm i‘s share of critical references pointing to patents held by firm j. Small

values of this fragmentation index indicate that prior art referenced in a firm’s patent portfolio

is concentrated among few rival firms and vice versa.

Unlike previous studies of patenting in complex technologies relying on USPTO patent

data (Ziedonis(2004),Schankerman and Noel(2006)) we base the computation of the frag-

mentation index solely on critical references which are classified as limiting the patentability

of the invention to be patented (X and Y references). This distinction is not available in the

USPTO data. Computing the fragmentation index based on critical references should yield a

more precise measure of the hold up potential associated with fragmentation of patent holdings

in a technology area.

Technological Diversity of R&D Activities A firm’s reaction to changing technological or

competitive characteristics in a given technology area might be influenced by its opportunities

to strengthen its R&D activities in other fields. For example, if a firm is active in two tech-

nology areas it might react by a concentration of its activities in one area if competition in

the other area is increasing. If a firm is active in only one technology area, it does not similar

possibilities to react to increases in competitive pressure. In order to control for potential ef-

fects of opportunities to shift R&D resources we include thetotal number of technology areas

(Areasi,t) with at least one patent application filed by firmi in yeart.

Size Dummies. While we do not explicitly model the influence of firm size on patenting

behavior, it seems reasonable to assume that the cost of obtaining and upholding a patent

depends on the size of a firm. In particular, larger firms mightface lower legal cost due

to economies of scale, increased potential to source in legal services and accumulation of

relevant knowledge which in turn might lead to a different patenting behavior than smaller

firms. For instanceSomaya et al.(2007), find that the size of internal patent departments

positively influences firms’ patenting propensity.

If the economies-of-scale argument holds, the cost of patenting should not be directly

related to size characteristics such as a firm’s number of employees, its total revenues or sales.

Rather, the cost of patenting can be assumed to be a function of the total amount of patents

filed by a firm. Therefore, we include a ’size dummy’ variable based on the number of patents

filed by a firm in a technology area in a given year in our regressions. We distinguish between

small and large patentees. These size categories are based on annual patent applications in a
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given areaa. Firms belonging to the upper half of the distribution of patentees in a given year

are coded as large firms.

4 Descriptive Analysis of Patenting in Europe

In this section we provide descriptive aggregate statistics on patenting trends at the EPO.

Discrete and complex technology areas are compared with regard to selected patent indicators.

Using our measure of complexity we show that descriptive evidence on patenting provides

support for the theoretical model.
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Figure 3: Annual number of patent applications filed at the EPO by priority year. Note:
Blue line indicates total patent applications. Red line indicates patent applications in complex
technology areas. Green line indicates patent applications in discrete technology areas.

Figure3 presents annual patent applications filed at the EPO between1978 and 2003. We

distinguish applications filed in complex and discrete technology areas using the categoriza-

tion of Cohen et al.(2000). The Figure shows patenting grew strongly over this period, with

the main contribution coming from technology areas classified as complex. This development

is comparable to trends at the USPTO.Hall (2005) shows that the strong increase in patent

applications is is driven by firms patenting in the electrical, computing and instruments area

all of which are complex technology areas by the classification ofCohen et al.(2000).

Now we turn to explanations for the strong growth in patenting. First, consider a leading

explanation for increased patenting in complex technologyareas: the fragmentation of patent

rights in a complex technology area is likely to raise firms’ transactions costs as they must bar-

gain with increasing numbers of rivals in order to prevent hold up of their products.Ziedonis

(2004) andSchankerman and Noel(2006) show that increased fragmentation of patents leads

to greater patenting efforts in the semiconductor and software industries respectively. Figure4

provides annual averages of the fragmentation index at the EPO for the years 1980 to 2003.12

12The precise definition of this measure is given in Section3 above.
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Figure 4: Average fragmentation index. Note: Blue line indicates average level of fragmen-
tation index in complex technology areas. Red line indicates average level of fragmentation
index in discrete technology areas.

Two observations derived from Figure4 are striking: First, fragmentation of ownership rights

fell steadily before 1995 and then increased gradually thereafter. Second, the difference in the

fragmentation index in complex and discrete technology areas is negligible.

Both observations raise the question whether the growth in patent applications can be at-

tributed to fragmentation alone. While the development of fragmentation in complex and

discrete areas is almost identical we observe striking differences in the growth of patent appli-

cations between complex and discrete technology areas.
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Next we explore two explanations for the increase in patenting at the EPO that build on

the theoretical model developed above: firstly firms build patent portfolios to strengthen their

bargaining positions if complex bargaining situations aremore likely to arise and secondly the
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pressure to obtain patents becomes more intense as technological opportunity declines. The

first of these explanations is similar to the explanation forpatenting derived from fragmenta-

tion of property rights: it also emphasizes transactions costs increases derived from bargaining

over blocking patents. However, we believe that transactions costs also rise if a small number

of firms own patent rights that depend on the rights of other firms that also block each other.

Then, bargaining will become increasingly complex as blocking cannot be resolved through a

series of bilateral negotiations. Our measure of mutual blocking between three and more firms

(Triples) captures the degree to which complex blocking arises.

