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Motivation

Social interactions and networks are a critical engine
for the economic growth of nations and regions
(Romer (1986); Lucas (1988)).
Glaeser (2000): the existence of cities critically hinges
on how social interactions and networks can be
facilitated across the space of urban entities.
Yet, very few studies look at the interactions between
the social space and the geographical space.
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Motivation

Here: Provides a bridge between two literatures: the
traditional urban models and the recent social
network models.
While there is a common recognition of cities as a
major places for social interactions, traditional urban
models do not consider the presence of social
interactions and social capital.
Network papers (usually) assume that the existence
and intensity of dyadic contacts do not depend on
location, i.e. do not consider the geographical
location of the agents.
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Urban economics and agglomeration: Theory

Important literature in urban economics looking at
how interactions between agents create
agglomeration and city centers (Fujita and Thisse
(2013), Duranton and Puga (2015).
How spatial externalities affect the location of firms
and households, urban density patterns, and
productivity (Beckmann (1976), Ogawa and Fujita
(1980), Lucas and Rossi-Hansberg (2002), etc.).
Here: we take the urban conguration as given and
explain how the location of each agent in the city
affects his/her social interactions with other agents in
the city.
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Social networks: Theory

Usually assume away agents’ geographical location.
Small literature that looks at both (Johnson and Gilles
(2000), Brueckner and Largey (2008), Helsley and
Strange (2007), Zenou (2013), Mossay and Picard
(2011); Mossay et al. (2013), Helsley and Zenou
(2014), Sato and Zenou (2015)).
The social network is usually not directly related to
the geographical location of agents.
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Urban and social networks: Empirics

Very small literature!
Difficult to find detailed data on social contacts as a
function of geographical distance between agents
together with information on relevant
socio-economic characteristics.
Some indirect tests: Bayer et al. (2008), Hellerstein et
al. (2011, 2014), etc.
More recently: Bailey et al. (2018), Büchel et al. (2019)
show that distance is highly detrimental to
interpersonal exchange.
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What we do

Develop a simple model of social-tie formation where
individuals care about the geographical location of
other individuals.
Analyze the relationship between geographical
distance and social interactions.

Prediction of the model: level of social interactions is
inversely related to the geographical distance.
Travel costs and spatial dispersion of agents are
barriers to the development of social capital
formation.
Because of the externalities that agents exert on each
other, the equilibrium levels of social interactions and
social capital are lower than the efficient ones.
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What we do

Structurally estimate the model using data on
adolescents in the United States.
Show that geographical distance is an hinder to social
interactions.

Find that there is a non-monotonic relationship
between the inefficiencies in terms of social
interactions and the network size.
These inefficiencies are the largest when the network
is composed of 28 students and the smallest for 68
students.
The network that maximizes the average welfare
should have 55 students whereas the one that
maximizes social interactions should be of size 44.
Subsidies on social interactions are more effective
than subsidies on transportation costs.
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The Model

Linear city on the line segment x ∈ [−b, b]
λ(x) : [−b, b]→ R+: number of agents located at x.

Unit mass population:
∫ b
−b λ(y)dy = 1.

Each agent visits every other agent and benefits from
social interactions.
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The Model

Utility from social interactions:

S(x) =
∫ b

−b
v (n(x, y)) s(y)λ(y)dy

n(x, y): frequency of interactions that agent at x
initiates with an agent at y who offers an interaction
value s(y).
Assume that

v (n (x, y)) = n (x, y)− 1
2
[n (x, y)]2 .
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The Model

Interaction value offered by an agent residing at y:

s(y) = 1 + α
∫ b

−b
n(y, z)s(z)λ(z)dz

Similar to eigenvector centrality.
α > 0: importance of others’ social capital in an
agent’s social capital formation.
s(y) as the social capital of the agent located at y.
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The Model

