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Background

We face multiple potential catastrophes: nuclear or bioterrorism,
“mega-virus,” climate, ... .

Which ones to avert? If benefit of averting exceeds cost for each
one, should we avert them all? No.

Ian Martin and Robert Pindyck, “Averting Catastrophes: The
Strange Economics of Scylla and Charybdis.”

Use WTP to measure benefit of avoidance, and a permanent tax
on consumption, τ, to measure cost.

Consider N “types” of catastrophes. They are independent.

Main result: Rule for determining the set that should be averted.

Problem: WTP based on “destruction” (loss of consumption),
not death.
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“Strange Economics” — Two Examples

Suppose society faces five major potential catastrophes, and the
benefit of averting each exceeds the cost.

You’d probably say we should avert all five.
You might be wrong.
It may be that we should avert only three of the five.

Suppose we face three potential catastrophes. The first has a
benefit w1 much greater than the cost τ1, and the other two
have benefits greater than the costs, but not that much greater.

Naive reasoning: Eliminate the first and then decide about the
other two.
Wrong. If only one is to be eliminated, we should indeed choose
the first; and we do even better by eliminating all three.
But we do best by eliminating the second and third and not the
first: the presence of the second and third catastrophes makes it
suboptimal to eliminate the first.
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Outline

WTP to avert single catastrophe.

Catastrophe is Poisson arrival, rate λ.
If it occurs, consumption drops by random fraction φ.
Can be averted via permanent consumption tax τ.
Only one, so avert if WTP > τ.

N “types” of catastrophes.

Fundamental interdependence of catastrophes.
Which ones to avert?
Rough numbers: 7 catastrophes.

But some catastrophes cause death. Focus of new paper.

If catastrophe occurs, random fraction ψ of population dies. For
the rest, consumption unchanged.
What is WTP to avert catastrophe? Connection to VSL.
Example: Nuclear terrorism vs. “mega-virus.”
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WTP to Avoid One Type of Catastrophe

First consider single type of catastrophe in isolation. (Climate
change, mega-virus, your choice.) Ignore all others.

WTP: maximum fraction of consumption, now and throughout
the future, society would sacrifice to avert catastrophe.

Without catastrophe, per-capita consumption grows at rate g ,
and C0 = 1. Catastrophe is Poisson arrival, mean arrival rate λ,
can occur repeatedly.

When it occurs, consumption falls by random fraction φ.

CRRA utility function used to measure welfare, with IRRA =
η > 1 and rate of time preference = δ.
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Event Characteristics and WTP

Assume impact of nth arrival, φn, is i.i.d. across realizations n.
So process for consumption is:

ct = log Ct = gt −
N(t)

∑
n=1

φn (1)

N(t) is a Poisson counting process with arrival rate λ, so when
nth event occurs, Ct is multiplied by the random variable e−φn .

Use the cumulant-generating function (CGF),

κt(θ) ≡ log E ectθ ≡ log E C θ
t .

Note ct is a Lévy process, so κt(θ) = κ(θ)t, where κ(θ) means
κ1(θ). The t-period CGF scales 1-period CGF linearly in t.

The CGF is then

κ(θ) = gθ + λ
(

E e−θφ1 − 1
)

(2)
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Event Characteristics and WTP (Continued)

With CRRA utility, welfare is:

E

∫ ∞

0

1

1− η
e−δtC

1−η
t dt =

1

1− η

∫ ∞

0
e−δteκ(1−η)t dt =

1

1− η

1

δ− κ(1− η)

Assume z = e−φ follows a power distribution:

b(z) = βzβ−1 , 0 ≤ z ≤ 1 . (3)

Large β implies large E z and thus small expected impact.
WTP to avert catastrophe is value of w that solves

1

1− η

1

δ− κ(1− η)
=

(1− w)1−η

1− η

1

δ− κ(1)(1− η)
.

With power distribution for z = e−φ, and ρ ≡ δ + g(η − 1):

w = 1−
[
1− λ(η − 1)

ρ(β− η + 1)

] 1
η−1

. (4)

Avoid catastrophe if w > τ.
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Two Types of Catastrophes

Two types of catastrophes, arrival rates λ1 and λ2 and impact
parameters β1 and β2. Assume events are independent. So

ct = log Ct = gt −
N1(t)

∑
n=1

φ1,n −
N2(t)

∑
n=1

φ2,n (5)

CGF : κ(θ) = gθ + λ1

(
E e−θφ1 − 1

)
+ λ2

(
E e−θφ2 − 1

)
(6)

WTP to avert catastrophe i satisfies

(1− wi )1−η

1− η

1

δ− κ(i)(1− η)
=

1

1− η

1

δ− κ(1− η)

so : wi = 1−
(

δ− κ(1− η)
δ− κ(i)(1− η)

) 1
η−1

. (7)

WTP to avert both catastrophes is

w1,2 = 1−
(

δ− κ(1− η)
δ− κ(1,2)(1− η)

) 1
η−1

. (8)

I. Martin and R. Pindyck (LSE and MIT) Death and Destruction May 2017 8 / 35



Interrelationship of WTPs

How is WTP to avert #1 affected by existence of #2?
Think of Catastrophe 2 as “background risk.” Two effects:
It reduces expected future consumption;
and thereby raises future expected marginal utility.

