Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	0000000	000000	0000000

Factor-Biased Multinational Production and the Labor Share

Chang Sun

The University of Hong Kong

Apr 2018 RIETI Workshop on "Uncertainty, Trade and Firms"

(日)

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
•00	0000	00000000	000000	00000000
	Int	roduction		

- Prominence of multinational production (MP)
 - Multinationals worldwide produce 25% of world GDP (Antràs and Yeaple, 2014)

・ロト・<回ト・<回ト・<回ト・<ロト

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
•00	0000	00000000	000000	00000000
		Introduction		

- Prominence of multinational production (MP)
 - Multinationals worldwide produce 25% of world GDP (Antràs and Yeaple, 2014)

うしゃ 本語 マイボット 山戸 ろくの

• Average MP share increased by 9.6 p.p over the last decade

Introduction	Stylized Facts	Model	Calibration	Counterfactuals		
●00	0000	0000000	000000	0000000		
Introduction						

- Prominence of multinational production (MP)
 - Multinationals worldwide produce 25% of world GDP (Antràs and Yeaple, 2014)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Average MP share increased by 9.6 p.p over the last decade
- Standard quantitative models of MP (e.g., Ramondo and Rodriguez-Clare, 2013)
 - Transfer of more advanced technologies
 - Technologies differ only in Hicks-neutral productivities

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	0000000	000000	00000000

- In the data, I find firms' technologies differ in capital intensities along two key dimensions
 - 1. Size effect: larger firms use more capital-intensive technologies

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	0000000	000000	00000000

- In the data, I find firms' technologies differ in capital intensities along two key dimensions
 - 1. Size effect: larger firms use more capital-intensive technologies
 - 2. **Technology origin effect:** firms from more capital-abundant home countries use more capital-intensive technologies

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	0000000	000000	00000000

- In the data, I find firms' technologies differ in capital intensities along two key dimensions
 - 1. Size effect: larger firms use more capital-intensive technologies
 - 2. **Technology origin effect:** firms from more capital-abundant home countries use more capital-intensive technologies
- Build a quantitative framework for modelling factor-biased multinational production (MP) and match both facts
- New channel: MP reallocates factors across firms and changes the demand for ${\cal K}$ relative to ${\cal L}$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	0000000	000000	00000000

- In the data, I find firms' technologies differ in capital intensities along two key dimensions
 - 1. Size effect: larger firms use more capital-intensive technologies
 - 2. **Technology origin effect:** firms from more capital-abundant home countries use more capital-intensive technologies
- Build a quantitative framework for modelling factor-biased multinational production (MP) and match both facts
- New channel: MP reallocates factors across firms and changes the demand for ${\cal K}$ relative to ${\cal L}$
- Quantification
 - Declining MP costs explain up to 60% of the average decline in labor shares in the past decade
 - Relatively more important in capital-scarce countries

Introduction	Stylized Facts		Model	Calibration	Counterfactuals
000	0000		00000000	000000	00000000
		р і.	1.1.1.		

• Technology diffusion through MP, e.g., Ramondo and Rodriguez-Clare (13), Bilir and Morales (16), Arkolakis et al. (17), Tintlenot (17) This paper: adds capital-biased technologies

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	0000000	000000	00000000
		1.1.1.		

- Technology diffusion through MP, e.g., Ramondo and Rodriguez-Clare (13), Bilir and Morales (16), Arkolakis et al. (17), Tintlenot (17) This paper: adds capital-biased technologies
- Firm heterogeneity in input usage
 - Structural estimation of factor augmenting productivities: Zhang (15), Doraszelski and Jaumandreu (15), Bøler (15)

(日)

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	0000000	000000	00000000
	D 1			

- Technology diffusion through MP, e.g., Ramondo and Rodriguez-Clare (13), Bilir and Morales (16), Arkolakis et al. (17), Tintlenot (17) This paper: adds capital-biased technologies
- Firm heterogeneity in input usage
 - Structural estimation of factor augmenting productivities: Zhang (15), Doraszelski and Jaumandreu (15), Bøler (15)
 - General equilibrium models: Crozet et. al. (13), Burstein and Vogel (17), Blaum et al. (15), Eaton et al. (15)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	0000000	000000	00000000
	B 1			

- Technology diffusion through MP, e.g., Ramondo and Rodriguez-Clare (13), Bilir and Morales (16), Arkolakis et al. (17), Tintlenot (17) This paper: adds capital-biased technologies
- Firm heterogeneity in input usage
 - Structural estimation of factor augmenting productivities: Zhang (15), Doraszelski and Jaumandreu (15), Bøler (15)
 - General equilibrium models: Crozet et. al. (13), Burstein and Vogel (17), Blaum et al. (15), Eaton et al. (15)

(日)

(日)
(日)

(日)
(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)
</p

 Decline in labor shares: Karabarbounis and Neiman (14), Oberfield and Raval (14), Elsby et al. (13), Koh et al. (16), Barkai (17), Autor et al. (17)
This paper: the role of technology transfer within MNEs

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	●000	00000000	000000	00000000
		Outline		

◆□▶ ◆□▶ ◆目▶ ◆目■ のへで

- 1. Introduction
- 2. Stylized Facts
- 3. Model
- 4. Calibration
- 5. Counterfactuals

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	0000000	000000	0000000
		Firm level data		

- Orbis Database in 2012
 - Firm-level balanced sheet data to construct K/L

deflated total assets wage bill

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	0000000	000000	00000000
	г.			

