Technological Links and FDI Spillovers

Xiaoping Chen Yuchen Shao Lianming Zhu

HIT NJU Osaka

Preliminary. Comments welcome.

Do not distribute without permission.

January 2022

Motivation

- Developing countries have removed restrictions on FDI and adopted policies to attract FDI.
- FDI spillover channels:
 - Agglomeration channel: knowledge spillover; input-output linkage; worker training;
 - Competition channel: market stealing effect.
- Mixed empirical evidences on FDI spillovers
 - Most empirical studies in developing economies fail to find positive spillover;
 - Some exceptions: Javorcik (2004) among others.

What We Do

- Approach to identify knowledge spillovers through FDIs:
 - Technological links between domestic and foreign firms;
 - Exogenous shock using China's FDI liberalization in 2002.
- We investigate the FDI spillover to local firms in a large developing country context.
- Identification on FDI knowledge spillovers in two ways:
 - Construct a measure of technological links between firms to identify technological spillovers following Bloom et al. (2013);
 - Use the major deregulation on FDI flows in 2002 as the policy shock.
 - We also control for other channels of FDI spillovers found in the literature.

Our Findings

- Domestic firms having closer technological links with foreign multinationals can benefit more (larger increase in TFP)
- This effect is robust by controlling for product rivalry effect (the competition channel);
- Examine the relevance of several explanations to understand the effect of FDI knowledge spillovers on domestic firms
 - Horizontal vs. vertical FDI technology spillovers
 - FDI from developed vs. developing economies
 - Spillovers across geographical distance
 - Absorptive capacity of domestic firms
- Other firm measures: patenting, R&D investment, and export performance

Literature

- FDI on host country firms' productivity:
 - In developed countries, the effect is usually positive: e.g., Keller and Yeaple (2009)
 - In developing countries, the effect is usually negative: e.g., Aitken and Harrison (1999) for Venezuela; Lu, Tao and Zhu (2017) for China.
 - Javorcik (2004): positive FDI spillovers through vertical linkages
- Literature on technology spillovers
 - Jaffe (1986); Bloom et al. (2013), etc.

Road Map

- FDI policy in China
- Data
- Estimation strategy
- Main results
- Mechanism
- Conclusion

Background - FDI Regulations in China

- Since the open-door policy in 1978, a series of laws on FDI and implementation measures were introduced and revised.
- In July 1979, a "Law on Sino-Foreign Equity Joint Ventures" was passed to attract foreign direct investment.
- In September 1983, the "Regulations for the Implementation of the Law on Sino-Foreign Equity Joint Ventures" was issued by the State Council of China; it was revised in January 1986, December 1987, and April 1990.
- In April 1986, the "Law on Foreign Capital Enterprises" was enacted.
- In October 1986, "Policies on Encouragement of Foreign Investment" was issued by the State Council of China.

FDI Regulations in China

- Government guidelines for regulating the inflows of FDI
 - In June 1995, the central government of China promulgated "the Catalogue for the Guidance of Foreign Investment Industries"
 - Modifications made in 1997
- The Catalogue classified products into four categories
 - (i) FDI was supported, (ii) FDI was permitted, (iii) FDI was restricted, and (iv) FDI was prohibited.
- After the WTO accession in November 2001, central government substantially revised the Catalogue in March 2002, and made minor revisions in November 2004.
- Further modified in Dec 2007, Jan 2012, April 2015, July 2017, and Jan 2021 (periods not covered in our data).

Measure on Technological Links

- Use Jaffe index to measure technological links between a domestic firm i and a foreign firm j
- Jaffe's (1986) uncentered correlation of firm patent class distribution

$$TEC_{i,j} = \frac{T_i T_j'}{(T_i T_i')^{1/2} (T_j T_j')^{1/2}}.$$

- \bullet $T_i = (T_{i1}, T_{i2}, \ldots, T_{i121})$
- T_{ik} : share of domestic firm i's patents in technology class k (k = 1, ..., 121)
- T_i for foreign firms
- Jaffe index assumes spillovers to occur within the same technology class for any firm pair *i* and *j*.
- As an extension, we use Mahalanobis distance measure $TEC_{i,j}^M$, and allow spillovers to occur between different technology classes.