In Figure5 this measure is presented. The Figure presents annual averages of the number

of Triples in complex and in discrete areas.13 We observe very different developments of the

count of Triples in these two fields. The number of Triples remains largely stable at values

well under 10 in discrete technology areas, while it increases strongly in complex technology

areas. It is reassuring to see that our measure of complex bargaining situations is greater in

complex technologies as previously defined byCohen et al.(2000).
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Figure 6: The left panel presents average non patent references per patent for complex (blue
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references per patent for several complex technology areas. This panel focuses only on the
sample period we use for our regressions below.

This shows that blocking intensities almost certainly contributed to the strong increases in

patenting that we observe in Figure3. Next we turn to the development of technological op-

portunity. In our theoretical model Proposition2 indicates greater technological opportunity

in a complex technology should lower the pressure to patent.As noted in Section3 we mea-

sure technological opportunity using changes in the rate ofreferences to non patent literature

within a technology area. This measure will provide information about variation in technolog-

ical opportunity between and across technology areas. The left panel of Figure6 shows that

technological opportunity was generally greater in discrete technology areas after 1990, than

in complex technology areas. The right hand panel of the Figure shows that the average level

of non patent references in complex technology areas masks considerable variation across and

especially within complex technologies over time.

13We distinguish complex and discrete using the classification suggested byCohen et al.(2000) here.
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Note that the level of non patent references in the complex technology areas began to de-

cline just after 1992, which coincides with the date at whichthe growth in patent applications

at the EPO picked up as Figure3 shows. These descriptive results suggest that a multivariate

analysis of patenting levels based on the theoretical modelpresented above will prove to be

interesting.

Table 1: The Distribution of Triples Between 1987 and 2002

Technology area Mean Median Std. dev. Minimum Maximum

Electrical machinery, Electrical energy24.23 20 8.99 10 42

Audiovisual technology 116.48 120 17.68 74 148

Telecommunications 99.64 93 39.17 27 166

Information technology 57.16 59 10.71 28 73

Semiconductors 62.84 63 17.89 26 91

Optics 57.30 58 12.02 42 77

Analysis, Measurement, Control 6.61 4 6.31 0 21

Medical technology 4.10 3 2.16 1 8

Nuclear engineering 0.95 1 1.17 0 4

Organic fine chemistry 3.77 2 4.03 0 15

Macromolecular chemistry, Polymers 16.00 14 8.17 4 32

Pharmaceuticals, Cosmetics 3.47 4 2.68 0 8

Biotechnology 0.00 0 0.00 0 0

Agriculture, Food chemistry 0.07 0 0.26 0 1

Chemical and Petrol industry 11.16 10 5.49 4 22

Chemical engineering 1.35 1 0.87 0 3

Surface technology, Coating 3.48 3 2.82 0 9

Materials, Metallurgy 2.41 2 2.12 0 6

Materials processing, Textiles, Paper 3.92 3 2.73 1 9

Handling, Printing 20.26 16 13.55 4 50

Agricultural and Food processing, 0.35 0 0.71 0 2

Environmental technology 3.23 0 4.73 0 15

Machine tools 1.91 1 1.57 0 5

Engines, Pumps and Turbines 21.72 15 21.10 3 69

Thermal processes and apparatus 0.37 0 0.62 0 2

Mechanical elements 2.33 2 2.14 0 7

Transport 16.54 14 12.00 2 50

Space technology, Weapons 0.00 0 0.00 0 0

Consumer goods 0.72 0 1.05 0 4

Civil engineering, Building, Mining 0.00 0 0.00 0 0
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To complete this section Table1 provides additional information on the distribution of

Triples across all 30 technology areas. This shows how significant the hold up potential mea-

sured by Triples is in the ICT technologies. The number of Triples is between five and six

times as large there as it is in other industries such as Handling, Printing which still exhibit

significant complexity.

5 The Empirical Model and Results

In this section we set out our empirical results. To begin with we provide a discussion of our

empirical model and discuss descriptives for the sample. Then we turn to the results from

estimation and a discussion of their implications.

5.1 An Empirical Model of Patenting

Building on the results of Section2 we estimate a reduce form model predicting the level of

patent applications filed by a firm in a given year at the EPO. Given that patent applications are

highly persistent as they generally reflect long term investments in R&D capacity we include

a lagged dependent variable in our model. We estimate the following dynamic relationship:14

Ai,t = β0 + βAAi,t−1 + βOOi,t + βCCi,t + βX
′X i,t

+ βACAi,t−1Ci,t + βOCOi,tCi,t + βOCLOi,tCi,tLi,t + βOLOi,tLi,t (18)

+ χi + ζit , where:

Ai,t − Patent Applications Oi,t − Technological Opportunity: Non Patent References

Ci,t − Complexity: Triples X i,t − Control variables: Fragmentation, Area count, Size(L)

This specification allows us to simultaneously control for effects of technological oppor-

tunity βO and complexityβC and to analyze whether the effect of technological opportunity

differs in discrete an complex technologies by interactingboth variables (Oi,tCi,t). Further, we

also include interaction terms that allow us to distinguishthe patenting behavior of large and

small firms in complex and discrete technologies. We do this as our theoretical model indi-

cates that firms’ patenting behavior will depend on the shareof patents they expect to receive

on a given technological opportunity.