Firm level data

- Orbis Database in 2012
 - Firm-level balanced sheet data to construct K/L

deflated total assets wage bill

◆□> <□> <=> <=> <=> <=> <=> <=> <=>

- Ownership information
 - Orbis identifies the "Global Ultimate Owner" (GUO)
 - Define the country of ultimate owner as the home country

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	0000000	000000	00000000

Firm level data

- Orbis Database in 2012
 - Firm-level balanced sheet data to construct K/L

deflated total assets wage bill

▲ロト ▲冊ト ▲ヨト ▲ヨト 三回日 ろんで

- Ownership information
 - Orbis identifies the "Global Ultimate Owner" (GUO)
 - Define the country of ultimate owner as the home country
- 2.6 million firms from 21 host and 22 home countries coverage
 - most are local independent firms
 - 60,000 are multinational affiliates

Stylized
0000

Facts

Model 00000000 Calibration

Counterfactuals

Empirical Fact 1: Size Effect

- Larger firms use more capital-intensive technologies
- Consistent with Oi and Idson (1999), Bernard et al. (2007)

	Dependent Var: log(deflated total assets/wage bill)					
	All (1)	MNE (2)	All (3)	MNE (4)		
log(Revenue)	0.081** (0.026)	0.055*** (0.010)	0.043* (0.021)	0.043*** (0.011)		
debt-to-equity ratio	()		0.004** (0.001)	0.004*** (0.001)		
R-squared 0.36 0.45 0.40 0.47 N 2,621,000 54,000 2,009,000 44,000 Country-industry FE ✓ ✓ ✓ ✓						
Standard errors are clustered at host country * industry and home country						

levels. + 0.10 * 0.05 ** 0.01 *** 0.001.

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	0000000	000000	00000000

Empirical Fact 2: Technology Origin Effect

• Firms from capital-abundant countries use more capital-intensive technologies

	E)ependent \	Var: log(deflat	ted total ass	ets/wage bill)	
	All	MNE	All	MNE	All	MNE
	(1)	(2)	(3)	(4)	(5)	(6)
Home log(cap stock/emp)	0.256***	0.292*	0.172*	0.277*	0.158*	0.291*
	(0.063)	(0.124)	(0.082)	(0.137)	(0.068)	(0.141)
log(Revenue)	()	(-)	0.080**	0.054***	0.043*	0.042***
debt-to-equity ratio			(0.020)	(0.010)	0.004** (0.001)	0.004*** (0.001)
# of home countries	22	22	22	22	22	22
R-squared	0.31	0.40	0.32	0.40	0.34	0.43
N	2,767,000	57,000	2,621,000	54,000	2,009,000	44,000
Country-industry FE	√	√	√	√	√	√

Standard errors are clustered at both home country and host country * industry levels. + 0.10 * 0.05 ** 0.01 *** 0.001.

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	●0000000	000000	0000000
		Outline		

◆□▶ ◆□▶ ◆目▶ ◆目■ のへで

- 1. Introduction
- 2. Stylized Facts
- 3. Model
- 4. Calibration
- 5. Counterfactuals

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	0000000	000000	0000000
		Vlodel ()verviev	N	

• Basic setup

Calibration	Counterfactuals
000000	0000000
,	Calibration 000000

- Basic setup
 - One sector with a continuum of varieties (CES demand, σ)

・ロト < 団ト < 三ト < 三ト < 三日 < つへの

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	0000000	000000	0000000
		Vlodel Overviev	N	

- Basic setup
 - One sector with a continuum of varieties (CES demand, σ)
 - Each country is endowed with (K_i , L_i). Capital is immobile in the baseline model.

◆□> <□> <=> <=> <=> <=> <=> <=> <=>

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	0000000	000000	0000000
	•			
	l l l l l l l l l l l l l l l l l l l	vlodel Overviev	N	

- Basic setup
 - One sector with a continuum of varieties (CES demand, σ)
 - Each country is endowed with (K_i , L_i). Capital is immobile in the baseline model.

◆□> <□> <=> <=> <=> <=> <=> <=> <=>

Technology

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	0000000	000000	0000000
	•			
	N	Vlodel ()verviev	N /	

- Basic setup
 - One sector with a continuum of varieties (CES demand, σ)
 - Each country is endowed with (K_i , L_i). Capital is immobile in the baseline model.

◆□> <□> <=> <=> <=> <=> <=> <=> <=>

- Technology
 - Firms combine K and L using CES production function

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	0000000	000000	0000000
	N	Vlodel ()verviev	A/	

- Basic setup
 - One sector with a continuum of varieties (CES demand, σ)
 - Each country is endowed with (*K_i*, *L_i*). Capital is immobile in the baseline model.
- Technology
 - Firms combine K and L using CES production function
 - Tech-capital complementarity and endogenous tech choice affect *K*/*L* via factor-augmenting productivities

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆○ ●

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	0000000	000000	0000000
	N	Vlodel ()verviev	A/	

- Basic setup
 - One sector with a continuum of varieties (CES demand, σ)
 - Each country is endowed with (*K_i*, *L_i*). Capital is immobile in the baseline model.
- Technology
 - Firms combine K and L using CES production function
 - Tech-capital complementarity and endogenous tech choice affect *K*/*L* via factor-augmenting productivities