Each agent located at x incurs a cost of visiting
another agent residing at y equal to: c(x− y).
Cost is symmetric and increases with distance |x− y|:
c(z) = c(−z) and c′(z) > 0 ∀z > 0.
Total social interaction cost of an agent located at x:

C(x) =
∫ b

−b
n(x, y)c(x− y)λ(y)dy
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Social capital and space

Utility:
U(x) = S(x)− C(x)

=
∫ b
−b {v (n(x, y)) s(y)− n(x, y)c(x− y)} λ(y)dy
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Define the access cost measure as:

g(y) ≡
∫ b

−b
c(y− z)λ(z)dz

and

s0 ≡
1− α2

∫ b
−b g(z)λ(z)dz
1− α

,

Proposition

Assume 0 < α < 1 and s0 − α
[
maxy g(y)

]
> c(2b). Then,

there exists a unique equilibrium (n∗(x, y), s∗(y)), defined for
all x, y, such that

n∗(x, y) = 1− c(x− y)
s∗(y)

and
s∗(y) = s0 − αg(y)
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Condition assumes away corner solutions and
assume global interactions so that agents interact with
every other agent in the city.
For individual x, the number of interactions n∗(x, y)
between x and y increases with y’s social capital
n∗(x, y) decreases with the distance between x and y.
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Proposition

Lower travel costs increase social capital for all agents. An
increase in α, the importance of peers’ social links, increases
each agent’s social capital for small enough travel cost.

A rise in α has ambiguous effects.
An agent’s social capital increases with higher α
because she places greater value on the social capital
of her interaction partners
and because her partners themselves have higher
social capital.
However, as α increases, she reduces her frequency of
interactions with the partners with higher social
capital, which reflects a substitution effect between the
frequency and the quality of social interactions.
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Proposition

Suppose linear or convex travel cost functions. Then,
(i) A mean preserving increase in the spread of a symmetric

distribution λ decreases social capital for all agents;
(ii) Social capital is less spatially dispersed than agents if

x2λ(x)/
∫

z2λ(z)dz is a mean preserving spread of the
distribution of λ(x) around its mean x = 0.

Provided that travel costs have appropriate
regularity properties, a larger spatial dispersion of
agents reduces the social capital in the city and social
capital is less spatially dispersed than the agents.

24



Uniform distribution of agents and linear
travel costs

Assume uniform distribution of agents in the city:
λ(x) = 1/2b. Thus

∫ b
−b λ(y)dy = 1.

Assume linear travel costs: c(x) = c1 |x| where c1 > 0.
Then,

n∗(x, y) = 1− c |x− y|
s∗(y)

and

s∗(y) = 1 +
α

2b

∫ b

−b
n∗(y, z)s∗(z)dz
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Efficient social interactions

The planner chooses the profiles of social interactions
n(·, ·) and social capital s(·) that maximize the
aggregate utility

W =
∫ b

−b
U(x)λ(x)dx =

∫ b

−b
[S(x)− C(x)] λ(x)dx

subject to the social capital constraint

s(x) ≤ 1 + α
∫ b

−b
n(x, z)s(z)λ(z)dz
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Efficient social interactions

Equilibrium is inefficient.
Main externality for social interactions:
When the planner chooses n(x, y), she considers both
the benefit and cost to agent x but also the fact that an
increase in x’s social capital increases y’s social
capital.
This latter effect is not considered by agent x in
equilibrium.

The weight that the planner puts on raising another
agent’s social capital increases with the importance of
interactions, α, and with the social benefit of relaxing
the social capital constraint, χ(x).
χ(x) is the Kuhn-Tucker multiplier of the social
capital constraint. It measures the welfare value of a
marginal increase of the social capital of an agent
located at x.
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Efficient social interactions

Proposition

The equilibrium frequency of interactions and level of social
capital are lower than the efficient ones.