Each event reduces consumption by some percentage φ. So first
effect reduces WTP because with less (future) consumption
available, event causes smaller drop in consumption.

Second effect raises WTP: loss of utility is greater when total
consumption is lower.

If η > 1, second effect dominates. Existence of #2 raises WTP
to avert #1. (Opposite if η < 1.)

Linking w1,2 to w1 and w2:

1 + (1− w1,2)1−η = (1− w1)1−η + (1− w2)1−η

This implies w1,2 < w1 + w2. WTPs are not additive.
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Which Catastrophes to Avert?

Suppose wi > τi for both i = 1 and 2. We should avert at least
one catastrophe, but should we avert both?

Useful to express costs τi and benefits wi in terms of utility:

Ki = (1− τi )1−η − 1

Bi = (1− wi )1−η − 1

Ki is percentage loss of utility when C is reduced by τi percent,
and likewise for Bi . Also, Ki /(η − 1) and Bi /(η − 1) are
absolute changes in utility (in utils).

Suppose B1 � K1 so we definitely avert #1. Should we also
avert #2? Only if B2/K2 > 1 + B1.

Fact that we are going to avert #1 increases hurdle rate for #2.
Also applies if B1 = B2 and K1 = K2; might be we should only
avert one of the two (chosen at random).
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Which Catastrophes to Avert? (Continued)

Does this seem counter-intuitive?

What matters is additional benefit from averting #2 relative to
the cost.
In WTP terms, additional benefit is (w1,2 − w1)/(1− w1).
B2/K2 > 1 + B1 is equivalent to (w1,2 − w1)/(1− w1) > τ2.
Can have w2 > τ2 but (w1,2 − w1)/(1− w1) < τ2. Why?
These are not marginal projects, so w1,2 < w1 + w2.
To avert #1, society is willing to give up fraction w1 of C , so
remaining C is lower and MU is higher. Thus utility loss from
τ2 is increased.

Numerical example: Suppose τ1 = 20% and τ2 = 10%. Figures
show, for range of w1 and w2, which catastrophes to avert
(none, one, or both).
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Example: τ1 = .2, τ2 = .1, η = 2. What to Do?
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Example: τ1 = .2, τ2 = .1, η = 3. What to Do?
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N Types of Catastrophes

Problem: Given a list (τ1, w1), ..., (τN , wN) of costs and benefits
of averting N types of catastrophes, which ones to eliminate?

Again, Ki = (1− τi )1−η − 1 and Bi = (1− wi )1−η − 1.

Key result: (Benefits add, costs multiply.) The optimal set, S ,
of catastrophes to be eliminated solves the problem

max
S⊆{1,...,N}

V =

1 + ∑
i∈S

Bi

∏
i∈S

(1 + Ki )
(9)
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Some Rough Numbers

Characteristics of Seven Potential Catastrophes:

Potential η = 2 η = 4
Catastrophe λi βi τi wi w ′

i Bi Ki wi w ′
i Bi Ki

Mega-Virus .020 5 .02 .159 .125 .189 .020 .309 .145 2.030 .062

Climate .004 4 .04 .048 .033 .050 .042 .180 .053 .812 .130

Nuclear Terrorism .04 17 .03 .086 .063 .095 .031 .141 .037 .580 .096

Bioterrorism .04 32 .03 .047 .032 .049 .031 .079 .018 .280 .096

Floods .17 100 .02 .061 .043 .065 .020 .096 .022 .356 .062

Storms .14 100 .02 .051 .035 .053 .020 .082 .018 .293 .062

Earthquakes .03 100 .01 .011 .008 .011 .010 .020 .004 .063 .031

Avert all Seven .339 .513 .188 .442 4.415 .677

Note: w ′
i is WTP “naively” calculated, i.e., ignoring the other six.
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Which to Avert? (η = 2)
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Which to Avert? (η = 4)

è

è

è

è

��

�

Quakes

Storms

Floods

Virus

Bio

Nuclear

Climate

0 1 2 3 4 5
Τi H%L

5

10

15

20

25

30

wi H%L

I. Martin and R. Pindyck (LSE and MIT) Death and Destruction May 2017 17 / 35



Framework: Death and Consumption

Nt identical consumers who each consume Ct .