▲ロト ▲冊ト ▲ヨト ▲ヨト 三回日 ろんで

• Affiliates inherit technology from the parent firm

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	0000000	000000	0000000
	N	Vlodel ()verviev	A/	

- Basic setup
 - One sector with a continuum of varieties (CES demand, σ)
 - Each country is endowed with (*K_i*, *L_i*). Capital is immobile in the baseline model.
- Technology
 - Firms combine K and L using CES production function
 - Tech-capital complementarity and endogenous tech choice affect K/L via factor-augmenting productivities
 - Affiliates inherit technology from the parent firm
- MP and trade structure follows Arkolakis et al. (2017)
 - A firm can headquarter in home country *i*, produce in host country *l* and sell to destination *n*
 - Trade is subject to iceberg trade costs τ_{ln} and fixed marketing costs

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• MP is subject to iceberg MP costs γ_{il}

draw core productivity ϕ pay F to access each market

Stage 1 Pay entry costs F_{ei} to headquarter in home country *i*. Choose technology (a, b) from tech menu Θ

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

draw core productivity ϕ pay F to access each market

Stage 1 Pay entry costs F_{ei} to headquarter in home country *i*. Choose technology (a, b) from tech menu Θ

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Stage 2 Draw core productivity ϕ from Pareto $1 - \phi^{-k}$. Firm then decides to which markets to sell and pay fixed marketing costs *F*

- Stage 1 Pay entry costs F_{ei} to headquarter in home country *i*. Choose technology (a, b) from tech menu Θ
- Stage 2 Draw core productivity ϕ from Pareto $1 \phi^{-k}$. Firm then decides to which markets to sell and pay fixed marketing costs *F*
- Stage 3 Draw location-specific productivity $\mathbf{z} = (z_1, \dots, z_N)$ from Fréchet $z_l \sim e^{-z^{-\theta}}$. Firm then chooses where to produce.

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	0000000	000000	00000000

Firm's Production Function

• The production function is CES in capital and labor

$$q = \left(\lambda^{1/\varepsilon} \left(\phi^{1-\tilde{\zeta}/2} {}^{a} {}^{K}\right)^{\frac{\varepsilon-1}{\varepsilon}} + (1-\lambda)^{1/\varepsilon} \left(\phi^{1+\tilde{\zeta}/2} {}^{b} {}^{L}\right)^{\frac{\varepsilon}{\varepsilon}-1}\right)^{\frac{\varepsilon}{\varepsilon}}$$

・ロト < 団ト < 三ト < 三ト < 三日 < つへの

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	0000000	000000	00000000

Firm's Production Function

• The production function is CES in capital and labor

$$q = \left(\lambda^{1/\varepsilon} \left(\phi^{1-\tilde{\zeta}/2} {}_{\boldsymbol{\partial}} {\boldsymbol{\mathcal{K}}}\right)^{\frac{\varepsilon-1}{\varepsilon}} + (1-\lambda)^{1/\varepsilon} \left(\phi^{1+\tilde{\zeta}/2} {}_{\boldsymbol{\partial}} {\boldsymbol{\mathcal{L}}}\right)^{\frac{\varepsilon-1}{\varepsilon}}\right)^{\frac{\varepsilon}{\varepsilon-1}}$$

and capital-labor ratio

$$\frac{\kappa}{L} = \frac{\lambda}{1 - \lambda} \phi^{\xi(1 - \varepsilon)} \left(\frac{a}{b}\right)^{\varepsilon - 1} \left(\frac{r}{w}\right)^{-\varepsilon}$$

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	0000000	000000	00000000

Firm's Production Function

• The production function is CES in capital and labor

$$q = \left(\lambda^{1/\varepsilon} \left(\phi^{1-\tilde{\zeta}/2} {}_{\boldsymbol{\partial}} {\boldsymbol{\mathcal{K}}}\right)^{\frac{\varepsilon-1}{\varepsilon}} + (1-\lambda)^{1/\varepsilon} \left(\phi^{1+\tilde{\zeta}/2} {}_{\boldsymbol{\partial}} {\boldsymbol{\mathcal{L}}}\right)^{\frac{\varepsilon-1}{\varepsilon}}\right)^{\frac{\varepsilon}{\varepsilon-1}}$$

and capital-labor ratio

$$\frac{K}{L} = \frac{\lambda}{1 - \lambda} \phi^{\xi(1 - \varepsilon)} \left(\frac{a}{b}\right)^{\varepsilon - 1} \left(\frac{r}{w}\right)^{-\varepsilon}$$

- Technology-capital complementarity: $\xi(1-\epsilon) > 0$, $|\xi| < 2$ (Burstein and Vogel, 17)
- Endogenous technology choice: choose $(a, b) \in \Theta$

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	0000000	000000	00000000
		1 54		

Technology Menu

• Firms want to choose both high *a* and high *b*

◆□▶ ◆□▶ ◆目▶ ◆目■ のへで

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	00000000	000000	0000000
	<u>т</u>	1 1 1.4		

- Firms want to choose both high a and high b
- Face the constraint of the tech menu (Caselli and Coleman, 2006; Oberfield and Raval, 2014)

 $\Theta = \left\{ (a, b) \left| a^{1-\eta} + b^{1-\eta} \le 1 \right\} \right\}$

◆□> <□> <=> <=> <=> <=> <=> <=> <=>

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	00000000	000000	0000000

- Firms want to choose both high *a* and high *b*
- Face the constraint of the tech menu (Caselli and Coleman, 2006; Oberfield and Raval, 2014)