The parameter estimates from this specification allow us to test the following hypotheses

that reflect the predictions derived from the theoretical model:

H1 : Increased technological opportunity lowers the level of patent applications as tech-

nologies become more complex (Proposition2);

14Our model did not explicitly account for dynamic aspects of firms’ strategic decisions. However, it seems
appropriate to take the persistent nature of patenting decision into account when analyzing cross-sectional time-
series of patenting.
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H2 : Increased complexity of a technology raises the level ofpatent applications in complex

technologies (Proposition3);

H3 : Increased technological opportunity raises the level of patent applications in discrete

technologies (Proposition4).

Hypothesis H2 reflects our belief that the strategic value ofpatents outweighs administra-

tive costs of patenting in complex technologies.

Applying these hypotheses to our spcification it may be shownthat Hypothesis 1 implies

thatβOC < 0, Hypothesis 2 implies thatβC + βOC ×Oi,t + βAC ×Ai,t > 0 and Hypothesis 3

implies thatβO > 0.

5.2 Descriptive Statistics for the Sample

Our dataset consists of173, 448 observations of firms patenting in specific technology areas

in a given year and covers the period between 1978 when the EPObegan operating and 2003.

We excluded small patentees from the sample using two criteria: first, we excluded all those

patentees with fewer than10 patent applications over the entire period. Second we excluded

those patentees who had fewer than three years of positive patent applications in a technology

area in the fifteen years after 1987. These criteria are used to exclude firms that do not have a

long term patenting strategy. Only patentees with a longer patenting horizon will be affected

by changes in technological opportunity, or the degree of blocking over time.

Table 2: Panel Descriptives for the Sample

Firm level (n=2074) Mean Median SD

Total patents 628.27 205 1944.94

Total patents (annual) 37.02 12 111.65

Technological areas (annual) 5.54 4 4.56

Area-Year level (n=650) Mean Median SD

Total patents in area 2594.23 2310 1778.87

Total patents in sample 1449.35 1012 1695.86

Total firms in area 1077.62 893 668.14

Total firms in sample 266.84 263 253.71

Triples 14.67 2 27.69

Non Patent References 0.98 0.75 0.75

Fragmentation 0.001 0 0.009

Table2 provides information about the structure of our panel data.In total there are 2074

different firms left in the panel. The average size of these firms’ patent portfolios in 2003 was

628 patents resulting from an average of 37 patent applications per firm and year across all
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technology areas.

We treat firms operating in several technology areas as separate observations in each area.

Hence, our panel structure is not defined over firms’ total patent applications per year (firm-

years) but over firms’ annual patent applications within specific technology areas (firm-area-

years). We do this to control for area specific patenting behavior of individual firms and

its relation to area characteristics like complexity. Where we use panel data, the panel is

unbalanced due to entry and exit of firms into technology areas. The lower half of Table2

shows that our sample covers on average55.8% of the yearly mean of 2594 annual patent

applications filed within a technology area. As our samplingstrategy is focused on large

patentees it is not surprising that the share of firms we coverin our analysis is smaller with

about24.8% of all patentees at the EPO between 1978 and 2003 (see Table2).

Table 3: Descriptive Statistics for the Sample (1987-2002)

Variable Aggregation Mean Median Standard Mini- Maxi-

level deviation mum mum

Patent applications Firm 5.431 1.000 18.594 0.000 752.000

log Patent applications Firm 1.051 0.693 1.052 0.000 6.624

Areas Firm 8.751 7.000 6.027 0.000 30.000

Large dummy Firm 0.504 1.000 - 0.000 1.000

Non Patent References Area 1.151 0.894 0.827 0.174 4.532

Triples Area 18.480 5.000 30.085 0.000 166.000

Fragmentation Area 0.001 0.000 0.006 0.000 0.355

Observations= 173,448

Sample statistics for 1992

Patent applications Firm 4.235 1.000 14.024 0.000 387.000

log Patent applications Firm 0.923 0.693 0.990 0.000 5.961

Areas Firm 7.746 6.000 5.563 0.000 27.000

Large dummy Firm 0.438 0.000 - 0.000 1.000

Non Patent References Area 1.205 0.970 0.747 0.290 3.554

Triples Area 15.761 3.000 25.348 0.000 104.000

Fragmentation Area 0.001 0.000 0.006 0.000 0.168

Observations= 11,325

Table3 presents descriptive statistics on the firm-area-year level. It shows that most firms

in the sample patent relative broadly across technology areas: While the number of patent

applications within a given technology area is relatively low with 5.43 application per year

firms are active in 8 or 9 different technology areas. The large dummy splits firms almost

exactly into the largest and smallest firms in the sample. Theaverage technology area con-

tained about 18.5 Triples in a given year – however the distribution is skew with a median of
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5 and a maximum of 166 Triples (observed in Telecommunications in 2000). The level of non

patent references in the average technology area is 1.151. Table3 also contains information

about sample statistics for the year 1992, after which patent applications increased markedly

as Figure3 shows.

A comparison of sample means (upper part of Table3) and means for 1992 (lower part

of 3) shows that firms patent in more areas, face more Triples and generate fewer non patent

references after 1992 than before. This confirms what we haveshown in the previous section.