Utility comes only from consumption, so total welfare is:

V0 = E

∫ ∞

0

1

1− η
NtC

1−η
t e−δtdt , (10)

with η > 1. Absent catastrophes, Ct grows at rate g , Nt grows
at rate n. Two types of catastrophes:

Consumption catastrophe: Ct falls by random fraction φ.
Arrival rate λc .
“Death” catastrophe: Nt falls by random fraction ψ. Arrival
rate λd . Consumption of those who remain alive unchanged.

We want WTP to avert each type of catastrophe, and WTP to
avert both.
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Death: One Period

What is welfare loss for those who die?

One period: Is loss simply foregone utility? No, much greater.

Suppose η = 2 and Ct = 1, so utility is −1. Is welfare change
just the loss of this utility, i.e., −1?
Suppose C falls by 75%, i.e., to .25. Then utility is −4 and
welfare change is −4− (−1) = −3.
For most, 25% of “normal” consumption is preferable to death.

u(C ) → −∞ as C → 0, so what to do?

Common approach is to add a positive constant to the utility

function: u(C ) = 1
1−η C

1−η
t + b.

Then “death” means consumption drops to some low value ε,
such that u(ε) = 0, i.e., ε = [(η − 1)b]1/(1−η).
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The Value of Life

Issue is loss of welfare from death, not marginal benefits, so we
retain CRRA utility without adding a constant.

Treat death using the same framework used to treat destruction,
i.e., utility loss from drop in consumption.

So assume “death” results in a drop in consumption to low value
ε, which implies a large drop in utility.

At issue is what value to use for ε. Use VSL.

VSL is MRS between wealth (or income, or discounted
consumption over a lifetime) and probability of survival.

Tells us what an individual (or society) would pay in terms of a
small decrease in wealth or consumption for a small increase in
probability of survival.
Does not tell us what an individual or society would pay to
avoid certain death, which we expect is much more.
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Value of a Statistical Life

Many studies have estimated VSL using risk-of-death choices by
individuals. Find VSL ≈ 7 times lifetime income or consumption.

To get ε, we use a simple static model for the VSL.

w = lifetime consumption = 40 times current consumption.
p = ex ante probability of death. Can reduce p at the cost of
reducing w .
u(w) = utility if alive, v(w) = utility if dead. Then

VSL = − dw

d(1− p)
=

dw

dp
=

u(w)− v(w)
(1− p)u′(w) + pv ′(w)

(11)

u(w) and v(w) measured in utils, and u′(w) and v ′(w)
measured in utils/$, so VSL measured in $.
VSL is a cardinal measure, invariant to linear transformations of
u or w .
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VSL (Continued)

VSL is increasing in p; if p is high, little incentive to limit
spending to reduce p (“dead anyway” effect).

Ex ante, p is low. And most estimates of VSL based on
populations for which p is low. So evaluate VSL at p = 0.

Treat lifetime consumption as a multiple m of current
consumption Ct .

Annual consumption when dead is εCt , with ε << 1, so
“lifetime” consumption when dead is mεCt . Then
u(w) = u(mC ) and v(w) = u(mεC ).
VSL is multiple s of lifetime consumption, so

VSL = smC =
mC

1− η
[1− ε1−η] . (12)

Therefore: ε = [s(η − 1) + 1]
1

1−η .
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VSL (Continued)

We use s = 7. So if η = 2, ε = 1/(s + 1) = .125, i.e, death is
equivalent in welfare terms to an 88% drop in consumption. If
η = 3, ε = .27, and if η = 4, ε = .42.

ε is increasing in η because larger η implies larger utility loss
from any given reduction in C .

Death is worse than destruction:

Suppose η = 2 so ε = .125.
Then (annual) welfare loss for those who die is
u(ε)− u(C0) = [ε1−η − 1]/(1− η) = −7 utils.
Suppose φ = .10. Then the total loss is −7φ = −0.7.
If instead consumption of everyone falls by φ = .10, total
welfare loss is u(.9C0)− u(C0) = −0.11.
Loss from death is more than six times loss from destruction.
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WTPs to Avert Catastrophes

Social welfare function: V0 = E
∫ ∞
0

1
1−η NtC

1−η
t e−δtdt

Ct and Nt evolve as: log Ct = gt −∑
Q(t)
k=1 φk and

log Nt = nt −∑
X (t)
k=1 ψk , where Qt and Xt are Poisson counting

processes with mean arrival rates λc and λd .

CGF’s are linear in t, so κC (θ) = gθ + λc

(
E e−θφ − 1

)
and

κN(θ) = nθ + λd

(
E e−θψ − 1

)
.

Let * denote no catastrophes, so N∗
t = ent and κ∗N(θ) = nθ.

