Matching and Agglomeration: Theory and Evidence from Japanese Firm-to-Firm Trade

Yuhei Miyauchi Stanford APARC / Boston University

12/14/2018 RIETI - Hitotsubashi - Gakushuin - Toyo International Workshop on Firm Dynamics

Economic Activities are Geographically Concentrated

- GDP Share of Tokyo Prefecture: 18% (\leftrightarrow 0.5% of area, 7% of population)
- Various theories of agglomeration of economic activity
 - e.g., labor pooling, knowledge spillovers, industrial linkages (Marshall '20)

This paper: Firms find input suppliers more easily in denser areas

- Firm-level Evidence?
- Quantitatively important?

1. Do firms find suppliers more easily in denser areas upon **unanticipated** supplier bankruptcies?

1. Do firms find suppliers more easily in denser areas upon **unanticipated** supplier bankruptcies?

Data: Yearly panel of firm-to-firm trade data in Japan

Main Findings:

- Buyers only imperfectly recover suppliers, but the matching rate \u03c6 in geographic supplier density
- Ireated buyers are more likely to exit
- Unanticipated supplier bankruptcies do not decrease supplier matching rate of other neighboring buyers (i.e., no crowding-out)
- \implies **Increasing** returns to scale in matching

2. Quantifying IRS in Firm-to-Firm Matching

- Model: stochastic firm-to-firm matching for input trade + Melitz
 - ▶ Firms make sales (="export") to various locations to match with buyers
- Estimate <u>matching rate elasticity</u> and <u>production gain of a match</u> from the impacts of unanticipated supplier bankruptcies
- Quantification: IRS in matching explains...
 - ► 20~30% of population-density-premium of value-added per worker and real wages
 - $\blacktriangleright ~20\%$ of total welfare gains of highway networks, ${\sim}40\%$ of welfare gains outside Tokyo

Literature

- Agglomeration (Empirics)
 - Firm-to-firm matching: Holmes '99
 - Firm-to-worker matching: Blanchard & Diamond '89, '90; Petrongolo '01; Bleakley & Lin '12; Jaeger '16; Macaluso '17
- Agglomeration (Theory)
 - Firm-to-firm matching (no cross-location trade): Diamond '82; Helsley & Strange '90
 - Input-output linkages (no matching): Krugman & Venables '95; Venables '96; Helsley & Strange '14
- Quantitative Spatial Models: Ahlfeldt et al '14; Kline & Moretti '14; Allen &

Arkolakis '14; Faber & Gaubert '16; Redding & Rossi-Hansberg '16; Nagy '17

• Models of firm-to-firm matching and trade: Eaton, Kortum, Kramarz '16; Eaton et al '16; Lim '16; Bernard et al '16; Sugita et al '16; Furusawa et al '17; Tintelnot et al '17; Bernard and Moxnes '18; Oberfield '18

Outline

2 Data and Reduced-Form

3 Model

Outline

3 Model

Data

- Yearly panel of firm-to-firm trade in Japan from 2007-16
 - Provided by a credit reporting agency (TSR)
 - Covers 70% of all firms in Japan representativeness
 - Covers all sectors (manufacturing, retail and wholesales, construction)
 - Precise locations of headquarters and establishments
- Each firm reports up to 24 major suppliers and buyers each year (interview / survey-based) distribution
 - Limitations:
 - ★ Only extensive margin
 - * Trade information only available at *firm* (not *establishment*) level
 - ► Exclude links with ownership linkages (≈3%)
 - Use buyer-reported supplier-linkage (include supplier-reported buyer-linkage for robustness)

Data (Ctd.)