5.3 Results

In this section we present our empirical results and discussto which extent we find evidence for

our hypotheses derived from our model of patenting behavior. We start by estimating a basic

specifications which is gradually extended to include all interaction terms introduced in Equa-

tion 18. Table4 presents results of system GMM estimators using forward deviations trans-

formations (Blundell and Bond(1998), Arellano and Bover(1995) andAlvarez and Arellano

(2003)).15 Reported standard errors are based on two step estimators using the correction sug-

gested byWindmeijer(2005). Tests for first, second and third order serial correlation(m1-m3)

indicate presence of first and second order serial correlation. In all specifications we instru-

ment predetermined variables with third order lags and endogenous variables with fourth order

lags. Instrument sets are collapsed in order to reduce the number of instruments used.

Specification GMM A contains the lagged dependent variable,measures of technological

opportunity (NPR), complexity (Triples), the breadth of a firms’ activities within the patent

system (Areas), a dummy for the size of a firms’ patent portfolio (Large) as well as dummies

for the year and the main technology area of a firm. Additionally, GMM B contains a corrected

measure of fragmentation. Hansen tests for both specifications reject their validity.

In contrast, specification GMM C allows for interactions of our complexity measure (Triples)

with the lagged dependent variable and with the measure of technological opportunity (NPR).

This specification performs much better, theχ2 statistic being much lower than for the previ-

ous specifications.16

In specification GMM FULL Fragmentation is interacted with the complexity measure,

to capture the expectation that fragmentation of patent portfolios is costly in complex tech-

nologies. The specification represents another improvement over the previous in terms of the

Hansen test. Finally, specification GMM L includes interactions which test the effects of firm

size on non patent references. This specification performs best of all, the Hansen test does not

reject the model.

We find that greater technological opportunity raises patenting levels. This effect is highly

significant across all estimated specifications (see Columns (1) to (5) of Table4).

15All models were estimated withxtabond2 in Stata 9.2 . This package is described in (Roodman(2006)).
16In unreported results we find the model improves through the combination of both interaction effects re-

ported. This indicates that the interactions capture an important aspect of the data generating process.
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Table 4: Patent Applications Estimates

(1) (2) (3) (4) (5)

Variable SGMM A SGMM B SGMM C SGMM FULL SGMM L

log Patentcountt−1 0.777*** 0.709*** 0.485*** 0.533*** 0.678***

(0.042) (0.047) (0.074) (0.087) (0.068)

log Patentcountt−1× Triples -0.015*** -0.016*** -0.015***

(0.002) (0.002) (0.002)

Non Patent References (NPR)0.216*** 0.191*** 1.525*** 1.613*** 1.386***

(0.031) (0.032) (0.190) (0.241) (0.182)

NPR× Triples -0.041*** -0.043*** -0.034***

(0.004) (0.005) (0.004)

NPR× Triples× Large 0.006***

(0.001)

NPR× Large -0.425***

(0.052)

Fragmentation 5.685* -4.606 -13.208 -12.482*

(2.309) (4.608) (9.279) (6.192)

Fragmentation× Triples 0.305** 0.247*

(0.114) (0.097)

Triples -0.000 -0.000 0.069*** 0.072*** 0.057***

(0.000) (0.000) (0.007) (0.008) (0.006)

Areas 0.059*** 0.066*** 0.115*** 0.113*** 0.096***

(0.007) (0.007) (0.012) (0.013) (0.010)

Large -0.115*** -0.094*** 0.042 0.031 0.409***

(0.027) (0.027) (0.054) (0.061) (0.081)

Year dummies YES YES YES YES YES

Primary area dummies YES YES YES YES YES

Constant -0.358*** -0.357*** -1.531*** -1.625*** -1.515***

(0.041) (0.041) (0.177) (0.223) (0.167)

N 173448 173448 173448 173448 173448

m1 -25.48534 -21.6864 -10.69893 -9.690637 -13.49454

m2 18.08254 15.15458 2.488548 2.477419 5.564835

m3 -1.650511 -1.709003 1.143266 1.446003 .7390595

Hansen 566.1257 558.1005 29.0312 20.61644 10.67657

p-values 0.00000 0.00000 0.00000 .00095 .05818

Degrees of freedom 4 4 5 5 5

* p<0.05, ** p<0.01, *** p<0.001

1. Asymptotic standard errors, asymptotically robust to heteroskedasticity are reported in parentheses

2. m1-m3 are tests for first- to third-order serial correlation in the first differenced residuals.

3. Hansen is a test of overidentifying restrictions. It is distributed asχ2 under the null of instrument

validity, with degrees of freedom reported below.
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4. In all cases GMM instrument sets were collapsed and lags were limited.

The inclusion of the interaction between or measure of complexity (Triples) and techno-

logical opportunity shows that the effect differs in discrete technologies and complex technolo-

gies. In particular, if the number of Triples in a given area is larger than 37 (in specifications

(3) and (4)) or larger than 40 in specification (5) of Table4, the overall effect from increas-

ing technological opportunity is negative asβO + βOC × Ci,t < 0. This finding supports our

Hypothesis 1 that increasing technological opportunity reduces patenting efforts in complex

areas. As Table1 shows the average number of Triples for 5 of the technology areas in our

sample is higher. For Audiovisual technology and Optics it is always the case. In case of

larger firms the predicted effects of complexity already arise when the number of Triples is

above4. This is always the case for9 technology areas in our sample. This effect is further

strengthened for large firms asβOCL × Ci,t × Li,t + βOL × Li,t < 0 in Column (5) of Table

4. SinceβO + βOC × Ci,t > 0 for areas with fewer Triples (even in the case of large firms)

Hypothesis 3 can not be rejected.