The planner internalizes the effect that each agent has
on others’ social capital when she entertains more
intense social interactions.
Thus, the planner imposes agents to increase their
frequency of social interactions above the
equilibrium level.
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Efficient social interactions

Can the efficient allocation of social interactions be
decentralized with subsidies σ (x, y) and τ (x, y) for
social interactions and travel costs?
The utility becomes:

U(x) = S(x)− C(x)

=
∫ b

−b
{v (n(x, y)) [s(y) + σ (x, y)]

− n(x, y) [c(x− y)− τ (x, y)]}λ(y)dy

30



Efficient social interactions and subsidies

Proposition

The first best solutions no(x, y) and so(x) can be restored
by setting σ (x, y) = 0, i.e. social interactions should not
be subsidized, and τ (x, y) = αχo(x)so(y), i.e. trips
should be subsidized as a function of the locations of the
destination and origin partners.
The subsidy τ (x, y) should be higher for trips to partners
who have higher social capital and for trips from partners
whose social capital increases more with additional
interactions.
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Efficient social interactions and subsidies

The planner does not subsidize the agents with high
social capital but only subsidizes the trips to these
agents.
This result contrasts with Helsley and Zenou (2014)
(with two location points), who advocate that the
planner should subsidize the most central agents.
Here, decentralization would be difficult to
implement because subsidies depend on both the
origins and destinations of social interactions
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Empirical strategy

To bring the model to the data, we need to introduce
agents’ heterogeneity.
We assume that the benefits of the intensity of
interactions between individuals x and y also
depends on their social distance, that is on their
distance in terms of socio-demographic
characteristics:

v (n(x, y)) = (n0 + θ(x, y)) n (x, y)− 1
2
[n (x, y)]2 ,

where θ(x, y) denotes the social distance between x
and y and n0 is a positive constant.
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Empirical strategy

Data from R networks (r = 1, ..., R), each comprised
of Nr agents.
Individual i resides in location x, individual j in
location y, and individual k in location z.
The geographic distance between individuals i and j
is denoted by dij,r.
θij,r denotes the social distance (gender, race) between
i and j in network r.
Equilibrium values (n0 positive constant):

n∗ij,r = n0 −
cdij,r

s∗j,r
+ θij,r

s∗j,r = 1 +
α

2br

Nr

∑
k=1

n∗jk,rs
∗
k,r
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Empirical strategy

Social distance to depend on observed (pair-level)
individual characteristics xij,r and on unobserved
factors εij,r.
Undirected network:

θij,r =
M

∑
m=1

βm|xi,m,r− xj,m,r|+
M

∑
m=1

βM+m(xi,m,r + xj,m,r)+ εij,r

Directed network:

θij,r =
M

∑
m=1

βm(xi,m,r− xj,m,r)+
M

∑
m=1

βM+m(xi,m,r + xj,m,r)+ εij,r
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Estimation

Besides agents’ characteristics xij,r, the data provide:
n∗ij,r, the intensity of social interactions between
agents i and j in network r
dij,r, the geographical distance between agents i and j
in network r.
2br, the maximum geographical distance between
two agents in network r, i.e. 2br = max dij,r.
Using this information, we need to recover α, β, c, n0,
and the equilibrium social capital, s∗j,r.

Method of simulated moments (MSM) proposed by
McFadden (1989) and Pakes and Polard (1989).
The objective of MSM estimation is to find the
parameter vector that provides the simulated level of
social interactions that best matches the observed
level of social interactions.
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Estimation procedure

We define

s∗(Xr, ∆r, br, Er; µ)

≡
[
INr − α

2br
(N0 + Θr)

]−1 (
INr − αc

2br
∆r

)
1Nr

∆r=
(
dij,r
)
, Θr =

(
θij,r
)
= (xT

ij,rβ + εij,r).

N0 is an Nr ×Nr matrix in which the off-diagonal
elements are n0, and the diagonal elements are zero.
µ = (n0, α, c, βT, σ2

ε )
T denotes the vector of all

parameters where σ2
ε is the variance of ε.