- List of bankruptcies with their primary reasons detail
 - Pick "unanticipated reasons" (1.5% of all bankruptcies)
 - "Unanticipated accidental problems such as the death of representatives, flood disaster, fire, earthquake, traffic accident, fraud, theft, embezzlement, etc."
 - About 80% of firms immediately exit

Diff-in-Diff with Matched Trt. and Ctrl. Firms

$$Y_{igt} = \sum_{s=...,-2,0,1,...} \beta^{s} \mathbb{1} \left[s = t - BankruptYear_{g} \right] \times Trt_{i} + \eta_{gt} + \xi_{ig} + \epsilon_{igt},$$

- *i*: (buyer-side) firm, *t*: year
- $Trt_i = 1$ if firm *i* faces unanticipated supplier bankruptcy
- Y_{igt}: number of suppliers, exit, sales,...
- g: group of matched ctrl. and trt. firms (same municipality, have a supplier in same 4-digit industry) balance
- Sample: 447 treatment buyer-side firms (with 167 bankrupting suppliers), ~10,000 control firms
- Std. err. clustered at supplier level, regression weighted at group g

Treatment Firms Only Imperfectly Recover Suppliers

Treatment Firms Slowly Rematch with New Suppliers

Higher Rate of Matching with Higher Supplier Density

	New Suppliers		
	(1)	(2)	(3)
$Trt \times 1[t - BankruptYear = 0 \text{ or } 1]$	0.08* (0.04)		
$\label{eq:Trt} Trt \times 1[t \ - \ BankruptYear = 0 \ or \ 1] \times log \ Seller \ Density \ (Std.)$	0.10** (0.04)	0.22*** (0.07)	0.25 (0.16)
$Trt \times 1[t - BankruptYear = 2 \text{ or } 3]$	0.23*** (0.07)		
$Trt \ge 1[t - BankruptYear = 2 \text{ or } 3] \ge log Seller Density (Std.)$	0.14** (0.07)	0.43*** (0.12)	0.53** (0.21)
Trt × Post × Buyer Prefecture FE Trt × Post × Supplier Industry FE		х	X X

• Seller Density ≡ density of firms in bankrupting supplier's industry with a buyer in firm *i*'s headquarter prefecture in baseline year (std. to mean 0, std. err. 1)

Summary of Reduced-Form Evidence

() Imperfect recovery of suppliers, but matching rate \uparrow in supplier density

Summary of Reduced-Form Evidence

- **()** Imperfect recovery of suppliers, but matching rate \uparrow in supplier density
- Supplier bankruptcy increases exit probability (table)
 - 3 pp \uparrow , relative to control mean of 6 pp (after 3 years)
 - No impact on sales conditional on survival

Summary of Reduced-Form Evidence

- **()** Imperfect recovery of suppliers, but matching rate \uparrow in supplier density
- Supplier bankruptcy increases exit probability (table)
 - 3 pp \uparrow , relative to control mean of 6 pp (after 3 years)
 - No impact on sales conditional on survival
- Supplier bankruptcy has no impact on supplier matching of *other buyers in near locations* (1960)
 - ► ↔ labor market (unemployed workers crowd out to fill a job vacancy) e.g. Petrongolo and Pissarides '01
 - Interpretation: Suppliers can supply to multiple buyers simultaneously

Implies increasing returns to scale in matching

Outline

Introduction

2 Data and Reduced-Form

Model Overview

- Basic environment: multi-location multi-sector Melitz-model
- Add: Stochastic firm-to-firm matching for input trade
 - Firms match with input sellers (= "exporters" a la Melitz) following a "matching technology" (i.e., Diamond '82; Mortensen and Pissarides '94)
 - Matching rate \uparrow in input seller density, but not affected by buyer density
 - If unmatched, purchase inputs through fringe intermediaries (costly)
- Today: Single-sector model

Set-up

- Multiple locations: $i, j, n \in N$
 - Exogenous population: L_i
- Single-sector
 - Firms match with at most one supplier at a time, but suppliers can be matched with multiple buyers
 - Multiple sector version (with generic IO linkages): one-to-many matching within each input sector
- Time: *t* (continuous)
 - Focus on steady-state equilibrium in aggregate variables

Production Technology

• Unit cost of firm f in location i in period t:

$$c_{ft} = \frac{1}{\varphi_f} w_i^{1-\gamma} p_{ft}^{\gamma}$$

- exogenous productivity: φ_f
- wage: w_i
- input cost: p_{ft} (source from matched suppliers or go through fringe intermediaries; explained later)
- Measure of firms: $\mu[\varphi_f > \varphi] = B_i \varphi^{-\theta}$
 - ► *B_i*: measure of "entrepreneurs"
 - Determined by free-entry condition with fixed cost F_i