 $\Theta = \{(a, b) | a^{1-\eta} + b^{1-\eta} \le 1\}$

 η controls for the flexibility of ex-ante technology choice
Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	00000000	000000	00000000

More on Technology Menu

• Firm's K/L responds to r/w at two margins

$$\frac{K}{L} = \frac{\lambda}{1-\lambda} \phi^{\xi(1-\varepsilon)} \underbrace{\left(\frac{a}{b}\right)^{\varepsilon-1}}_{v=1} \underbrace{\left(\frac{r}{w}\right)^{-\varepsilon}}_{v=1}$$

extensive intensive

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	00000000	000000	00000000

More on Technology Menu

• Firm's K/L responds to r/w at two margins

$$\frac{K}{L} = \frac{\lambda}{1-\lambda} \phi^{\xi(1-\varepsilon)} \underbrace{\left(\frac{a}{b}\right)^{\varepsilon-1}}_{extensive intensive} \underbrace{\left(\frac{r}{w}\right)^{-\varepsilon}}_{extensive}$$

• Oberfield and Raval (14) show the total response (total elasticity) satisfies

$$\frac{1}{\varepsilon^{tot}-1} = \frac{1}{\eta-1} + \frac{1}{\varepsilon-1}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	00000000	000000	00000000

More on Technology Menu

• Firm's K/L responds to r/w at two margins

$$\frac{K}{L} = \frac{\lambda}{1-\lambda} \phi^{\xi(1-\varepsilon)} \underbrace{\left(\frac{a}{b}\right)^{\varepsilon-1}}_{extensive intensive} \underbrace{\left(\frac{r}{w}\right)^{-\varepsilon}}_{extensive}$$

• Oberfield and Raval (14) show the total response (total elasticity) satisfies

$$rac{1}{arepsilon^{tot}-1}=rac{1}{\eta-1}+rac{1}{arepsilon-1}$$

- Using multinational firm data, I can distinguish between the two
 - variation within multinational firm across host countries \rightarrow intensive elasticity ε

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

• compare firms in the same host country but from different home countries \rightarrow extensive elasticity η

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	0000000	000000	00000000

Definition of General Equilibrium

Vectors of variables $\{a_i, b_i, r_i, w_i, P_i, X_i, M_i\}_{i=1}^N$ such that

• Technology choice is optimal

$$(a_i, b_i) \equiv \arg \max_{(a,b) \in \Theta} \pi_i (a, b)$$

- Zero expected profit due to free entry
- · Capital, labor and the final good markets clear in all countries
- Price index is consistent with consumer optimization

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	0000000	000000	00000000

Theory: Technology Origin Effect

Assumption 1

No technology-capital complementarity $\xi = 0$

Assumption 2

North and South. Countries within each region are symmetric in endowment and entry costs. $K_N/L_N > K_S/L_S$. MP and trade costs are the same for all country pairs ($\gamma_{il} = \gamma$, $\tau_{il} = \tau$, $\forall i \neq I$)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	0000000	000000	00000000

Theory: Technology Origin Effect

Assumption 1

No technology-capital complementarity $\xi = 0$

Assumption 2

North and South. Countries within each region are symmetric in endowment and entry costs. $K_N/L_N > K_S/L_S$. MP and trade costs are the same for all country pairs ($\gamma_{il} = \gamma$, $\tau_{il} = \tau$, $\forall i \neq I$)

Proposition 1

If $\gamma \ge \tau > 1$ or $\tau = \infty$, $\gamma > 1$, and ϕ_{\min} is small enough so entrants with $\phi = \phi_{\min}$ do not sell in every market. Then in a symmetric equilibrium

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

- 1. North has relatively cheaper capital
- 2. Northern firms use more capital-intensive technology
- 3. Firms enjoy a within-region cost advantage

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	0000000	●00000	0000000
		Outline		
		Outline		

◆□▶ ◆□▶ ◆目▶ ◆目■ のへぐ

- 1. Introduction
- 2. Stylized Facts
- 3. Model
- 4. Calibration
- 5. Counterfactuals

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	0000000	00000	00000000

Data used in Calibration

• Firm-level data: Orbis

troduction	Stylized Facts	Model	Calibration	Counterfactuals
00	0000	0000000	00000	00000000

Data used in Calibration

- Firm-level data: Orbis
- Aggregate data, 1996-2001 average
 - 37 countries, 91% of world GDP, 99% of outward MP sales
 - Bilateral trade shares $\lambda_{.ln}^{T}$, bilateral MP shares $\lambda_{.ln}^{M}$
 - Endowment K_i and L_i from Penn World Table
 - Back out (*r_i*, *w_i*) from labor shares (Karabarbounis and Neiman, 14)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	0000000	00000	00000000

- Calibrated without solving the model
 - Intensive elasticity ε:

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	0000000	00000	00000000

- Calibrated without solving the model
 - Intensive elasticity $\boldsymbol{\varepsilon}:$ direct estimation using variation within multinational firm

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	0000000	00000	00000000

- Calibrated without solving the model
 - Intensive elasticity $\boldsymbol{\varepsilon}:$ direct estimation using variation within multinational firm
 - Demand elasticity $\sigma =$ 4 (Arkolakis et al., 17; Bernard et al., 03)