Let s∗j (Xr, ∆r, br, Er; µ) be the jth element of
s∗(Xr, ∆r, br, Er; µ),
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Estimation procedure

By using s∗j (Xr, ∆r, br, Er; µ), we obtain

n∗ij,r(Xr, ∆r, br, Er; µ) = n0−
cdij,r

s∗j (Xr, ∆r, br, Er; γ)
+ xT

ij β+ εij.
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Estimation procedure

We draw T sets of simulation errors ε
(t)
ij,r, t = 1, · · · , T

for all pairs and all networks.
Next, we compute social capital s(t) and predict the
intensity of social interactions n̂(t)

ij,r for each set of
errors using the equations defining s∗(Xr, ∆r, br, Er; µ)
and n∗ij,r(Xr, ∆r, br, Er; µ).
Then, the prediction error is given by

ν̂ij,r = n∗ij,r −
1
T

T

∑
t=1

n̂(t)
ij,r

= n∗ij,r −
1
T

T

∑
t=1

(
n0 −

cdij,r

ŝj(Xr, ∆r, br, E (t)r ; µ)
+ xT

ij β + ε
(t)
ij,r
)
,

where E (t)r is the matrix of the tth set of simulation
errors. 40



Estimation procedure

The prediction error ν̂ij,r is uncorrelated with
exogenous data xij,r and dij,r at the true parameter
value µ0.
That is,

E(ν̂ij,r|Xr, ∆r; µ = µ0) = 0

We have

E(ν̂ij,r) = 0, E(ν̂ij,rxij,r) = 0 and E(ν̂ij,rdij,r) = 0.
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Estimation procedure

From this, we can construct (2M + 2) moment
conditions:
E(ν̂ij,rxij,r) = 0 contains 2M moment conditions since
xij is a 2M× 1 vector of |xi − xj|’s and (xi + xj)’s.
E(ν̂ij,r) = 0 is one moment condition.
E(ν̂ij,rdij,r) = 0 is one moment condition.
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Estimation procedure

We have constructed (2M + 2) moment conditions
but we have (2M + 4) parameters to estimate:
M is the number of the x variables, and we have
|xi − xj| and (xi + xj), so we have 2M coefficients on
those pair-level variables.
+3: three structural parameters: α, c, n0.
+1: the variance of unobserved variable: σ2

ε .
So the model is still under-identified.
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Estimation procedure

To ensure identification, we utilize the relation
between social capital and the eigenvector centrality
of social interactions matrix N∗r .
Social capital equation:

s∗j,r = 1 +
α

2br

Nr

∑
k=1

n∗jk,rs
∗
k,r, (21)

Eigenvector centrality ECj,r:

ECj,r =
1
λ

n∗jk,rECk,r,

where λ is the largest eigenvalue of N∗r .
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Estimation procedure

The eigenvector centrality from N∗r and the
eigenvector centrality from the predicted social
interaction matrix, N̂∗r , must be close to each other.
We define another Nr × 1 vector of predicted errors ξ̂r
such that

ξ̂r = ECr −
1
T ∑

t
ÊC

(t)
r ,

where ÊC
(t)
r is the eigenvector centrality

corresponding to the predicted social interactions
network N̂∗,(t)r with respect to the tth simulation
errors.
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Estimation procedure

These prediction errors are mean independent of xij,r
and dij,r at the true parameter value µ0.
That is,

E(ξ̂r|Xr, ∆r; µ = µ0) = 0

We have:

E(ξ̂r) = 0, E(ξ̂rxij,r) = 0 and E(ξ̂rdij,r) = 0

We have (2M + 2) additional moment conditions.
Thus a total of (4M + 4) moment conditions for
(2M + 4) parameters, and the model is identified
(over-identified).
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Data