Final Goods Market

- At each period, pay a fixed cost (in labor) f_j^F to make sales (="export") in location j
- Ice-berg trade cost τ_{nj}^F
- Monopolistic competition to representative consumers with CES utility

Input Goods Market: Sellers

• Pool of input sellers and buyers (producers) in location *j* match through a "matching technology"

Sellers:

- Fixed cost f_i^I to enter in j in each period as a pool of potential sellers
- Post price $p = \psi c \tau_{nj}^I$
 - ★ c: seller's contemporaneous unit cost
 - * τ_{nj}^{I} : iceberg trade cost (n: seller's production location)
- If match with a buyer, this price is enforced until relationship ends

Input Goods Market: Buyers

- Buyers: firms producing in location j
- Buyers meet with a supplier in sector k at Poisson rate $\eta \left(S_j^l/Z_j\right)^{\lambda}$ (if unmatched)
 - S_i^I : measure of input sellers
 - ► Z_j: geographic area of location j
- Upon match, decide to form an exclusive relationship at the seller's posted price
- Exogenous separation rate: ρ_j

Input Goods Market: Fringe Intermediaries

- Firms without a supplier can source inputs from a local fringe intermediary
 - Intermediaries accesses a random input seller in the same location
 - Incur χ iceberg cost
 - No profit for intermediaries
- Note: If $\chi \gg 1,$ input buyers and suppliers always form a relationship whenever they match

Free-Entry Condition of Entrepreneurs

- Recall measure of firms: $\mu[\varphi_f > \varphi] = B_i \varphi^{-\theta}$
- *B_{i,k}* is determined to equilibriate the aggregate profit with total fixed cost payment

$$\Pi_i = w_i F_i B_i$$

0

Model Predicts a Gravity Equation

 Power law productivity distribution + constant mark-up rule gives a gravity equation of input trade:

$$\pi_{ij}^{I} = \frac{\Gamma_{i} \left(\tau_{ij}^{I}\right)^{\theta}}{\sum_{i' \in N} \Gamma_{i'} \left(\tau_{i'j}^{I}\right)^{\theta}}$$
$$\Gamma_{i} = B_{i} w_{i}^{-\theta \gamma} \left\{ 1 + \underbrace{\Lambda_{i}(S')}_{S.S. \text{ match prob. cost adv. if matched}}_{S.S. \text{ match prob. cost adv. if matched}} \right\} \left(\overline{c}_{i}^{I}\right)^{-(1-\gamma)\theta}$$

• Note: gravity driven entirely by extensive margin (Chaney '08)

Steady-State Equilibrium Conditions

Equilibrium satisfies...

- **1** Total expenditure and trade balancing: $\{X_i^F, X_i^I, Y_i^F, Y_i^I, w_i\}$
- 2 Zero-profit condition for marginal input sellers: $\{S'_i, \overline{c}'_i\}$
- **③** Gravity equations for final and input goods: $\{\pi_{ij}^F, \pi_{ij}^I\}$
- Free entry conditions for entrepreneurs: {B_i}
- Input cost advantage: $\{\Gamma_i\}$

Circular Causation: Input Seller Entry \rightleftharpoons Input Demand

• Backward Linkage (zero profit condition of marginal sellers):

Forward Linkage

(input cost advantage + gravity + entrepreneur's free entry):

$$\mathbf{Y}_{i} = Y_{i} \left(\underbrace{\eta(\mathbf{S}_{i}^{I}/Z_{i})^{\lambda}}_{\text{supplier matching rate cost advantage per match}}, \underbrace{\chi}_{\mathbf{y}} \right)$$