Measure on Product Market Similarity

- Analogous construction of product market "closeness"
 - Define $S_i = (S_{i1}, S_{i2}, ..., S_{i602})$ where S_{il} is the share of firm i's total sales in 4 digit industry I(I = 1, ..., 602)
 - If spillovers only occur within the same technology class: $PROX_{i,j} = (S_iS_i')/[(S_iS_i')^{1/2}(S_jS_i')^{1/2}]$ for any firm pair i and j
 - If spillovers can occur between different classes using Mahalanobis distance: $PROX_{i,j}^{M}$

Technological Links through FDI

FDI technology spillover pool for domestic firm i:

$$FDI_SPILLTEC_i = \sum_{j \neq i} TEC_{i,js} \cdot G_{js} \cdot DeregFDI_s.$$

- $TEC_{i,js}$: technological link between domestic firm i and foreign firm j that operates in industry s.
- G_{js} : R&D investment of foreign firm j operating in industry s
- DeregFDI_s: an indicator for FDI deregulated industry s

FDI Product Rivary Measure

• FDI product market "spillover" pool for domestic firm i:

$$FDI_SPILLPROX_i = \sum_{j \neq i} PROX_{i,js} \cdot \widetilde{G}_{js} \cdot DeregFDI_s.$$

- PROX_{i,js}: product market proximity between domestic firm i and foreign firm j operating in industry s.
- \widetilde{G}_{is} : output of foreign firm j operating in industry s
- DeregFDIs: an indicator for FDI deregulated industry s

- 1995: the Catalogue for the Guidance of Foreign Investment Industries (the Catalogue)
- 1997: modifications were made
- 2002: substantially revisions
- 2004: minor revisions

- In Catalogue 1997 and 2002, products were classified into four categories:
 - Supported category
 - Permitted category
 - Restricted category
 - Prohibited category

• For each product, compare the 1997 and 2002 versions of the *Catalogue*. Three possible outcomes:

			2002						
			(1)	(2)	(3)	(4)			
			Supported Category	Permitted Category	Restricted Category	Prohibited Category			
	(1)	Supported Category	No-change	Less welcome	Less welcome	Less welcome			
1007	(2)	Permitted Category	More welcome	No-change	Less welcome	Less welcome			
1997	(3)	Restricted Category	More welcome	More welcome	No-Change	Less welcome			
	(4)	Prohibited Category	More welcome	More welcome	More welcome	No-Change			

- Aggregate the changes in FDI regulations from the *Catalogue* product level to industry level in firm-level data.
- Throughout the aggregation process, we have four possible scenarios:
 - (More-Welcome) Deregulated Industries: An improvement in FDI regulations for some products and no change in FDI regulations for the others. (112 industries out of 424 industries)
 - Less-Welcome Industries: A deterioration in FDI regulations for some products and no change in FDI regulations for the others. (7 industries)
 - No-Change Industries: No change in FDI regulations for all the possible Catalogue products. (300 industries)
 - Mixed Industries: An improvement in FDI regulations for some products, but a deterioration in FDI regulations for some other products. (5 industries)

Firm-Level Data

- Annual Survey of Industrial Firms (ASIF)
 - conducted by the National Bureau of Statistics of China for the 1998–2007 period
 - cover all SOEs and all of the non-SOEs with annual sales over 5 million Chinese yuan (about US\$827,000)
 - the number of firms covered varies from approximately 162,000 to approximately 270,000
 - more than 100 variables, including the basic information, and the financial and operational information extracted from accounting statements
- Definition for foreign firm: firm's foreign equity share above 25%.
- Benchmark: measure firm TFP using ACF (2015) approach
- Alternative TFP measure using De Loecker et al (2016) approach to address omitted firm output price issue
 - using quantity data of single-product firm

Patent Data

- State Intellectual Property Office (SIPO): firm's patent filings
 - contains information on firm's name, location, patent class, date of filing
 - types of the patent (i.e., invention patent, utility model patent, and design patent)
- Construct the firm pairwise technology closeness in the patent space
- Match SIPO with ASIF data to obtain firm ownership information, i.e., whether a firm is an FIE or not.
 - technological link between FDI firms and domestic Chinese firms

Specification:

$$\begin{array}{ll} \log \textit{TFP}_{\textit{ikrt}} &= \lambda_{\textit{i}} + \lambda_{\textit{kt}} + \lambda_{\textit{rt}} + \beta \textit{FDI}_\textit{SPILLTEC}_{\textit{i}} \times \textit{Post}_{\textit{t}} \\ &+ \gamma \textit{FDI}_\textit{SPILLPROX}_{\textit{i}} \times \textit{Post}_{\textit{t}} + \theta \mathbf{X}_{\textit{it}} + \varepsilon_{\textit{ikrt}}, \end{array}$$