◆□> <□> <=> <=> <=> <=> <=> <=> <=>

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	0000000	00000	00000000

- Calibrated without solving the model
 - Intensive elasticity $\boldsymbol{\varepsilon}:$ direct estimation using variation within multinational firm
 - Demand elasticity $\sigma =$ 4 (Arkolakis et al., 17; Bernard et al., 03)
- Others calibrated by matching endogenous outcomes of the model

Parameters	Targets
37×36 trade costs τ_{il}	bilateral trade shares
N Entry costs F_{ei}	prob serving home market 0.7
Extensive elasticity η	technology origin effect 0.28
Tech-capital complementarity ξ	size effect 0.05
Pareto <i>k</i>	unrestricted trade elasticity 4.3
Frechet θ	restricted trade elasticity 10.9
Capital share shifter λ	average labor share 0.52

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	0000000	000000	00000000
	- ···			

Calibration - intensive elasticity ε

• Relative demand of affiliate f owned by parent p

$$\frac{r_l K_f}{w_l L_f} = \frac{\lambda}{1 - \lambda} \underbrace{\phi_p^{\xi(1-\varepsilon)} \left(\frac{a_i}{b_i}\right)^{\varepsilon-1}}_{\text{parent fixed effect } \delta_p} \left(\frac{r_l}{w_l}\right)^{1-\varepsilon}$$

Identification: variation within multinational firms

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	0000000	000000	00000000
	- ···			

Calibration - intensive elasticity ε

• Relative demand of affiliate f owned by parent p

$$\frac{r_l K_f}{w_l L_f} = \frac{\lambda}{1 - \lambda} \underbrace{\phi_p^{\xi(1-\varepsilon)} \left(\frac{a_i}{b_i}\right)^{\varepsilon-1}}_{\text{parent fixed effect } \delta_p} \left(\frac{r_l}{w_l}\right)^{1-\varepsilon}$$

Identification: variation within multinational firms

• Estimation equation

$$\log\left(\frac{r_l K_f}{w_f L_f}\right) = \delta_{\rho \times s} + (1 - \varepsilon) \log\left(\frac{r_l}{w_l}\right) + u_f$$

- control for industry differences using fixed effects
- use firm-level wage bill to account for skill differences across firms
- instrument $\log (r_l / w_l)$ with $\log (K_l / L_l)$ for measurement errors

Junicenaccuars
0000000
C

Calibration - intensive elasticity ε

	Depende	Dependent Var: affiliates' $log(rK/wL)$			
Assumed Firm Age	10	5	20	40	
$log(r_l/w_l)$	0.49 (0.11)	0.46 (0.11)	0.52 (0.12)	0.55 (0.12)	
Implied ε N First-stage F Parent-industry FE	0.51 23,000 145.47 √	0.54 23,000 145.47 √	0.48 23,000 145.47 √	0.45 23,000 145.47 √	

Standard errors are clustered at host and home country level. I instrument $log(r_l/w_l)$ with $log(K_l/L_l)$ in all regressions.

• Similar estimates in Oberfield and Raval (14), Doraszelski and Jaumandreu (15)

Robustness

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	0000000	000000	00000000

Calibration results

Parameters	Values	Targets
ε	0.55	direct estimation
$ au_{il}$		bilateral trade shares
γ_{ii}		bilateral MP shares
F _{ei}		prob serving home market 0.7
η	0.58	technology origin effect 0.28
ξ	0.55	size effect 0.05
k	4.21	unrestricted trade elasticity 4.3
θ	10.93	restricted trade elasticity 10.9
λ_k	0.29	average labor share 0.52
σ	4	Arkolakis et al. (14)

Untargeted moments:

- Cross-country variation in factor prices
 Details
- Gravity in au_{il} and γ_{il} Details

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	00000000	000000	•0000000
		Outling		
		Outime		

◆□▶ ◆□▶ ◆目▶ ◆目■ のへぐ

- 1. Introduction
- 2. Stylized Facts
- 3. Model
- 4. Calibration
- 5. Counterfactuals

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	0000000	000000	00000000

Overview of Counterfactual

• Question: how do changes in MP costs γ_{il} affect labor shares and real factor prices?

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	0000000	000000	0000000

Overview of Counterfactual

- Question: how do changes in MP costs γ_{il} affect labor shares and real factor prices?
- Implementation
 - Calculate "total inward MP shares" in 1996-2001 and 2006-2011

total inward MP shares
$$= \sum_{l
eq i} \lambda^{\mathcal{M}}_{il}$$

- Calibrate new MP costs γ'_{il} by matching the changes in total inward MP shares \bigodot

うしゃ 本語 アメヨア 山田 ものくの

• Solve the new equilibrium with γ'_{il} and compare to the old one

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	0000000	000000	00000000

Predicted decline in labor shares

- Decline in labor shares in 15 out of 23 countries
- Average decline 1.2 p.p (data: 2.1 p.p) • Compare • Sensitivity
- Larger increase in MP \rightarrow larger decline in labor shares

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	0000000	000000	00000000

Increase in MP shares and decline in labor shares

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	0000000	000000	00000000

Real wage and real return to capital

- In 13 countries, capital gains and labor loses
- Changes in P cannot fully compensate workers
- At least one factor gains

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	0000000	000000	000000000

- Two mechanisms
 - tech-capital complementarity (TCC)

 endogenous technology choice (ETC)