Outline

Introduction

2 Data and Reduced-Form

3 Model

Estimation of matching rate elasticity λ and production gain of a match χ

- Simulate a "natural experiment" of unanticipated supplier bankruptcies given $\{\lambda,\chi\}$
 - Interpret supplier bankruptcy as exogenous supplier separation
 - ► For each treatment firm, simulate what would happen if it were and it were not treated
 - * Matching with a new supplier at rate $\eta \left(S'_{i,k}/Z_{j} \right)^{\lambda}$
- Choose $\{\lambda, \chi\}$ that replicates the reduced-form impacts
- Results: $\lambda = 0.4$, $\chi = 1.1$

Calibration of Other Parameters

- Counterfactuals through "hat algebra" approach (Dekle, Eaton, Kortum '08)
- Parameters
 - trade elasticity $\theta = 6$
 - $\{\gamma_{k,m}, \gamma_{k,L}, \alpha_k\}$: from IO table
- Baseline variables from firm-to-firm trade data in 2009
 - $\{\pi_{ij,k}^{l}\}$: from extensive margin of input trade share

• Assume
$$\pi_{ij,k}^F = \pi_{ij,k}^I$$

- Steady-state prob. of having a supplier in each sector {Λ_{i,km}} and separation rate {ρ_{i,km}}
- 47 prefectures, 33 main two-digit sectors

Counterfactual 1: How Much does IRS in Matching Explains Population-Density Premium?

- Shut down IRS in matching
 - Set supplier matching rate as \overline{v}_k ($\leftrightarrow v_{i,k} = \eta \left(S_{i,k}^I / Z_i \right)^{\lambda}$ in baseline)
- How much of the observed positive correlation between population density and the following outcomes would decline?
 - location-sector productivity (origin gravity fixed effects)
 - value-added per worker
 - real wages

IRS in Matching Explains 27% of Density-Premium of Value-Added per Worker

Value Added per Worker

• Other density premium: productivity by 17%, real wages by 19%

Counterfactual 2: Welfare Implications of Highways

• Japanese highways developed since '60; Huge policy debate about welfare implications, particularly for remote areas (e.g., Okuda and Hayashi, 1994)

• How much welfare gains and distributional consequences do we miss, if we ignore the IRS in firm-to-firm matching?

Counterfactual 2: Welfare Implications of Highways

- Calibrate the model with highways, predict the equilibrium change without highways
 - $\ \, \hat{\tau}^{\textit{F}}_{ij,k} = \hat{\tau}^{\textit{I}}_{ij,k} = \frac{\text{Travel Time with Highway}}{\text{Travel Time without Highway}} \text{ (from GoogleMaps API)}$
 - ► About 40% travel time reduction for a typical prefecture pair
- Compare the welfare gains with $\lambda = 0.4$ versus $\lambda = 0$
IRS in Matching Explains 17% of Total Welfare Gains from Highways, and 43% of that outside Tokyo

Conclusion

- Reduced-form evidence of IRS in firm-to-firm matching based on the impacts of unanticipated supplier bankruptcy on new supplier matching
- Build a new structural model that translates the reduced-form estimates to equilibrium distribution of economic activity
 - Key: circular causation between input seller density and downstream input demand
 - Large quantitative implications for geographic economic disparities
- Further understanding sources and consequences of firm-to-firm trade matching frictions first-order agenda!

Appendix

Representativeness across Locations

Distribution of Number of Suppliers

Patterns of Unanticipated Accidental Bankruptcies

Map of Unanticipated Bankruptcies

(C) Map of the Probability of Accidental Bankruptcies

Reported Reasons of Bankruptcies

Reason of Bankurptcy	Freq.	Freq. (At Least One Buyer)
Unanticipated Reasons	1548	325
Sales Decline	75492	12861
Accumulation of Debt	11111	2851
Spillovers from Other Bankruptcy	6793	1519
Shortage of Capital	6038	1371
Management Failure	5346	894
Unknown	4184	694
Over-Investment in Capital	875	280
Deterioration of Credit Conditions	589	229
Difficulty in Collecting Account Receivables	543	162
Over-Accumulation of Inventory	98	36
Total	112617	21222

Unanticipated Reasons: "Unanticipated accidental problems such as the death of representatives, flood disaster, fire, earthquake, traffic accident, fraud, theft, embezzlement, etc." (go back)