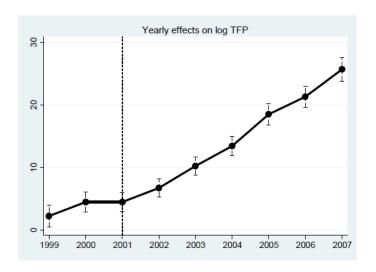
- λ_i : firm FE; λ_{kt} : industry-year FE; λ_{rt} : prefecture-year FE;
- $Post_t = 1$ if $t \ge 2002$ (FDI liberalization happened in 2002)
- \mathbf{X}_{it} : firm-level controls including age, age squared, and SOE dummy.
- $FDI_SPILLTEC_i \times Post_t$: capture firm's exposure to FDI deregulation using information on *preexisting* technological links between domestic and foreign firms.
- Whether domestic firms that are closer to foreign multinationals in preexisting technology spaces would experience relatively larger changes in productivity induced by China's FDI liberalization?

Empirical Analysis

Notes on Estimation Strategy

- Comparing firms in the same industry and prefecture but having initially different technology class with foreign firms
- Industry-year fixed effects:
 - control for alternative channels such as industrial differential growth trends
 - control for horizontal and vertical FDI spillovers across industries
 - other ongoing policies at the industry level
- Prefecture-time fixed effects:
 - control for alternative channels such as regional differential growth trends
 - controlling for ongoing spatial policies such as special economic zones

Empirical Analysis


Notes on Estimation Strategy

- Preexisiting technological links: address the concern that endogenous formation of technological link between firms caused by China's FDI deregulation could affect domestic firm's productivity.
- Domestic firms sample only (robust results using full sample)
- Standard errors are cluster at the firm level

Main Results

	Dependent variable: Log firm TFP					
	(1)	(2)	(3)	(4)		
$FDI_SPILLTEC \times Post$	0.261***	0.253***	0.151***	0.151***		
	(0.043)	(0.043)	(0.040)	(0.040)		
FDI SPILLPROX \times Post	,	, ,	, ,	-0.001		
_				(0.001)		
Observations	399407	399407	399293	399293		
Outcome mean	4.09	4.09	4.09	4.09		
Additional controls:						
Firm fixed effects	X	X	X	X		
Year fixed effects	X					
Industry-year fixed effects		X	X	X		
Prefecture-year fixed effects		X	X	X		
Firm characteristics		X	X	X		

Yearly Effects on Local Firms' Productivity

Main Results

- Conditional on product competition effects, domestic firms that are more exposed to FDI deregulation through closer technological links with foreign multinationals significantly increase their TFP.
- It is much easier for domestic firms to learn foreign technology given that their technology spaces are similar with foreign firms.
- Figure shows that in the pre-WTO period, this spillover effect through technological links on firm productivity is quite stable over time.

Robustness Checks

- Mahalanobis distance index for TEC_{i,i} (column 1)
- Using invention and utility patent separately for TEC_{i,j} measure (columns 2–3)
- Exclude foreign pure exporter (as they have lower TFP than domestic firms) when calculating $TEC_{i,j}$, in column 4
- Exclude domestic processing firms in column 5
- Using alternative G_{js} measure (columns 6–7)

Robustness Checks

	Dependent variable: Log firm TFP								
		G_{js} measure							
	Mahalanobis distance	Invention patent	Utility patent	Foreign pure exporters excluded	Domestic process. firms excluded	Output	Employees		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)		
$FDI_SPILLTEC \times Post$	0.153*** (0.037)	0.256** (0.130)	0.179*** (0.049)	0.151*** (0.040)	0.147*** (0.042)	0.042*** (0.011)	0.082*** (0.021)		
Observations	399293	399293	399293	399293	387865	399293	399293		
Outcome mean	4.09	4.09	4.09	4.09	4.07	4.09	4.09		
Additional controls:									
Firm fixed effects	x	x	x	x	x	x	x		
Industry-year fixed effects	x	x	x	x	x	x	x		
Prefecture-year fixed effects	X	x	x	x	x	x	x		
$FDI_SPILLPROX \times Post$	x	x	x	X	x	x	x		
Firm characteristics	X	x	X	X	X	x	x		

Discussion

- Agglomeration effect
 - Horizontal vs. vertical technology spillovers
 - FDI from OECD vs. non-OECD countries
 - FDI spillovers by geographical distance
 - Long-run TFP growth
- Absorptive capacity
 - Ownership structure (SOE vs. private firms)
 - R&D investment
 - Firm size