With regard to complexity we find that firms’ patenting levelsincrease significantly in

response to greater complexity (see Columns (3) to (5) of Table 4. The coefficient onTriples

is positive and greater than that on the sum of interactions of Triples with Non patent references

and the laggedPatentcount. Therefore, we cannot reject Hypothesis 2. Additionally, we find

weak evidence that suggests fragmentation (measured as proposed by Ziedonis 2004) of patent

ownership affects firms’ incentives to patent in complex technologies.

In a next step, we test the robustness of our results using alternative GMM estimators.

Results from these robustness tests are reported in Table5. Here, we vary size of the instru-

ment set and the estimator used. All models reported in Table5 are estimated using forward

deviations and reported standard errors are based on the Windmeijer correction as previously.

The models presented differ in the number of overidentifying restrictions employed as well

as assumptions about the correlation of the explanatory variables with fixed effects. The four

models reported in the central part of the table allow for correlation between all explanatory

variables apart fromTriples with fixed effects. In the two specifications on the right sideof the

table we assume that subsets of the explanatory variables are uncorrelated with fixed effects.

Additionally, Table7 (AppendixB) provides results from OLS on the pooled sample and

from fixed effects regressions. These results are known to bebiased due to inclusion of the

lagged dependent variable. However, they provide lower andupper bounds on the values of

the lagged dependent variable for GMM (Bond(2002)). We find the coefficient of the lagged

dependent variable in the models GMM C and GMM FULL lies within the range given by

results of OLS on a pooled sample and a fixed effects model. In case of GMM L the coefficient

of the lagged dependent variable is marginally greater thanthe results of OLS estimation.

The number of observations in our dataset implies thatT/N → 0. Therefore, a systems

GMM estimator (Blundell and Bond(1998)) using forward deviations is asymptotically con-

sistent (Alvarez and Arellano(2003); Hayakawa(2006)). We employ the estimator as the

persistence of the patenting series is very high in our sample: the coefficient on the lagged
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dependent variable in an AR1 model with time and primary areadummies is0.92.

Table 5: Robustness Checks for Patent Applications Estimates

Allowing correlation Assuming no correlation

with fixed effects with fixed effects

Variable SGMM MIN SGMM L DGMM L SGMM L2 SGMM NPR SGMM F

log Patentcountt−1 0.684*** 0.678*** 0.863*** 0.735*** 0.715*** 0.915***

(0.072) (0.068) (0.091) (0.058) (0.047) (0.039)

log Patentcountt−1× Triples -0.017*** -0.015*** -0.012*** -0.011*** -0.007*** -0.004***

(0.002) (0.002) (0.002) (0.001) (0.001) (0.001)

Non Patent References (NPR) 1.581*** 1.386*** 1.198*** 0.968*** 0.271*** 0.171

(0.221) (0.182) (0.164) (0.113) (0.019) (0.119)

NPR× Triples -0.038*** -0.034*** -0.028*** -0.024*** -0.008*** -0.003

(0.005) (0.004) (0.004) (0.002) (0.001) (0.003)

NPR× Triples× Large 0.006*** 0.006*** 0.006*** 0.005*** 0.004*** 0.002***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.000)

NPR× Large -0.436*** -0.425*** -0.262*** -0.397*** -0.466*** -0.506***

(0.055) (0.052) (0.033) (0.042) (0.034) (0.032)

Fragmentation -15.234* -12.482* -13.998* -4.848 -1.448 -2.313

(6.510) (6.192) (6.123) (3.654) (1.210) (1.946)

Fragmentation× Triples 0.262** 0.247* 0.181* 0.188* 0.102* 0.156*

(0.100) (0.097) (0.091) (0.083) (0.044) (0.071)

Triples 0.063*** 0.057*** 0.042*** 0.040*** 0.015*** 0.007

(0.007) (0.006) (0.005) (0.004) (0.001) (0.004)

Areas 0.095*** 0.096*** 0.031* 0.086*** 0.085*** 0.058***

(0.010) (0.010) (0.014) (0.008) (0.007) (0.006)

Large 0.430*** 0.409*** 0.257*** 0.325*** 0.442*** 0.412***

(0.087) (0.081) (0.053) (0.065) (0.049) (0.048)

Year dummies YES YES YES YES YES YES

Primary area dummies YES YES YES YES YES YES

Constant -1.672*** -1.515*** -1.151*** -0.597*** -0.526***

(0.198) (0.167) (0.105) (0.046) (0.106)

N 173448 173448 171380 173448 173448 173448

m1 -12.75267 -13.49454 -9.115675 -16.66536 -20.32686 -28.27661

m2 4.690134 5.564835 5.686894 9.293913 12.525 20.07668

m3 1.093296 .7390595 -.4191068 -.4131314 -1.354271 -1.478497

Hansen 2.178791 10.67657 7.067067 70.62775 184.0212 288.5185

p-values 0.1399 0.0582 0.1324 0.0000 0.0000 0.0000

Degrees of freedom 1 5 4 9 7 7

* p<0.05, ** p<0.01, *** p<0.001

1. Asymptotic standard errors, asymptotically robust to heteroskedasticity are reported in parentheses
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2. m1-m3 are tests for first- to third-order serial correlation in the first differenced residuals.