Database on friendship networks from the National
Longitudinal Survey of Adolescent Health (Add
Health).
School-based survey which contains extensive
information on a representative sample of students
who were in in grades 7-12 in 1995.
Three key features:
(i) the nomination-based friendship information,
(ii) the detailed information about the intensity of
social interactions between each of two friends in the
network;
(iii) the geo-coded information on residential
locations, which allows us to measure the
geographical distance between individuals.
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Friendship nomination

The friendship information is based upon actual
friend nominations at school.
All students who were present at school in the
interview day received the questionnaire.
Pupils were asked to identify their best school friends
from a school roster (up to five males and five
females).
The limit in the number of nominations is not
binding (even by gender).
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Frequency and nature of interactions

Frequency and nature of interaction with each
nominated friend j.
“Did you go to {NAME}’s house during the past
seven days?”;
“Did you meet {NAME} after school to hang out or
go somewhere during the past seven days?”;
“Did you spend time with {NAME} during the past
weekend?”;
“Did you talk to {NAME} about a problem during
the past seven days?”;
“Did you talk to {NAME} on the telephone during
the past seven days?”.
nij is measured by summing all these items (only 0,1
answers) so that the maximum value of nij is 5 and
the minimum is 0. 49



Residential locations

The geographical location of each house is recorded.
Latitude and longitude coordinates are calculated for
each home address and then translated into X− and
Y−coordinates in an artificial space.
We use this information to derive the spatial distance
between students.
The maximum geographical distance between two
students, which is calculated for each network
separately, is about 173 kilometers.
The average distance is about 8.8 kilometers, while
the median distance is about 5.3 kilometers.
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Data

Our final sample consists of about 900 individuals
distributed over roughly 100 networks.
Network size: from 4 to 70 members.
58% are female and 20% are blacks. Slightly more
than 70% live in a household with two married
parents.
The average parental education is high school
graduate.
The performance at school, as measured by the grade
point average or GPA, exhibits a mean of 2.98,
meaning slightly less than a grade of “B”.
The average family income is 44,562 in 1994 dollars.
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Empirical results

Structural parameters (all statistically significant).
The baseline level of social interactions n0 is roughly
2.2− 3.4.
The estimated cost of transportation is
0.00011− 0.00026 across specifications.
Combined with average pairwise distance (8.78
kilometers), the average estimated transportation
cost is 0.001− 0.0023.
Finally, α (importance of others’ social capital in an
agent’s social capital formation) is equal to
0.0167− 0.0334.

52



Empirical results

Also, strong homophily behaviors in terms of race
and gender (estimation of the βs).
A pair of females is associated with 0.0096 more
social interactions than a pair of males.
Students are preferred as social interaction partners if
they are female, black, older students (higher grade),
are physically more developed, are more religious
and have better educated parents.
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Dispersion

Test Proposition (without using the structural
estimates): a mean preserving increase in the spread
of a symmetric distribution λ decreases social capital
for all agents.
Is there is a negative relationship between n∗r (average
interaction in each network) and dr (average distance
between student pairs in each network)?
Is there is a negative relationship between s∗r (average
social capital in each network) and dr?
Measure dispersion (DISP) as the average distance
between individuals and their network baricenter,
dr =

1
Nr

∑i di,r.
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Dispersion

We test:

n∗r = γ0 + γ1Nr + γ2 (Nr)
2 + γ3dr + γzzr + γxxr + εr

s∗r = δ0 + δ1Nr + δ2 (Nr)
2 + δ3dr ++γzzr + δxxr + ζr

where Nr is the size (in terms of population) of
network r, zr are network measures and xr are
network-level socio-economic control variables (such
as average family income in network r, etc.).
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Dispersion

Table: Social interactions and geographic dispersion of students

Average social interactions Average social capital
(1) (2) (3) (4) (5) (6) (7) (8)

Disp -0.0913*** -0.120*** -0.0052*** -0.0055***
(0.0327) (0.0291) (0.0011) (0.0012)

Av. dis -0.0661*** -0.0819*** -0.0036*** -0.0037***
(0.0231) (0.0204) (0.0008) (0.0008)