Mechanism I

Horizontal vs. Vertical Technology Spillovers

Horizontal FDI technology spillovers:

$$\textit{HFDI_SPILLTEC}_i = \sum_{j \neq i} \textit{TEC}_{\textit{ik}, \textit{js}} \cdot \textit{G}_{\textit{js}} \cdot 1(\textit{k} = \textit{s}) \cdot \textit{DeregFDI}_{\textit{s}}.$$

- ullet 1(k=s): an indicator if firm i and j operating in the same industry
- Backward FDI technology spillovers:

$$BFDI_SPILLTEC_i = \sum_{j \neq i} TEC_{ik,js} \cdot G_{js} \cdot \alpha_{sk} \cdot DeregFDI_s.$$

- α_{ks} : ratio of sector k's output supplied to sector s
- Forward FDI technology spillovers:

$$\textit{FFDI_SPILLTEC}_i = \sum_{j \neq i} \textit{TEC}_{\textit{ik}, \textit{js}} \cdot \textit{G}_{\textit{js}} \cdot \beta_{\textit{ks}} \cdot \textit{DeregFDI}_{\textit{s}}.$$

• β_{ks} : ratio of inputs purchased by sector k from sector s

Mechanism II

Technology Spillovers by Distance

FDI spillover by distance:

$$D_FDI_SPILLTEC_i = \sum_{j \neq i} TEC_{ir,ju} \cdot G_{js} \cdot Dist_{ru}^o \cdot DeregFDI_s.$$

- $Dist_{ru}^o$: bilateral distance between prefecture r and u.
- o: three distance intervals: [0; 300); [300; 900); [900; maximum).
- Distance-weighted FDI spillover:

$$Dist_FDI_SPILLTEC_i = \sum_{j \neq i} TEC_{ir,ju} \cdot G_{js} \cdot e^{-d_{ru}} \cdot DeregFDI_s$$

• d_{ru} : bilateral distance between prefecture r and u, divided by average bilateral city distance

Technology Spillovers by Source Country

• FDI from OECD countries:

$$FDI_SPILLTEC_i^{OECD} = \sum_{j \neq i} TEC_{ir,ju} \cdot G_{js} \cdot OECD_{js} \cdot DeregFDI_s.$$

- $OECD_{js} = 1$ if foreign firms from OECD countries (using foreign-invested data in 2001)
- FDI from non-OECD countries:

$$FDI_SPILLTEC_i^{NonOECD} = \sum_{j \neq i} TEC_{ir,ju} \cdot G_{js} \cdot NonOECD_{js} \cdot DeregFDI_s.$$

ullet NonOECD $_{js}=1$ if foreign firms from non-OECD countries

Dependent variable:		Log fi	TFP growth btw 2001-2007		
	(1)	(2)	(3)	(4)	(5)
$HFDI_SPILLTEC \times Post$	0.250				
$BFDI_SPILLTEC \times Post$	(0.490)				
$FFDI_SPILLTEC \times Post$	(0.934) 2.391* (1.321)				
FDI_SPILLTEC distance:					
$[0, 300) \times Post$		0.331**			
[300, 900) × Post		0.231**			
[900, $maximum$) × $Post$		(0.114) 0.067 (0.073)			
$Distance\text{-}weighted\ FDI_SPILLTEC \times Post$		(0.075)	0.389*** (0.092)		
FDI_SPILLTEC from:					
OECD countries \times Post				0.454**	
Non-OECD countries \times Post				0.098 (0.097)	
$FDI_SPILLTEC \times Post$					0.021**
Observations	399293	399293	399293	399293	23898
Outcome mean	4.09	4.09	4.09	4.09	0.15

Mechanism

- Column (1) for horizontal vs. vertical technological spillover:
 - both backward and forward FDI on firm TFP are positive and statistically significant
 - The horizontal FDI is still positive, with similar magnitude as in the baseline result, although statistically insignificant.
- Columns (2) and (3): FDI technological spillovers decreased as geographical distance between domestic firms and multinationals increases.

Mechanism

- Column (4): FDI from developed vs developing economies
 - Technological spillovers through multinationals from developed countries with advanced technology or sophisticated know-how are more beneficial to Chinese domestic firms.
 - The effect of FDI technological spillovers among foreign affiliates from developed countries is much larger comparing to those from developing countries.
- Column (5): find a positive long-run effect, indicating a positive dynamic effect of FDI technological spillovers in the long run.

