# Oil price, exchange rate, and Japanese stock returns

December 18, 2019 RIETI-IWEP-CESSA workshop Kohei Aono (Ritsumeikan) Tokuo Iwaisako (Hitotsubashi) Hayato Nakata (Meisei)

Last update: Dec 17, 2019

# INTRODUCTION

# Purposes of this paper (1)

- Japan is a major energy importer.
- Oil price fluctuations can have large impacts on Japanese macro economy, so that on Japanese stock returns.
- Japanese economy heavily depends on its exports.
- So FX rate changes do have large impacts on Japanese stock returns too.
- Japan's exchange rate is also affected by oil price changes.

# Purposes of this paper (2)

- Different factors move oil price. For example:
  - Supply (-) and demand (+)
  - Market participants' anticipation/speculation.
- Need identification strategy(s) to identify "structural shocks."
- We want to analyze the impacts of oil price and FX rate fluctuations to Japanese stock market in unified empirical framework.

## **MODEL STRUCTURE AND DATA**



# Two identification strategies



# Two identification strategies



# Separate identification of macro shocks and stock market

$$Y_t = c + B(L)Y_t + \varepsilon_t,$$

where

$$Yt = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}, \ c = \begin{bmatrix} Y_{1t} \\ Y_{2t} \end{bmatrix}, \ B(L) = \begin{bmatrix} B_{11}(L) & 0 \\ B_{21}(L) & B_{22}(L) \end{bmatrix}, \ \varepsilon_t = \begin{bmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{bmatrix}.$$

Simlar to Lee and Ni (2001 JME)  $Y_{1t}$ : macro shocks (oil, FX)  $\rightarrow$  structural shocks  $Y_{2t}$ : stock returns (and monetary policy)

## **Two-step estimation**

- 1. Estimate VAR including oil and FX to tabulate structural shocks series.
- Use structural shocks from 1<sup>st</sup> step as exogenous variables to estimate VAR including stock returns (and monetary policy).

## Variables and structural shocks (1) The extended Kilian model

#### Variables in the Structural VAR

| $\mathrm{prod}_t$       | Growth rate of world crude oil production        |
|-------------------------|--------------------------------------------------|
| $\operatorname{real}_t$ | Proxy for global real economic activity (Kilian) |
| $\operatorname{poil}_t$ | Crude oil price                                  |
| $fx_t$                  | Real effective exchange rate                     |

#### Structural Shocks

| $\epsilon_t^{SY}$  | Oil supply shock                 |
|--------------------|----------------------------------|
| $\epsilon_t^{DE}$  | Aggregate demand shock           |
| $\epsilon_t^{OIL}$ | oil-market-specific demand shock |
| $\epsilon_t^{FX}$  | Pure exchange rate shock         |
|                    |                                  |

### Identification strategy

#### Kilian

$$u_t = \begin{bmatrix} u_t^{\text{prod}} \\ u_t^{\text{real}} \\ u_t^{\text{poil}} \end{bmatrix} = A_0 \epsilon_t = \begin{bmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & 0 \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} \epsilon_t^{SY} \\ \epsilon_t^{DE} \\ \epsilon_t^{OIL} \end{bmatrix}, \quad (2)$$

#### Our paper

$$u_{t} = \begin{bmatrix} u_{t}^{\text{prod}} \\ u_{t}^{\text{real}} \\ u_{t}^{\text{poil}} \\ u_{t}^{\text{fx}} \end{bmatrix} = A_{0}\epsilon_{t} = \begin{bmatrix} a_{11} & 0 & 0 & 0 \\ a_{21} & a_{22} & 0 & 0 \\ a_{31} & a_{32} & a_{33} & 0 \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \begin{bmatrix} \epsilon_{t}^{SY} \\ \epsilon_{t}^{DE} \\ \epsilon_{t}^{OIL} \\ \epsilon_{t}^{EX} \\ \epsilon_{t}^{EX} \end{bmatrix}.$$
(3)

### Variables and structural shocks (2) The extended Ready model

Variables in the Structural VAR

| $	riangle 	ext{poil}_t$ | Crude oil price change          |
|-------------------------|---------------------------------|
| $\operatorname{Roil}_t$ | An index of oil producing firms |
| $\operatorname{VIX}_t$  | Suprises in VIX                 |
| $fx_t$                  | Real effective exchange rate    |