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	0000000	000000	000000000

- Two mechanisms
 - tech-capital complementarity (TCC)
 - endogenous technology choice (ETC)
- Decomposition
 - shut down ETC by setting

$$\eta = -\infty$$

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	0000000	000000	000000000

- Two mechanisms
 - tech-capital complementarity (TCC)
 - endogenous technology choice (ETC)
- Decomposition
 - shut down ETC by setting
 - $\eta = -\infty$
 - deviation from the 45° line is the additional effect of ETC

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	0000000	000000	000000000

- Two mechanisms
 - tech-capital complementarity (TCC)
 - endogenous technology choice (ETC)
- Decomposition
 - shut down ETC by setting $\eta = -\infty$
 - deviation from the 45° line is the additional effect of ETC

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

• ETC is more important for capital-scarce countries

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	0000000	000000	000000000

- Two mechanisms
 - tech-capital complementarity (TCC)
 - endogenous technology choice (ETC)
- Decomposition
 - shut down ETC by setting $\eta = -\infty$
 - deviation from the 45° line is the additional effect of ETC

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

• ETC is more important for capital-scarce countries

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	00000000	000000	000000000

Capital Mobility

- Allow capital to move across borders
 - *r* are equalized across countries, *w* are different (increasing return to scale)
 - recalibrate the model and conduct same counterfactual exercise
 - movements of capital dampen the impact of MP on labor shares

Introduction	Stylized Facts	Model	Calibration	Counterfactuals
000	0000	00000000	000000	0000000●
		Conclusion		

- Firm heterogeneity in factor bias \to large impact of MP on income distribution, particularly in capital-scarce countries
- Quantitative framework can be used to study intensities of other inputs: skilled workers, intermediate inputs, etc
- Future research
 - Are "entry activities" more capital intensive than production activities? may explain decline in labor shares in the US and Germany
 - Other vehicles of technology transfer: offshoring and spillover

(日)

Robustness

- Coverage of the Orbis database Results
- Fixed assets as a measure of $K \rightarrow \text{Results}$
- Home country K/L v.s. weighted average of host country K/L
 Results
- Directly control for firm's relative factor prices Results 1 Results 2

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

◀ Back

Coverage and distribution across countries

Country	(1) # of firms	(2) employment share	(3) # of inward affiliates	(4) employment share	(5) # outward affiliates
Belgium	116000	0.51	1734		1198
Bulgaria	143000	0.91	547	0.15	292
Czech	55000	0.45	2275	0.35	143
Germany	44000	0.18	2516	0.17	7343
Denmark	9000	0.14	525	0.17	738
Spain	426000	0.41	3802	0.28	1716
Estonia	32000	0.51	497	0.23	25
Finland	44000	0.34	315	0.12	682
France	207000	0.19	3044	0.20	3754
UK	42000	0.33	4976	0.36	3042
Croatia	55000	0.59	528	0.25	343
Hungary	203000	0.63	350	0.16	822
Italy	418000	0.37	3682	0.23	4168
Japan	208000	0.19	69	0.04	1744
Korea	66000		401		170
Norway	86000	0.70	822	0.24	514
Poland	11000	0.07	695	0.06	318
Portugal	212000	0.57	1534	0.35	415
Romania	305000	0.73	5728	0.27	206
Serbia	35000		1114		82
Slovenia	40000	0.53	416	0.25	503
US	7000		0		7352
Average	126000	0.44	1617	0.21	1617

Total number of firms in column (1) is rounded to 1000.

Control for the coverage of multinational affiliates from i

	Dependent Var: log(total assets/wage bill)				
	All (1)	All (2)	Foreign Aff (3)	Foreign Aff (4)	
$\log(K_i/L_i)$	0.257* (0.101)	0.167^+	0.238	0.182	
log(Revenue)	0.100***	0.058**	0.067***	0.057***	
debt-to-equity ratio	(0.020)	0.005*** (0.001)	(0.007)	0.005*** (0.001)	
Emp share (firms) Emp share (affiliates)	\checkmark	\checkmark	\checkmark	\checkmark	
# of home countries R-squared N Country-industry FE	15 0.35 1,912,000 √	15 0.41 1,407,000 √	16 0.45 27,000 √	16 0.48 21,000 √	

Standard errors are clustered at both home country and host country * industry levels. + 0.10 * 0.05 ** 0.01 *** 0.001. Number of observations is rounded to thousands of firms.

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆○ ●

Alternative definitions of home country

	Dependent Var: log(deflated total assets/wage bill)					
	Alter	Def 1	Alter Def 2		Alter Def 3	
	(1)	(2)	(3)	(4)	(5)	(6)
$log(K_i/L_i)$	0.140 ⁺ (0.078)	0.175* (0.089)	0.233 ⁺ (0.139)	0.239 (0.149)	0.263* (0.134)	0.272 ⁺ (0.143)
log(Revenue)	0.080*** (0.013)	0.070*** (0.013)	0.070*** (0.009)	0.062*** (0.011)	0.069*** (0.009)	0.062*** (0.011)
debt-to-equity ratio	. ,	0.003** (0.001)		0.003*** (0.001)		0.003*** (0.001)
R-square N	0.46 26,000	0.49 21,000	0.44 43,000	0.46 35,000	0.44 43,000	0.46 35,000

◆□> <□> <=> <=> <=> <=> <=> <=> <=>

Def 1: closest same-industry foreign owner.

Def 2: closest industrial foreign owner within 3 layers of control.