3. Hansen is a test of overidentifying restrictions. It is distributed asχ2 under the null of instrument

validity, with degrees of freedom reported below.

4. In all cases GMM instrument sets were collapsed and lags were limited.

Blundell and Bond(1998) note that a difference GMM estimator will be affected by a weak

instruments problem in this context. Specification DGMM L reported in Table5, estimated by

difference GMM, does not suggest this problem is severe here. The coefficient on the lagged

dependent variable is somewhat above that reported for the comparable systems estimators.

It is also significantly above the coefficients from the OLS regressions reported in Table7.

Therefore, we focus our analysis on the results from the system estimators. The substantive

results provided by the difference estimator are the same asthose from the systems estimators.

In all models reported in Table5 the instrument sets were collapsed17 and instrumenting

lags were limited as described below. This was done as the Hansen test and difference in

Hansen tests rejected the overall instrument sets as well asindividual instruments where larger

instrument sets were employed. Specification SGMM L2 illustrates how sensitive the Hansen

test is to the size of the instrument set here. This specification is identical to SGMM L, we just

allow for an extra lag on the instrument sets for the endogenous variables in this specification.

The specification is rejected by the Hansen test.

All models reported in Table5 contain the following explanatory variables:Non patent

references, Triples, Fragmentation, Area count, Large dummy and the lagged dependent vari-

able as well as interactions of some of these variables. We considerLarge andArea count to

be endogenous as they reflect decisions about how widely and where to engage in research

which may be contemporaneous with decisions determining the level of patent applications.

We consider the remaining variables to be predetermined since they depend in large part on

the aggregated decisions of rival firms. Finally note that weinclude only year and primary

area dummies as well asTriples in the levels equation as it is likely that the fixed effects are

correlated with differences in the remaining explanatory variables. Triples is the only vari-

able that reflects purely technology area specific characteristics which may be assumed to be

orthogonal to firm specific effects.

We estimate two models in which we treat Fragmentation (GMM F) and Non patent refer-

ences (GMM NPR) as uncorrelated with fixed effects. Results from the Hansen tests for both

specifications reported in Table5 show that these models are clearly rejected.

Our preferred models are reported as SGMM MIN and SGMM L in Table 5. In SGMM

MIN we restrict the number of instruments such that the modelis just overidentified.Hayakawa

(2006) argues that such a minimum instruments specification is unbiased in settings whereT

is fixed andN → ∞. Specification SGMM L includes one additional lag for the endogenous

variables. Results from these two specifications are statistically indistinguishable.

Based on this specification Table6 provides effects of changes in complexity (Triples),

technological opportunities (Non patent references) and fragmentation for patenting rates in

17Collapsing instrument sets reduces the number of moment conditions used for GMM (Roodman(2006)).
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nine technology areas.18 The table presents effects for small and large firms. Five of the tech-

nology areas presented are highly likely complex as the meanlevel of Triples is clearly above

42 in these areas (viz. Table1). They are Audiovisual Technology, Telecommunications, In-

formation Technology, Semiconductors and Optics. We also present results for four areas that

are certainly less complex by this measure: Electrical Machinery; Analysis, Measurement,

Control; Medical Technology and Pharmaceuticals. Our theoretical predictions are borne out

by specification SGMM L and Table6. First, we find that in discrete technologies additional

technological opportunity raises firms’ patenting rates. The coefficient forNon patent refer-

ences is positive and highly significant. Even in case of large firmsthe overall effect remains

positive. This supports our previous finding that Hypothesis 3 cannot be rejected.

Table 6: Percentage Changes in Patent Applications for Selected Variables

Triples Non patent references Fragmentation

Technology SD change SD change Unit change SD

area Small Large Small Large (+0.0001) change

Audiovisual Mean 6,64% 18,66% -50,69% -54,86% 0,17% 21,66%

Technology Median 16,42% 29,61% -51,72% -56,96% 0,17% 22,48%

Telecom- Mean -3,74% 22,96% -34,37% -36,95% 0,13% 10,21%

munications Median 2,82% 43,96% -29,92% -35,63% 0,10% 8,24%

Information Mean -2,88% 3,46% -10,60% -16,57% 0,02% 1,48%

Technology Median 1,65% 8,00% -10,94% -17,75% 0,02% 1,59%

Semiconductors Mean -24,82% -13,01% -24,42% -32,94% 0,03% 2,44%

Median -21,73% -9,45% -25,01% -36,21% 0,03% 2,57%

Optics Mean -4,79% 7,65% -7,69% -12,13% 0,02% 1,20%

Median 0,90% 14,46% -7,84% -13,14% 0,02% 1,26%

Electrical Mean 12,43% 17,42% 3,51% 1,11% -0,06% -2,46%

Machinery Median 17,35% 22,64% 4,55% 1,79% -0,08% -2,89%

Analysis, Mean 1,94% 7,41% 10,35% 5,81% -0,11% -2,34%

Measurement, Median 5,02% 10,66% 10,35% 6,48% -0,12% -2,54%

Control

Medical Mean 6,85% 8,45% 5,69% 3,40% -0,11% -5,13%

Technology Median 7,55% 9,13% 5,69% 3,38% -0,11% -5,16%

Pharmaceu- Mean -13,59% -12,55% 49,02% 30,11% -0,12% -4,53%

ticals Median -13,99% -12,96% 48,97% 28,96% -0,11% -4,50%

Second, the coefficient on the interaction ofNon patent references andTriples is negative.