Balance Between Control and Treatment

Variable	Control	Treatment	p-value of diff.
Growth Number of Suppliers	0.19	0.31	0.06 *
log Sales	12.60	12.43	0.07 *
log Sales Growth	-0.01	-0.01	0.96
log Employment	2.60	2.48	0.1
log Employment Growth	-0.01	-0.01	0.93
Solvency Score	49.04	48.36	0.07 *

New Matching Concentrated in Same Industry

		New Supplier	S		
	All Within 4-digit Ind. Within 2-dig				
	(1)	(2)	(3)		
$Trt \times 1[t - BankruptYear = 2 \text{ or } 3]$	0.22*** (0.07)	0.07*** (0.02)	0.10*** (0.03)		
Control Mean	0.79	0.08	0.17		

Impact on Separation with a Supplier used to Match Ctrl. and Trt.

Substantial Rematching with Suppliers *Selling* in Buyer's Location

		New Suppliers					
	All	HQ in Same Mun.	Supply to Same Mun.				
	(1)	(2)	(3)				
$Trt \times 1[t - BankruptYear = 2 \text{ or } 3]$	0.22*** (0.07)	0.07*** (0.02)	0.13*** (0.04)				
Control Mean	0.79	0.07	0.29				

Number of municipalities: 1719

No Pretrends

	New Suppliers		log :	Sales
	OLS IV		OLS	IV
	(1)	(2)	(3)	(4)
$Trt \ge 1[t - BankruptYear = -1 \text{ or } -2]$	-0.003	-0.003	0.02	0.02
	(0.04)	(0.04)	(0.01)	(0.01)
Trt x 1[t - BankruptYear = -1 or -2] x log Seller Density (Std.)	-0.004	0.03	-0.02	-0.03
	(0.04)	(0.04)	(0.02)	(0.02)
Observations	44,028	44,023	43,633	43,628

Control Trt ${\sf x}$ Location and Industry FE

	New Suppliers		
	OLS	IV	IV
	(1)	(2)	(3)
$Trt \times 1[t - BankruptYear = 0 \text{ or } 1] \times log Seller Density (Std.)$	0.09** (0.04)	0.10** (0.05)	0.09* (0.06)
$Trt \times 1[t - BankruptYear = 2 \text{ or } 3]$	0.10 (0.07)	0.10 (0.08)	0.10 (0.08)

Other Density Measures

				New Suppliers		
	OLS	IV	OLS	IV	OLS	IV
	(1)	(2)	(3)	(4)	(5)	(6)
$Trt \times 1[t \ - \ BankruptYear = 0 \ or \ 1]$	0.06	0.06	0.06	0.06	0.06	0.06
	(0.04)	(0.04)	(0.04)	(0.04)	(0.04)	(0.04)
$\label{eq:Trt} Trt \times 1[t \ \text{-} \ BankruptYear = 0 \ \text{or} \ 1] \times log \ Seller \ Density \ (Std.)$	0.09**	0.11**	0.08**	0.13**	0.10**	0.10**
	(0.04)	(0.04)	(0.04)	(0.06)	(0.04)	(0.05)
$Trt \times 1[t \ - \ BankruptYear = 2 \ or \ 3]$	0.22***	0.22***	0.22***	0.22***	0.22***	0.22***
	(0.07)	(0.07)	(0.07)	(0.07)	(0.07)	(0.07)
$Trt \times 1[t$ - $BankruptYear = 2 \text{ or } 3] \times log$ Seller Density (Std.)	0.09	0.09	0.11	0.13	0.15**	0.11
	(0.06)	(0.07)	(0.07)	(0.10)	(0.07)	(0.08)
Definition of Seller Density	2-digit Ind.	2-digit Ind.	Municipality	Municipality	Local Headquarters	Local Headquarters
Observations	99,447	99,436	99,447	99,436	99,447	99,436