Pop 0.146*** 0.143*** 0.0013 0.0011
(0.0315) (0.0357) (0.0008) (0.0008)

Pop2 -0.0016*** -0.0016** -0.000006 -0.000004
(0.00047) (0.00063) (0.00001) (0.00001)

Obs 104 104 104 104 104 104 104 104
R2 0.064 0.074 0.308 0.312 0.245 0.259 0.306 0.314

Note: Dispersion of a network is measured by taking the average of distances from
each student’s home to the network center. Average distance is the average of pairwise

distances of students in a network.
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Dispersion

A one kilometer increase in the geographical
dispersion of individuals is associated with an
approximately 0.06–0.07 decrease (5–6% decrease
relative to the mean) in the average social interactions
and a 0.002 decrease (0.2% decrease relative to the
mean) in the average social capital.
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Dispersion

Non-monotonic relationship between the average
interactions in a given network n∗r and the network
size Nr.
Using Column (4), we have:

∂n∗r
∂Nr

= γ1 + 2γ2Nr = 0.143− 2(0.0016)Nr = 0

Solving this equation leads to: Nr =
0.143

2(0.0016) ≈ 44.

Nr = 44 is thus the size of the network that maximizes
average social interactions in our data.
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Welfare

From structural estimations: estimated values of n0,
α, c and θij,r.
From the data, we know br and dij,r.
By plugging these values into the first-order
conditions of the planner program , we can solve
numerically these equations and determine no

ij,r, for
each pair i, j, so

j,r for all j, and υi,r for all i.

According to the Proposition on welfare, we should
find that students socially interact too little compared
to the social optimal, i.e. no

ij,r > n∗ij,r, ∀i, j, and
so

j,r > s∗j,r, ∀ixr.
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Welfare

Table: Social interactions: Optimal level vs. observed level

Social interactions
Optimal Observed Average Minimum Maximum

level level difference difference difference
2.349 1.144 1.205 -0.810 2.741

Note: The statistics are computed using the network-level average social interactions

and social capital from 104 networks. For example, the largest difference between the

average levels of optimal and observed social interactions is 2.741. Note that these

statistics differ from pair-level averages.
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Welfare

Table: Social capital: Optimal level vs. observed level

Social capital
Optimal Observed Average Minimum Maximum

level level difference difference difference
1.265 1.028 0.236 -0.095 3.504

Note: The statistics are computed using the network-level average social interactions

and social capital from 104 networks. For example, the largest difference between the

average levels of optimal and observed social capital is 3.504. Note that these statistics

differ from pair-level averages.
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Welfare

On average, each pair interacts 1.2 fewer times than
is socially optimal.
The difference between the socially optimal and the
observed levels of social interactions varies from
−0.81 to 2.74 across networks.
Although there are a few networks where the
observed level is larger than the optimal level, most
networks’ interactions fall short of the optimum..
Students also have less social capital than optimal (by
0.236, or approximately 25%, on average).
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Network size and efficiency of social
interactions

We would like to find which variables are closely
associated with the discrepancy between the optimal
level and the observed level.
We regress:

no
r−n∗r = γ0 +γ1Nr +γ2 (Nr)

2 +γ3dr +γzzr +γxxr + εr.

so
r − s∗r = δ0 + δ1Nr + δ2 (Nr)

2 + δ3dr + δzzr + δxxr + ζr.
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Network size and inefficiency

4.96

4.1

3.19

28 56 684 95
Nr

no
r − n∗r

0

Network size: between 4 and 68
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Network size and efficiency of social
interactions

We find a non-monotonic relationship between
no

r − n∗r and Nr (hump-shaped relationship).
no

r − n∗r and Nr increases until the network size
reaches (approximately) 28 students and then
decreases.
Nr = 28 is the size of the network that maximizes
these inefficiencies.
Nmax

r = 68 is the size of the network that minimizes
these inefficiencies.
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Network size and average welfare