The overall effect of additional Non patent references on patenting becomes negative if there

are more than42 Triples in a technology area. As Table6 shows the effects of increases in Non

patent references on the level of patenting are substantialin the technology areas we identify as

18These effects are calculated taking account of the logarithmic transformation of the dependent and the lagged
dependent variable.
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complex. These findings show that Hypothesis 1 cannot be rejected. Turning to Hypothesis 2

we find that the coefficient onTriples is positive and greater than that on the sum of interactions

of Triples with Non patent references andPatentcountt−1. This shows that greater blocking

complexity and therefore greater complexity of a technology area increase firms’ levels of

patenting. Table6 shows that this result generally holds at the median and at the mean for

large firms in complex technology areas. In these areas the mean ofPatentcountt−1 andTriples

is often significantly greater than the median, indicating that the mean firm is usually a large

firm. We view these results as supporting Hypothesis 2.

Interestingly, Table6also shows that the effect of Fragmentation on firms’ patenting efforts

in complex technology areas is positive and quite heterogeneous. Also, Fragmentation has a

negative effect on patenting in discrete technology areas.The positive effects for complex

technology areas support the findings ofZiedonis(2004) andSchankerman and Noel(2006)

who show that additional fragmentation of patent ownershipincreases patenting efforts in the

Semiconductor and Software industries in the United States.

Finally, our results on the interaction of the lagged dependent variable with Triples indi-

cate that the persistence of patenting decreases as technology areas become more complex.

This suggests that patentees are more responsive to their competitors’ patenting behavior in

complex technology areas than in discrete technology areas.

6 Conclusion

Patent applications have been increasing steeply at the USPTO and the EPO since 1984 and

1992 respectively. In both cases these increases have raised questions about the operations

of the affected patent offices as well as effects of these trends on economic activity more

generally (F.T.C. (2003),National Research Council(2004), von Graevenitz et al.(2007) and

Bessen and Meurer(2008)). There is strong evidence by now that patenting has increased in

response to evolution of the legal environment, specifically in the United States, to changes in

the management of R&D and patenting, and to increasing complexity of technology and more

strategic behavior of patent applicants (Kortum and Lerner(1998); Hall and Ziedonis(2001);

Ziedonis(2004)). The contribution of technological opportunity to current patenting trends

and its interaction with other determinants has been less well understood.

Our model is one of the first to consider the effect of complexity and of technological

opportunityjointly. Moreover, the model encompasses discrete and complex technologies,

providing predictions for patenting behavior in both typesof technology. We show theoret-

ically that greater technological opportunity will raise patenting in discrete technologies but

will lower it as technologies become increasingly complex.Additionally, we show greater

complexity of technologies raises firms’ patenting levels.

Using data on patenting in Europe we find that patenting behavior conforms to the pre-

dictions of our theoretical model. Most importantly our results demonstrate that variation in

technological opportunity has had important effects on firms’ patenting levels in Europe. Our
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data show that increased technological opportunity duringthe early 1990’s retarded the onset

of the patenting explosion that is observable after 1994. Wealso show that greater complexity

of technology has positive effects on patenting levels. Finally we confirm that greater fragmen-

tation of patent ownership had positive effects on patenting levels as suggested byZiedonis

(2004).

To test our model we derive a new measure of complexity of blocking relationships in

patent thickets. This measure exploits information on critical references to capture mutual

blocking between the patent portfolios of firms contained inEuropean patent data. Using the

measure we are able to confirm that blocking is a much more serious problem in complex

technology areas than in discrete technology areas. We alsoexploit information on critical

references to provide a sharper measure of fragmentation than has been available using data

from the USPTO. Using this measure we confirm the effects of fragmentation which are strong

in some complex technology areas. Finally we make use of references to non patent literature

to measure technological opportunity.

With the help of our measures of complexity and technological opportunity, we are able

to show that patent thickets exist in nine out of thirty technology areas at the EPO. Our data

indicate that the extent of patent thickets at the EPO has been increasing in recent years. These

increases are concentrated in complex technology areas (Hall (2005) andvon Graevenitz et al.

(2007)). Resulting increases in transactions costs affect exactly those technologies that have

been central to large productivity increases in the recent pastJorgenson and Wessner(2007).

Extended ”patent wars” may threaten this source of productivity gains in the long run. In future

work we therefore intend to investigate whether strategic patenting has measurable effects on

the productivity of firms’ R&D investments and how the decision variables of patent offices

(fees an administrative rules) might be used to influence patent filings.

While we provide some evidence on the level of complexity of blocking relationships in

specific technologies here, open questions remain. In future work we intend to investigate to

what extent technology areas have become more complex over time. Using extensions of the

complexity measure introduced here we will seek to characterize these trends in greater detail

than was possible here.