Other Robustness

		New Supplier	5
	IV	IV	IV
	(1)	(2)	(3)
$\operatorname{Trt} \times 1[t - \operatorname{BankruptYear} = 0 \text{ or } 1]$	0.06	0.07	0.09
	(0.04)	(0.05)	(0.06)
$\label{eq:Trt} Trt \times 1[t \mbox{-} BankruptYear = 0 \mbox{ or } 1] \times log \mbox{ Seller Density (Std.)}$	0.09*	0.10*	0.13**
	(0.05)	(0.06)	(0.07)
$Trt \times 1[t - BankruptYear = 2 \text{ or } 3]$	0.20***	0.24***	0.31***
	(0.08)	(0.08)	(0.10)
$Trt \times 1[t \ - \ BankruptYear = 2 \ or \ 3] \times log \ Seller \ Density \ (Std.)$	0.11	0.09	0.14
	(0.08)	(0.09)	(0.10)
Specification	Excl. Exiting Firms	Excl. Tokyo	Sampling Adjustment
Observations	94,783	67,584	99,436

Heterogeneous Impacts on Exit

	Bankruptcy	nkruptcy Voluntary Exit		Existence Unknown
	(1)	(2)	(3)	(4)
$Trt \times 1[t - BankruptYear = 0 \text{ or } 1]$	0.01* (0.01)	-0.01 (0.004)	0.004* (0.002)	-0.0001 (0.003)
$Trt \times 1[t \text{ - } BankruptYear = 2 \text{ or } 3]$	0.02* (0.01)	-0.001 (0.01)	0.01 (0.004)	0.01 (0.01)
Control Mean 3 Years After Bankruptcy	0.034	0.033	0.005	0.015
Number of Treated Firms	447	447	447	447
Number of Bankrupting Suppliers	167	167	167	167
Number of Control Firms	14,630	14,630	14,630	14,630
Observations	99,447	99,447	99,447	99,447

Treatment Firms Exit More, But No Effect in Sales *Conditional on Survival*

	Exit	log Sales (cond. Survival)	log Sales (incl. Exit)
	(1)	(2)	(3)
$Trt \times 1[t - BankruptYear = 2 \text{ or } 3]$	0.03* (0.02)	0.001 (0.02)	-0.38* (0.20)
Control Mean	0.087	12.582	11.443

different forms of exit heterogen

Heterogeneous Impacts on Exit

	Bankruptcy	Voluntary Exit	Merged	Existence Unknown
	(1)	(2)	(3)	(4)
$Trt \ge 1[t - BankruptYear = 0 \text{ or } 1]$	0.01* (0.01)	-0.01 (0.004)	0.004* (0.002)	-0.0001 (0.003)
$Trt \times 1[t \text{ - } BankruptYear = 2 \text{ or } 3]$	0.02* (0.01)	-0.001 (0.01)	0.01 (0.004)	0.01 (0.01)
Control Mean 3 Years After Bankruptcy	0.034	0.033	0.005	0.015
Number of Treated Firms	447	447	447	447
Number of Bankrupting Suppliers	167	167	167	167
Number of Control Firms	14,630	14,630	14,630	14,630
Observations	99,447	99,447	99,447	99,447

Evaluating "Quality" of Match

	Exit		log Sales	(incl. Exit)
	(1)	(2)	(3)	(4)
Number of Suppliers	-0.06 (0.04)	-0.07* (0.04)	0.75 (0.47)	0.87* (0.51)
Number of Suppliers x log Seller Density (Std.)		-0.01 (0.05)		0.33 (0.62)
Observations	29,576	29,572	28,886	28,882

Testing Crowding-Out

- Results so far: matching frictions important
 - This does not necessarily imply for agglomeration benefit if buyers in near geographic proximity crowd-out each other
 - Often documented in labor market (Petrongolo and Pissarides '01)

Testing Crowding-Out

- Results so far: matching frictions important
 - This does not necessarily imply for agglomeration benefit if buyers in near geographic proximity crowd-out each other
 - Often documented in labor market (Petrongolo and Pissarides '01)
- Study impact on other buyers in near geographic proximity:

$$Y_{igt} = \sum_{s} \beta^{s} \mathbb{1} [s = t - BankruptYear_{g}] \times NeighborTrt_{i} + \eta_{gt} + \xi_{ig} + \epsilon_{igt},$$