Another interesting exercise, for which do not have
theory, is to determine the optimal network, (i.e. the
one that maximizes total welfare).
We regress:

AW∗r = δ0 + δ1Nr + δ2 (Nr)
2 + δzzr + δxxr + εr

where AW∗r is average welfare per network.
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Table: Optimal network design: average welfare and number of
students

(1) (2) (3) (4) (5)
Welfare Welfare Welfare Welfare Welfare

Network population -2.108* -1.074 0.488 3.590 2.071
(1.245) (0.918) (1.514) (3.762) (3.264)

Network population2 0.0279 0.0114 -0.0040 -0.0402 -0.0187
(0.0178) (0.0133) (0.0150) (0.0394) (0.0327)

Avg. geographic distance -3.610** -3.914* -3.968* -3.181*
(1.755) (2.117) (2.148) (1.834)

Avg. degree centrality 1.835 4.519 3.679
(3.299) (4.774) (9.706)

Std.dev. of degree centrality -8.068 -9.581 -4.249
(9.719) (9.643) (10.05)

Avg. eigenvector centrality 87.22 158.5
(116.4) (194.9)

Clustering coefficient 3.164 76.42
(97.79) (198.0)

Diameter -1.734 -0.805
(1.521) (2.489)

Controls No No No No Yes
Observations 104 104 104 104 104
R-squared 0.005 0.025 0.051 0.060 0.132

Note: Control variables include the averages of the social distances and the combined
levels used in structural estimation. See Table ??.

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
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Network size and average welfare

Average pairwise geographic distance is an
important factor for designing an optimal network.
The higher the distance between two individuals in a
network, the lower the average welfare.
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Policies

Consider social-interaction subsidies and travel-cost
subsidies that only target each individual but not a
pair of individuals.
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Subsidizing social interactions

The planner subsidizes the intensity of social
interactions n(x, y) in the following way:

U(x) = S(x)− C(x)

=
∫ b

−b
{v (n(x, y)) s(y)− n(x, y)(x− y)} λ(y)dy

+ σ
∫ b

−b
n(x, y)λ(y)dy

where σ is the value of the social-interaction subsidy.
Each individual x receives a fixed amount of money
σ
∫ b
−b n(x, y)λ(y)dy proportional to the individual x’s

social interaction effort with all her friends.
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Subsidizing social interactions

New equilibrium values nσ(x, y) and sσ(y).
New total welfare per network.
We find the subsidy σ∗r that gives network r the same
aggregate utility Wσ

r as the first best Wo
r .

From the estimated value of the equilibrium model,
we have α, c and n0.
From the data we have dij,r and br.
We can then numerically solve the new equilibrium
equations defining nσ(x, y) and sσ(y).
and the optimal subsidy that maximizes total welfare
to obtain σ∗r , nσ

ij,r and sσ
j,r.
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Subsidizing social interactions

Table: Policy levels for optimal outcomes

Subsidizing social interactions: σ
Average Minimum Maximum
0.4133 -0.5473 10.3352

Note: The subsidy level for each network is computed for students in each network to

obtain the optimal level of social interactions and social capital.
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Subsidizing social interactions

On average, a subsidy level of 0.4133 for each social
interaction is required for a network to achieve the
first best aggregate level of social interactions and
social capital.
Most networks are offered a positive subsidy, which
reflects a lack of social interaction.
We also compute a single subsidy σ∗ for all networks,
which allows individuals to achieve the first best as
close as possible and we find σ∗ = 1.4534.
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Subsidizing transportation costs

Marginal transport cost per distance is now equal to
c− τ (τ subsidy on transportation costs).
Total social interaction cost of an agent located at x is
now given by

C(x) =
1
2b

∫ b

−b
n(x, y)(c− τ) |x− y|dy
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Subsidizing transportation costs