Def 3: closest industrial foreign owner.

◀ Back

Using fixed assets to measure K

	Dependent Var: log(fixed assets/wage bill)						
	All (1)	MNE (2)	All (3)	MNE (4)	All (5)	MNE (6)	
Home country log(K/L)	0.234*** (0.069)	0.445** (0.142)	0.176* (0.083)	0.427** (0.162)	0.193* (0.088)	0.424* (0.183)	
log(Revenue)	()	(-)	0.046 (0.029)	0.101*** (0.016)	0.045 ⁺ (0.026)	0.112*** (0.020)	
debt-to-equity ratio			()	()	-0.000 (0.002)	-0.003 ⁺ (0.002)	
# of home countries R-squared N Country-industry FE	22 0.232 2,536,000 √	22 0.370 54,000 √	22 0.236 2,400,000 √	22 0.378 51,000 √	22 0.255 1,879,000	22 0.397 42,000	

Standard errors are clustered at both home country and host country * industry levels. + 0.10 * 0.05 ** 0.01 *** 0.001.

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ●□= のの⊙

▲ Back

Home country or production center?

	Dependent Var: log(total assets/wage bill)				
	(1)	(2)	(3)	(4)	
Home country log(K/L)	0.284 ⁺ (0.146)	0.306* (0.151)	0.274 ⁺ (0.141)	0.285 ⁺ (0.146)	
Largest host country $\log(K/L)$	-0.021 (0.047)	-0.038 (0.050)	()	()	
Average $\log(K/L)$ of host countries	()	()	0.018 (0.046)	0.027 (0.048)	
log(Revenue)	0.054*** (0.010)	0.042*** (0.010)	0.054*** (0.010)	0.042*** (0.010)	
debt-to-equity ratio	()	0.004*** (0.001)	()	0.004*** (0.001)	
# of home countries R-squared N Country-industry FE	22 0.45 54,000 √	22 0.47 44,000 √	22 0.45 54,000 √	22 0.47 44,000 √	

Standard errors are clustered at both home country and host country * industry levels. + 0.10 * 0.05 ** 0.01 *** 0.001.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへ⊙
Directly controlling for r/w

	Dependent Var: log(total assets/employment)			
	All (1)	All (2)	MNE (3)	MNE (4)
Home country $\log(K/L)$	0.304*** (0.045)	0.307*** (0.037)	0.394*** (0.092)	0.372*** (0.092)
log(Revenue)	0.169***	0.144***	0.115***	0.104***
Firm's log(r/w)	-0.142***	-0.147***	-0.126***	-0.136***
debt-to-equity ratio	(0.029)	(0.020) 0.002*** (0.000)	(0.023)	(0.024) 0.002** (0.001)
# of home countries R-squared N Country-industry FE	22 0.46 1,554,000 √	22 0.46 1,304,000 √	22 0.49 39,000 √	22 0.51 33,000 √

Standard errors are clustered at both home country and host country * industry levels. + 0.10 * 0.05 ** 0.01 *** 0.001.

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ●□= のの⊙

Back out capital bias using K/L and r/w

	Dependent Var: $log(K/L) + \epsilon log(r/w)$			
	All	All	MNE	MNE
	(1)	(2)	(3)	(4)
Home country log(K/L)	0.326***	0.351***	0.374***	0.366***
	(0.041)	(0.037)	(0.106)	(0.105)
log(Revenue)	0.100***	0.073***	0.087***	0.075***
	(0.020)	(0.016)	(0.010)	(0.012)
debt-to-equity ratio	. ,	0.002*** (0.001)		0.002** (0.001)
# of home countries R-squared N Country-industry FE	22 0.40 1,554,000	22 0.41 1,304,000	22 0.44 39,000	22 0.47 33,000

Standard errors are clustered at both home country and host country * industry levels. + 0.10 * 0.05 ** 0.01 *** 0.001.

▲ Back

Robustness of the estimated intensive elasticity ϵ

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

- Use K_f/L_f instead of r_IK_f/w_fL_f · Results
- OLS instead of IV regressions Results
- Estimates by industry Results
- Assume r is the same within a multinational firm Results

OLS instead of IV regressions

	Dependent Var: affiliates' $log(rK/wL)$				
Assumed Firm Age	10	5	20	40	
$log(r_l/w_l)$	0.64	0.61	0.67	0.70	
	(0.07)	(0.07)	(0.07)	(0.08)	
Implied ε	0.36	0.39	0.33	0.30	
N	23,000	23,000	23,000	23,000	
Parent-industry FE	√	√	√	√	

Standard errors are clustered at host and home country level.

◆□> <□> <=> <=> <=> <=> <=> <=> <=>

Use K/L instead of rK/wL

	Dependent Var: affiliates' $log(K/L)$				
Assumed Firm Age	10	5	20	40	
$log(r_l/w_l)$	-0.63	-0.66	-0.60	-0.58	
	(0.13)	(0.13)	(0.14)	(0.14)	
Implied <i>ɛ</i>	0.63	0.66	0.60	0.58	
N	23,000	23,000	23,000	23,000	
First-stage F	145.47	145.47	145.47	145.47	
Parent-industry FE	√	√	√	√	

Standard errors are clustered at host and home country level. I instrument $log(r_l/w_l)$ with $log(K_l/L_l)$ in all regressions.