- ► *NeighborTrt_i*: neighbor of *i* faces unanticipated supplier bankruptcy
- group g: same as before (same municipality, have a supplier in same 4-digit industry)
- Exclude firms which are directly hit by supplier bankruptcy

Evidence of No Crowding-Out

	Number of Suppliers			
	(1)	(2)	(3)	
Neighbor Trt x 1[t - BankruptYear = 2 or 3]	0.06 (0.10)	0.01 (0.08)	0.05 (0.06)	
Degree Grid Size for Defining Neighbor Trt	0.005	0.01	0.05	

other outcomes

Evidence of No Crowding-Out

	Number of Suppliers			
	(1)	(2)	(3)	
Neighbor Trt x 1[t - BankruptYear = 2 or 3]	0.06 (0.10)	0.01 (0.08)	0.05 (0.06)	
Degree Grid Size for Defining Neighbor Trt	0.005	0.01	0.05	
other outcomes				

- Interpretation: Suppliers can simultaneously supply to multiple buyers in the same area
- \leftrightarrow labor market (a job vacancy can be filled by nearby workers)

Suggestive Evidence of Agglomeration Benefit

Endogeneity Issues: Firms in denser areas...

- may have higher demand for external suppliers
- a may be better at looking for suppliers

Set-up

- Multiple locations: $i, j, n \in N$
 - Exogenous population: L_i
- Multiple sectors: $k, m \in K$
 - Generic I-O linkages with CD production technology
 - All firms produce both input and final goods, and use input goods for production
 - Firms match with at most one supplier within sector at a time, but suppliers can be matched with multiple buyers
- Time: t (continuous)
 - Focus on steady-state equilibrium in aggregate variables

Production Technology

• Unit cost of firm f in location i and sector m in period t:

$$c_{ft} = rac{1}{arphi_f} w_i^{\gamma_{L,m}} \prod_{k \in \mathcal{K}} p_{ft,k}^{\gamma_{km}}$$

- exogenous productivity: φ_f
- wage: w_i
- input cost: p_{ft,k} (source from matched suppliers or go through fringe intermediaries; explained later)
- Measure of firms: $\mu[\varphi_f > \varphi] = B_{i,k}\varphi^{-\theta}$
 - ▶ B_{i,k}: measure of "entrepreneurs"
 - Determined by free-entry condition with fixed cost F_{i,k}

Final Goods Market

- At each period, pay a fixed cost (in labor) f^F_{j,k} to make sales (="export") in location j
- Ice-berg trade cost $\tau_{nj,k}^{F}$
- Monopolistic competition to representative consumers with CES utility

Input Goods Market: Sellers

 Pool of input sellers and buyers (producers) in location j match through a "matching technology"

Sellers:

- Fixed cost $f_{i,k}^{I}$ to enter in j in each period as a pool of potential sellers
- Post price $p = \psi_{km} c \tau_{nj,k}^{I}$
 - ★ c: seller's contemporaneous unit cost
 - ★ $\tau'_{nj,k}$: iceberg trade cost (*n*: seller's production location)
 - * ψ_{km} : constant mark-up ratio (exogenous) microfoundation
- If match with a buyer, this price is enforced until relationship ends

Input Goods Market: Buyers

- Buyers: firms producing in location j
- Buyers meet with a supplier in sector k at Poisson rate $\eta \left(S'_{j,k}/Z_j\right)^{\lambda}$ (if unmatched)
 - $S_{i,k}^{I}$: measure of input sellers
 - ► Z_j: geographic area of location j
- Upon match, decide to form an exclusive relationship at the seller's posted price
- Exogenous separation rate: $\rho_{j,km}$

Input Goods Market: Fringe Intermediaries

- Firms without a supplier can source inputs from a local fringe intermediary
 - Intermediaries accesses a random input seller in the same location
 - Incur χ iceberg cost
 - No profit for intermediaries
- Note: If $\chi \gg 1,$ input buyers and suppliers always form a relationship whenever they match