As for the social interaction subsidy, we find the
subsidy τ∗r that gives the same aggregate utility Wτ

r
in network r as the first best W0

r .
From the estimated value of the equilibrium model,
we have α, c and n0,r, and from the data dij,r and br.
We can then numerically solve the equlibrium
equations and the optimal subsidy that maximizes
Welfare to obtain τ∗r , nτ

ij,r and sτ
j,r.
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Subsidizing transportation costs

Table: Policy levels for optimal outcomes

Subsidizing transportation costs: τ
Average Minimum Maximum
0.9471 -0.2470 17.7655

Note: The subsidy level for each network is computed for students in each network to

obtain the optimal level of social interactions and social capital.
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Subsidizing transportation costs

On average, a subsidy level of 0.9471 per kilometer is
required for a network to achieve the first best
aggregate level of social interactions and social
capital.
As above, most networks receive positive subsidies
to entice more interactions.
We also compute a single subsidy τ∗ for all networks,
which allows individuals to achieve the first best as
close as possible, and we find τ∗ = 5.8601.
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Comparing the two policies

Compare these two policies at a given cost. Given
that the planner has an amount T to spend, which
policy should she choose?

Three different schemes.
(i) Distribute the same amount Tr = T/R for each
network (uniform subsidy).
(ii) Give an amount proportional to network
population Nr so that Tr =

Nr
∑r′ Nr′

T.

(iii) Provide an amount proportional to the number
of pairs Nr(Nr − 1), i.e. Tr =

Nr(Nr−1)
∑r′ N′r(Nr′−1)T.
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Comparing the two policies

Budget constraint for each policy.
Social-interaction subsidy policy: Planner’s budget
constraint for each network r:

σr

4b2
r

Nr

∑
i=1

Nr

∑
j=1

nij,r = Tr

Transportation subsidy policy: Planner’s budget
constraint for each network r:

τr

4b2
r

Nr

∑
i=1

Nr

∑
j=1

nij,rdij,r = Tr

80



Comparing the two policies

Table: Comparison of two policies

Networks that lead to higher welfare
Subsidy schemes Policy: σ Policy: τ
(1) Uniform subsidy 81 11
(2) Propor to Nr 81 11
(3) Propor to Nr(Nr − 1) 97 7
(1) Uniform subsidy amount for each network, (2) Subsidy proportional to Nr,

(3) Subsidy proportional to Nr(Nr − 1).
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Comparing the two policies

Under the social-interaction subsidy policy, the total
welfare is higher for most networks.
If a planner has a given amount of money to spend,
she should subsidize social interactions and not
transportation costs because it yields greater
improvements to total welfare.
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Conclusion

Analyze the relationship between geographical
distance and social interactions.
Prediction of the model: level of social interactions is
inversely related to the geographical distance.
Travel costs and spatial dispersion of agents are
barriers to the development of social capital
formation.
Because of the externalities that agents exert on each
other, the equilibrium levels of social interactions and
social capital are lower than the efficient ones.
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Conclusion

Estimate the model using data on adolescents in the
United States.
Show that geographical distance is an hinder to social
interactions.

Find that there is a non-monotonic relationship
between the inefficiencies in terms of social
interactions and the network size.
These inefficiencies are the largest when the network
is composed of 28 students and the smallest for 68
students.
The network that maximizes the average welfare
should have 55 students whereas the one that
maximizes social interactions should be of size 44.
Subsidies on social interactions are more effective
than subsidies on transportation costs.
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Policy implications

Encouraging social interactions in cities are likely to
enhance social welfare.

Social mixing such as the Moving to Opportunity
(MTO) programs in the United States.
Improve physical environment such as zoning laws
and public housing rules.
Glaeser (2000): individuals in larger apartment
buildings are more likely to socialize with their
neighbors.
Stroebel et al. (2018): friendship networks are a
mechanism that can propagate house price shocks
through the economy via housing price expectations.
Important since social interactions can promote
economic growth (for ex, information about jobs)
because of the nonmarket intellectual spillovers that
they generate
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