#### Structural Shocks

| $v_t^{SY}$  | Oil supply shock         |
|-------------|--------------------------|
| $v_t^{DE}$  | Aggregate demand shock   |
| $v_t^{VIX}$ | Risk shocks              |
| $v_t^{FX}$  | Pure exchange rate shock |

# Data

### macro variables

- Monthly data from 2000 to 2018
- $\succ$  Growth rate of world oil production: US EIA<sup>K</sup>
- > Kilian's index of global oil demand <sup>K</sup>
- Stock price index of global energy production companies <sup>R</sup>
- Oil price: IMF primary commodity price statistics, denominated by US CPI.<sup>K R</sup>
- ► Innovations to VIX<sup>R</sup>
- > Real effective exchange rates (BIS)<sup>K R</sup>

## Data

### stock returns and monetary policy variables

- ➤ TOPIX returns
- Dividend/price ratio
- ➤ Monetary policy
  - Real interest rate
  - Term structure (yield spread)
- Subsamples based on monetary policy schemes)
  - Quantitative easing (QE): 2000-2006:2
  - Back to Normal: 2006:3-2014:2
  - Quantitative-Qualitative Easing (QQE): 2014:4-2019:3 (Abenomics)

## **EMPRICAL RESULTS**

Stock returns FX regressed on oil price and exchange rate

• Higher Yen value has negative and significant impacts on Japanese stock returns.

• Higher oil price (level and change) has positive, but insignificant impacts.

### Regression for stock returns $RJA_t$ with oil price and exchange rates

|     | $\operatorname{poil}_t$ | $	ext{Doil}_t$    | $fx_t$        | $R^2/{ m adj.}R^2$ |
|-----|-------------------------|-------------------|---------------|--------------------|
| (1) | 0.458                   | _                 | $-1.002^{**}$ | 0.202              |
|     | [0.62]                  |                   | [-5.92]       | 0.195              |
|     |                         |                   |               |                    |
| (2) | —                       | $0.065^{\dagger}$ | $-0.939^{**}$ | 0.211              |
|     |                         | [1.86]            | [-0.63]       | 0.204              |

# Regressions with contemporaneous "exogenous" structural shocks

- Kilian type: oil market specific price shocks have significant positive impacts on stock returns.
- Ready type: semand shocks have positive, risk (VIX) shocks have negative impact.
  - Oil supply shocks have positive impact, though statistically insignificant.
- Model performance: Ready >>> Kilian.

### Regression for stock returns $RJA_t$ with structural shocks

#### (1) With structural shocks by Kilian

| $\epsilon_t^{SY}$ | $\epsilon_t^{DE}$ | $\epsilon_t^{OIL}$ | $\epsilon_t^{FX}$ | $R^2/{ m adj.}R^2$ |
|-------------------|-------------------|--------------------|-------------------|--------------------|
| -0.116            | 0.392             | 0.981**            | -0.023**          | 0.162              |
| [-0.25]           | [0.85]            | [2.74]             | [-4.31]           | 0.147              |

### (2) With structural shocks by Ready $v_t^{SY}$ $v_t^{DE}$ $v_t^{VIX}$ $v_t^{FX}$ $R^2/\text{adj.}R^2$ 0.448 0.019\*\* -0.014\*\* -0.876\* 0.253 [1.56] [5.75] [-3.74] [-2.54] 0.239

# Ready's (2018) results for US market sample period:1988-2011

| Panel A. US stock market returns and oil shocks |                      |                                     |               |                           |
|-------------------------------------------------|----------------------|-------------------------------------|---------------|---------------------------|
| Description                                     | Variable             | US market ret. $(R_t^{\text{USA}})$ |               |                           |
| Oil price changes                               | $\Delta p_t$         | 0.031                               |               |                           |
|                                                 |                      | (0.027)                             |               | Univariate R <sup>2</sup> |
| Demand shock                                    | $d_t$                |                                     | 0.370**       | 0.124                     |
|                                                 |                      |                                     | (0.046)       |                           |
| Supply shock                                    | s <sub>t</sub>       |                                     | $-0.102^{**}$ | 0.036                     |
|                                                 |                      |                                     | (0.021)       |                           |
| Innovation in VIX                               | $\xi_{\text{VIX},t}$ |                                     | -0.184**      | 0.444                     |
|                                                 |                      |                                     | (0.012)       |                           |
| Constant                                        |                      | 0.005                               | 0.003         |                           |
|                                                 |                      | (0.003)                             | (0.002)       |                           |
| Observations                                    |                      | 315                                 | 315           |                           |
| R-squared                                       |                      | 0.004                               | 0.604         |                           |