Free-Entry Condition of Entrepreneurs

- Recall measure of firms: $\mu[\varphi_f > \varphi] = B_{i,k}\varphi^{-\theta}$
- *B_{i,k}* is determined to equilibriate the aggregate profit with total fixed cost payment

$$\Pi_{i,k} = w_i F_{i,k} B_{i,k}$$

Model Predicts a Gravity Equation

 Power law productivity distribution + constant mark-up rule gives a gravity equation of input trade:

$$\pi_{ij,m}^{l} = \frac{\Gamma_{i,m} \left(\tau_{ij,m}^{l}\right)^{\theta}}{\sum_{i' \in N} \Gamma_{i',m} \left(\tau_{i'j,m}^{l}\right)^{\theta}}$$
$$\Gamma_{i,m} = B_{i,m} w_{i}^{-\theta\gamma_{L,m}} \prod_{k \in K} \left\{ 1 + \underbrace{\Lambda_{i,km}(S_{i,k}^{l})}_{S.S. \text{ match prob. cost adv. if matched}} \underbrace{\left(\overline{c}_{i,k}^{l}\right)^{-\gamma_{km}\theta}}_{Ci,k} \right\}$$

• Note: gravity driven entirely by extensive margin (Chaney '08)

Steady-State Equilibrium Conditions

Equilibrium satisfies...

- Total expenditure and trade balancing: $\{X_{i,k}^F, X_{i,k}^I, Y_{i,k}^F, Y_{i,km}^I, w_i\}$
- **2** Zero-profit condition for marginal input sellers: $\{S_{i,k}^{I}, \overline{c}_{i,k}^{I}\}$
- Solution Gravity equations for final and input goods: $\{\pi_{ij,k}^F, \pi_{ij,k}^I\}$
- Free entry conditions for entrepreneurs: {B_{i,k}}
- **(a)** Input cost advantage: $\{\Gamma_{i,m}\}$

Circular Causation: Input Seller Entry \rightleftharpoons Input Demand

• Backward Linkage (zero profit condition of marginal sellers):

$$\underbrace{S'_{i,k}}_{\text{input seller}} = \sum_{m \in K} \frac{(1 - \gamma_{km})\psi_{km}}{f'_{i,k}w_i} \underbrace{Y'_{i,km}}_{\text{input demand}}$$

Forward Linkage

(input cost advantage + gravity + entrepreneur's free entry):

$$\mathbf{Y}_{i,km} = \mathbf{Y}_{i,km} \left(\underbrace{\eta(\mathbf{S}_{i,k}^{I}/Z_{i})^{\lambda}}_{\text{supplier matching rate cost advantage per match}}, \underbrace{\chi}_{\mathbf{x}} \right)$$

Forward Linkage: Formal Conditions

• Input cost advantage

$$\Gamma_{i,m} = B_{i,m} w_i^{-\theta \gamma_{L,m}} \prod_{k \in K} \left\{ 1 + \underbrace{\bigwedge_{i,km} (S_{i,k}^{l})}_{S.S. \text{ match prob. cost adv. if matched}} \underbrace{(\chi^{\gamma_{km}\theta} - 1)}_{\text{ ost adv. if matched}} \right\} \left(\overline{c}_{i,k}^{l}\right)^{-\gamma_{km}\theta}$$

• Gravity equations for final goods

$$\pi_{ij,m}^{F} = \frac{\Gamma_{i,m}B_{i,m}\left(\tau_{ij,m}^{F}\right)^{\theta}}{\sum_{i'\in N}\Gamma_{i',m}B_{i,m}\left(\tau_{i'j,m}^{F}\right)^{\theta}}$$

Free entry condition

$$\Pi_{i,m} = w_i F_{i,m} B_{i,m}$$
Input Goods Prices: Precise Assumption

Assumption: u's suppliers (and indirect suppliers) at t^* supply input goods for u's input production for d as long as u and d are matched picture

Input Goods Prices: Precise Assumption

Assumption: u's suppliers (and indirect suppliers) at t^* supply input goods for u's input production for d as long as u and d are matched picture

Implication: PV of profit only depends on c_{ut^*} (at the point of t^*), and so is entry decision as input seller

Timing of Separation and Input Goods Supply

go back 69/35