Estimate by sector

	Dependent Var: affiliates' $log(rK/wL)$					
Mining and Construc- tion		Manufacturing Wholesale, retail and repair		Transportation Other ser- and storage vices		
$log(r_l/w_l)$	0.66	0.48	0.52	0.64	0.33	
	(0.09)	(0.10)	(0.12)	(0.12)	(0.18)	
Implied ε	0.34	0.52	0.48	0.36	0.67	
N	1,000	4,000	6,000	1,000	7,000	
First-stage F	80.85	174.97	147.24	128.34	124.10	
Parent-industry FE	√	√	√	√	√	

Standard errors are clustered at host and home country level. I instrument $log(r_l/w_l)$ with $log(K_l/L_l)$ in all regressions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへ⊙

▲ Back

Assume same r within a multinational firm

	Dependent Var: affiliates' $log(rK/wL)$				
Assumed Firm Age	1	.0	2	:0	
$log(w_l)$	-0.54 (0.10)	-0.59 (0.15)	-0.58 (0.10)	-0.64 (0.16)	
Implied ε N First-stage F Parent-industry FE	0.46 23,000 √	0.41 23,000 57.5 √	0.42 23,000 √	0.36 23,000 57.5 √	

Standard errors are clustered at host and home country level. Instrument is $log(K_I/L_I)$ in IV regressions.

Non-targeted Moments: "Gravity" in au and γ

	trade cost		MP	cost
	$\log(\tau_{il})$	$\log(\tau_{il})$	$\log(\gamma_{il})$	$\log(\gamma_{il})$
log(distance)	0.28***	0.25***	0.27***	0.24***
contiguity	(0.02)	(0.02) -0.08** (0.03)	(0.02)	(0.01) -0.07 * (0.03)
common language		-0.07		-0.09*
colony		(0.04) -0.08** (0.03)		(0.04) -0.14*** (0.04)
N	1332	1332	1052	1052
R^2	0.99	0.99	0.94	0.94
Home FE	\checkmark	\checkmark	\checkmark	\checkmark
Host FE	\checkmark	\checkmark	\checkmark	\checkmark

MP and trade costs are lower if two countries (1) are close in distance (2) share border (3) share common language (4) have colonial relations

Non-targeted Moments: Factor Prices

- Calibration targets average labor shares
- Model captures cross-country variation (*corr* = 0.9)
- Endogenous technology choice improves the match Details

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Non-targeted Moments: the relationship between aggregate factor prices and endowments

	Dependent var: $log(r/w)$			
	Data	Model		
		$\eta = 0.58$ $\eta o -\infty$		
$\log(K/L)$	-1.33	-1.30	-1.81	
	(0.07)	(0.02)	(0.01)	
N	37	37	37	

- In the calibration, $\eta=0.60\Rightarrow$ extensive substitution is at work
- Setting $\eta \to -\infty$ and recalibrating the model \Rightarrow shuts down endogenous technology choice
- The model without endogenous technology choice cannot match the relationship between factor prices and endowments!

Calibrated change in MP costs γ_{il}

• Calibrate $\hat{\gamma}_{il}$ to match change in total inward MP shares (under-identified)

- for a particular host country I, $\hat{\gamma}_{il} = \hat{\gamma}_l$ for all $i \neq l$
- for 14 countries without data, assume log $(\hat{\gamma}_I)$ is global average

(日)

Calibrated change in MP costs γ_{il}

- Calibrate $\hat{\gamma}_{il}$ to match change in total inward MP shares (under-identified)
 - for a particular host country I, $\hat{\gamma}_{il} = \hat{\gamma}_l$ for all $i \neq l$
 - for 14 countries without data, assume log $(\hat{\gamma}_I)$ is global average

Country	$\log(\hat{\gamma})$	Δ inward MP share	inward MP share 96-01	inward MP share 06-11		
Largest Declines						
Romania	-33.9	36.9	5.6	42.4		
Bulgaria	-33.9	28.3	3.5	31.8		
China	-27.3	13.1	2.4	15.6		
Slovakia	-15.9	29.9	20.0	49.9		
Norway	-14.1	14.1	11.0	25.1		
Smallest Dec	lines					
Germany	-0.2	-1.2	23.7	22.4		
Japan	0.8	0.1	3.9	4.0		
US	1.5	-2.0	12.6	10.6		
Netherland	1.5	-3.0	34.6	31.6		
Portugal	8.8	-13.7	33.9	20.1		
Average	-8.0	9.6	20.3	29.8		

All numbers are in percentage points or $100\times$ change in log points

Change in labor shares : model vs data

Sensitivity

- 1. Different values of ε Results
- 2. Change the strength of technology-capital complementarity and endogenous technology choice (ξ, η) results

◀ Back

Sensitivity to ϵ

ϵ	0.4	0.51 (baseline)	0.6
Δ labor share	-1.52	-1.24	-1.17

Each column corresponds to calibration with the intensive elasticity ϵ set to 0.4, 0.51 (baseline) and 0.6.

Sensitivity to targeted regression coefficients

ξ	low	medium	high
η			
low	-0.73	-1.06	-1.25
medium	-0.92	-1.20	-1.37
high	-1.04	-1.26	-1.42

Low, medium and high η correspond to calibrations in which the technology origin effect is targeted at 0.1, 0.2 and 0.3, respectively. Low, medium and high ξ correspond to calibrations in which the size effect is targeted at 0.025, 0.05 and 0.075, respectively.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