11/24/2020

# VAR including monetary policy variables with structural shocks

- Structural shocks
  - Model performance: Ready >>> Kilian.
  - Mostly same as regression results with structural shocks only.
- Monetary policy variables
  - Adding monetary policy variables improve the explanatory power. But, only lagged stock returns are significant.
  - Real interest rate: Negative.
  - Term premium: Negative.
  - Dividend yield: Negative. Inconsistent with theoretical prediction.

# Regression for stock returns $RJA_t$ in Kilian-type VAR

| $RJA_{t-1}$       | $Rrate_{t-1}$     | $Term_{t-1}$       | $dp_{t-1}$        |
|-------------------|-------------------|--------------------|-------------------|
| 0.129*            | -1.681            | -0.537             | -0.120            |
| [2.01]            | [-1.57]           | [-0.99]            | [-0.94]           |
|                   |                   |                    |                   |
| $\epsilon_t^{SY}$ | $\epsilon_t^{DE}$ | $\epsilon_t^{OIL}$ | $\epsilon_t^{FX}$ |
| -0.819            | 0.2838            | 0.009**            | -0.022**          |
| [-0.02]           | [0.67]            | [2.83]             | [-4.26]           |
|                   |                   |                    |                   |
| $R^2 = 0.1$       | $R^2 = 0.199$     |                    | 0.173             |

# Regression for stock returns $RJA_t$ in Ready-type VAR

| $RJA_{t-1}$ | $Rrate_{t-1}$ | $Term_{t-1}$ | $dp_{t-1}$ |
|-------------|---------------|--------------|------------|
| $0.150^{*}$ | -0.854        | -0.873       | -0.186     |
| [2.49]      | [-0.82]       | [-1.80]      | [-1.54]    |

| $v_t^{SY}$ | $v_t^{DE}$ | $v_t^{VIX}$   | $v_t^{FX}$   |
|------------|------------|---------------|--------------|
| 0.431      | 0.189**    | $-0.139^{**}$ | $-0.766^{*}$ |
| [1.63]     | [5.87]     | [-3.76]       | [-2.44]      |

 $R^2 = 0.292$  adj. $R^2 = 0.270$ 

# Subsample results based on impulse response functions

| Kilian    | Jan.00-Feb.06 | Mar.06-Mar13 | Apr.13-Mar18 |
|-----------|---------------|--------------|--------------|
| Supply    | -             | —            | -            |
| Demand    | +             | -            | -            |
| Oil price | -             | +            | +            |
| FX        | -             | —            | —            |

| Ready  | Jan.00-Feb.06 | Mar.06-Mar13 | Apr.13-Mar18 |
|--------|---------------|--------------|--------------|
| Supply | -             | -            | -            |
| Demand | +             | +            | +            |
| VIX    | -             | —            | —            |
| FX     | +             | _            | —            |

# Conclusions

- We construct structural shock series behind oil price and exchange rate fluctuations using Kilian-Park and Ready's identification assumptions.
- Use them to explain Japanese stock returns.
- Ready's structural shock series have more explanatory power.
  - Not so surprising, since current stock returns of US energy sector are included in the regression or VAR.
- But, in Ready's framework, oil supply shocks have positive impact on stock returns.
- Also, FX has positive impact in early sample, but negative impacts in latter subsamples.
- These results are not very convincing.

# Conclusions (continued)

- Too much gavages in:
  - *oil market specific price shocks* in Kilian's framework
  - oil supply shocks in Ready's framework
  - Both affects positively to Japanese stock returns.
- Robustness checks
- Better specifications/macro factors for Japanese market
  - Introduce JVIX?