Absorptive Capacity

	Dependent variable: Log firm TFP							
	Firm	ownership	Firm R&	D intensity	Firm size			
	Private	State-owned	High	Low	Large	Small		
	(1)	(2)	(3)	(4)	(5)	(6)		
FDI_SPILLTEC × Post	0.098**	0.221***	0.119**	0.140**	0.165***	0.057		
	(0.048)	(0.076)	(0.058)	(0.062)	(0.041)	(0.150)		
Observations	300500	98225	44774	353709	249609	149194		
Outcome mean	4.30	3.45	4.17	4.08	4.13	4.01		
Additional controls:								
Firm fixed effects	X	X	X	X	X	X		
Industry-year fixed effects	X	X	X	X	X	X		
Prefecture-year fixed effects	X	X	X	X	X	X		
$FDI_SPILLPROX \times Post$	X	X	X	X	X	X		
Firm characteristics	X	X	X	x	X	X		

Absorptive Capacity

- Columns (1)–(2): SOE vs. private firms
 - FDI deregulation significantly increases productivity for those technologically linked domestic firms, especially SOEs.
 - This is in line with the conventional wisdom that SOEs usually are more capable in terms of absorbing the technological spillovers from foreign multinationals.
- Columns (3)–(4): Firms with high vs. low R&D investment
 - Technological spillovers of FDI to domestic firms do not differ significantly across the two sub-samples.
- Columns (5)-(6): Large vs. small-sized firms
 - Technological spillovers are indeed much larger for larger domestic firms.

Other Firm Outcomes

	Dependent variable: Log firm TFP							
	Patent	R&D Investment	New product	Export dummy	Export intensity	Exit dummy		
	(1)	(2)	(3)	(4)	(5)	(6)		
$FDI_SPILLTEC \times Post$	0.108** (0.046)	0.818*** (0.235)	1.497*** (0.274)	0.067** (0.027)	0.029*** (0.010)	-0.138*** (0.014)		
Observations	451813	256235	413134	451813	451813	451813		
Outcome mean	0.03	0.85	1.07	0.23	0.11	0.08		
Additional controls:								
Firm fixed effects	X	X	X	X	X	X		
Industry-year fixed effects	X	X	X	X	X	X		
Prefecture-year fixed effects	X	X	X	X	X	X		
$FDI_SPILLPROX \times Post$	X	X	X	X	X	X		
Firm characteristics	X	X	X	X	X	X		

Other Firm Outcomes

- Columns (1)–(3): As more foreign companies enter China and bring more advanced technologies, the innovation activities of domestic companies have become more active.
- Columns (4)–(5): The entrance of multinational enterprises help domestic firms learn more information about the foreign market and enhance their international market participation.
- Column (6): The presence of FDI technology spillovers has a negative effect on the firm exit rate in the next period (increase the survival rate of domestic firms).

Heterogeneous Effects

	Dependent variable: Log firm TFP						
	Industry t	ech specificity	Regio	nal IPR			
	High (1)	Low (2)	High (3)	Low (4)			
$FDI_SPILLTEC \times Post$	0.365*** (0.113)	0.115*** (0.042)	0.112** (0.049)	0.214*** (0.065)			
Observations	114962	282298	213321	185575			
Outcome mean	4.39	3.97	4.42	3.71			
Additional controls:							
Firm fixed effects	X	X	X	X			
Industry-year fixed effects	X	X	X	X			
Prefecture-year fixed effects	X	X	X	X			
$FDI_SPILLPROX \times Post$	X	X	X	X			
Firm characteristics	X	X	X	X			

Heterogeneous Effects

- Columns (1)–(2): high vs. low tech specific industry
 - Technologies in some industries are more specific in the sense that technologies used in these industries are more concentrated in patent classes.
 - Technology spillover effect is stronger in those industries with high technology specificity, suggesting stronger spillovers for given technological links in these industries.
- Columns (3)–(4): regional IPR protection difference
 - In regions with better intellectual property protection, certain technological spillover will be restricted.
 - Intellectual property rights differ quite significantly across provinces in China.
 - We find that technological spillover effect from FDIs to domestic firms is stronger in regions with relatively worse intellectual property rights.

Conclusion

- There is significant positive spillover effect from FDIs to domestic firms.
- The effect hings on the technological links between domestic firms and FDIs.
- This positive spillover is robust to control for product rivalry effect.
- Confirm the spillover channel in the literature: input-output linkage; origin of FDIs; absorptive capacity.