Our findings on the effects of technological opportunity raise interesting questions about

the relationship between patent breadth, the fecundity of research areas and firms’ R&D in-

vestments. We find that the contest for patent rights becomesmore intense as the level of

technological opportunities decreases if a technology is complex. This raises the question

how firms’ incentives to patent more intensively interact with incentives to undertake basic re-

search which might stem the reduced fecundity of these technologies. At a more fundamental

level the findings indicate that research into the relationship between technological opportuni-

ties and R&D is important if we are to understand the welfare implications of recent patenting

trends better.
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Appendix

A Robustness of the Theoretical Model

As noted in Section2.1 it may be the case that not all facets of a technology opportunity

receive patent applications.

The average number of patent applications per technology opportunity (F̄ ) is:

F̄ =
fi +

∑

j 6=i fj

Noj

O (19)

Using probability theory it can be shown that the number of facets not receiving any patent

applications is:

F

(

1 −

(

F̄

F

)

ojN

O

)

(20)

Therefore in a model in which the number of facets receiving at least one patent application

matters we have:

si =
fip

F

(

1 −

(

1 −

(

F̄

F

)

ojN

O

))−1

(21)

Using this alternative definition ofsi it can be shown that the Propositions derived in Section

2.2hold as long as1 − e−1 > F̄
F

. This constraint is easily met ifN is large.

To see how this statement is arrived at consider the first and second order derivatives de-

rived in Section2.2. Note that all that has changed is the definition ofsi. Given the definition

of si from equation (21) we have:

∂π

∂oi

= V ω(si) − L(si) − Co − fipCa −
∂Cc

∂oi

= 0 ;
∂π

∂fi

=
[

V
∂ω

∂si

−
∂L

∂si

− FCa

]

oi

∂si

∂fi

= 0

(22)
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B Robustness of the Empirical Model

Table 7: Patent Applications Estimates using OLS and Fixed Effects

OLS models Fixed effects models

Variable OLS1 OLS2 OLS3 FE1 FE2 FE3

log Patentcountt−1 0.599*** 0.583*** 0.583*** 0.172*** 0.157*** 0.156***

(0.002) (0.002) (0.002) (0.002) (0.002) (0.003)

log Patentcountt−1× Triples 0.001*** 0.001*** 0.001*** 0.001***

(0.000) (0.000) (0.000) (0.000)

Non Patent References (NPR)0.064*** 0.076*** 0.067*** 0.002 0.016 -0.007

(0.002) (0.002) (0.003) (0.007) (0.008) (0.009)

NPR× Triples -0.002*** -0.002*** 0.000 0.000

(0.000) (0.000) (0.000) (0.000)

NPR× Triples× Large 0.000* 0.000

(0.000) (0.000)

NPR× Large 0.020*** 0.038***

(0.004) (0.006)

Fragmentation 29.910*** 30.332*** 30.352*** 34.246*** 33.811*** 33.825***

(0.269) (0.320) (0.320) (0.346) (0.392) (0.392)

Fragmentation× Triples -0.028*** -0.028*** 0.016 0.016

(0.007) (0.007) (0.009) (0.009)

Triples 0.000*** 0.002*** 0.002*** 0.001*** 0.000 0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Areas 0.018*** 0.018*** 0.018*** 0.084*** 0.084*** 0.084***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Large 0.279*** 0.282*** 0.256*** 0.305*** 0.306*** 0.263***

(0.004) (0.004) (0.006) (0.005) (0.005) (0.009)

Year dummies YES YES YES YES YES YES

Primary area dummies YES YES YES YES YES YES

Constant 0.122*** 0.116*** 0.128*** 0.029 0.031* 0.060***

(0.011) (0.011) (0.012) (0.015) (0.016) (0.016)

R-squared 0.671 0.672 0.672 0.300 0.301 0.301

N 173448 173448 173448 173448 173448 173448

*p<0.05, ** p<0.01, *** p<0.001
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C Complex and discrete technologies

Table 8: Classification of technology areas according to OST-INPI/FhG-ISI

Area Code Description Classification

1 Electrical machinery, electrical energy Complex

2 Audiovisual technology Complex

3 Telecommunications Complex

4 Information technology Complex

5 Semiconductors Complex

6 Optics Complex

7 Analysis, measurement, control technology Complex

8 Medical technology Complex

9 Nuclear engineering Complex

10 Organic fine chemistry Discrete

11 Macromolecular chemistry, polymers Discrete

12 Pharmaceuticals, cosmetics Discrete

13 Biotechnology Discrete

14 Agriculture, food chemistry Discrete

15 Chemical and petrol industry, basic materials chemistry Discrete

16 Chemical engineering Discrete

17 Surface technology, coating Discrete

18 Materials, metallurgy Discrete

19 Materials processing, textiles paper Discrete

20 Handling, printing Discrete

21 Agricultural and food processing, machinery and apparatus Discrete

22 Environmental technology Complex

23 Machine tools Complex

24 Engines, pumps and turbines Complex

25 Thermal processes and apparatus Complex

26 Mechanical elements Complex

27 Transport Complex

28 Space technology, weapons Complex

29 Consumer goods and equipments Complex

30 Civil engineering, building, mining Complex

Description of the 30 technology areas contained in the OST-INPI/FhG-ISI technology nomenclature.

We classified the 30 technology areas as complex or discrete attempting to replicate the classification

of Cohen et al.(2000).
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