If no catastrophes are averted, total welfare is

V = E

{∫ ∞

0
e−δt

[
NtC

1−η
t

1− η
+

(N∗
t − Nt)ε1−ηC

1−η
t

1− η

]
dt

}
,

where (N∗
t − Nt) is number of people that have died.
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WTPs (Con’t)

Ct is an exponential Lévy process, so it evolves independently of
Nt . Thus:

E(NtC
1−η
t ) = E Nt E C

1−η
t = eκN (1)t · eκC (1−η)t

E
[
(N∗

t − Nt)ε1−ηC
1−η
t

]
=

(
eκ∗N (1)t − eκN (1)t

)
ε1−ηeκC (1−η)t

Substituting these expressions into the integral,

V =
1

1− η

{
1− ε1−η

δ− κN(1)− κC (1− η)
+

ε1−η

δ− κ∗N(1)− κC (1− η)

}
Second term: welfare from guaranteed consumption stream εCt

(received even after death). Discounted at rate δ− n.

First term: welfare from consumption stream (1− ε)Ct received
by those alive. Given risk of death, discounted at higher rate
δ− κN(1) > δ− n.
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WTP to Avoid Consumption Catastrophe

Avert consumption catastrophe: set λc = 0, replace κC (1− η)
by κ∗C (1− η) ≡ g(1− η).
If this catastrophe is averted at cost of permanent loss of
fraction wc of consumption, welfare is

Vc =
(1− wc )1−η

1− η

{
1− ε1−η

δ− κN (1)− κ∗C (1− η)
+

ε1−η

δ− κ∗N (1)− κ∗C (1− η)

}
WTP to avoid catastrophe is wc that equates V and Vc :

(1− wc)1−η = A× B × C

A =
δ− κ∗N(1)− κ∗C (1− η)
δ− κ∗N(1)− κC (1− η)

B =
δ− κN(1)− κ∗C (1− η)

δ− κN(1)ε1−η − (1− ε1−η)κ∗N(1)− κ∗C (1− η)

C =
δ− κN(1)ε1−η − (1− ε1−η)κ∗N(1)− κC (1− η)

δ− κN(1)− κC (1− η)
.
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WTP to Avoid Death Catastrophe

If death catastrophe is averted at cost of loss of fraction wd of
consumption, welfare is

Vd = E

{∫ ∞

0
e−δt (1− wd )1−ηN∗

t C
1−η
t

1− η
dt

}

=
1

1− η

(1− wd )1−η

δ− κ∗N(1)− κC (1− η)

Equating V and Vd , wd satisfies

(1− wd )1−η =
δ− κN(1)ε1−η − (1− ε1−η)κ∗N(1)− κC (1− η)

δ− κN(1)− κC (1− η)
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WTP to Avoid Both Catastrophes

If fraction wc,d of consumption is sacrificed to avert both
catastrophes, welfare is

Vc,d =
1

1− η

(1− wc,d )1−η

δ− κ∗N(1)− κ∗C (1− η)
.

Equating V and Vc,d , wc,d satisfies

(1− wc,d )1−η =

δ− κ∗N (1)− κ∗C (1− η)
δ− κ∗N (1)− κC (1− η)

·
δ− κN (1)ε1−η − (1− ε1−η)κ∗N (1)− κC (1− η)

δ− κN (1)− κC (1− η)

Can show that wc,d > max {wc , wd} and, more interestingly,
wc,d < wc + wd − wcwd .
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Applying the Model

The CGFs κC and κN apply to any probability distributions for
the impacts φ and ψ.

For numerical examples, we assume φ and ψ are exponentially
distributed: fφ(x) = βce

−βcx and fψ(x) = βde−βdx .

Note that E(φ) = 1/βc and E(zc) = βc/(βc + 1), and
similarly for ψ and zd . So large βc and βd imply small expected
impacts, i.e., small values of E(φ) and E(ψ) and large values of
E(zc) and E(zd ).
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CGFs and WTPs

Given these distributions for φ and ψ, the CGFs are

κC (1− η) = g(1− η)− λc(1− η)/[βc + (1− η)]
κ∗C (1− η) = g(1− η)

κN(1) = n− λd/(βd + 1)
κ∗N(1) = n

Define ρ ≡ δ− n + g(η − 1), and

λ′c ≡ λc(η − 1)/(βc + 1− η)
λ′d ≡ λd/(βd + 1)

λ′c and λ′d are risk- and impact-adjusted arrival rates. Raising
βd reduces expected impact of death catastrophe,
welfare-equivalent to reducing λd . λ′c also adjusts for risk
aversion; increasing η raises utility loss from reduced
consumption – welfare-equivalent to increasing λc .

I. Martin and R. Pindyck (LSE and MIT) Death and Destruction May 2017 30 / 35



WTPs

Substituting in the expressions for the CGFs, ρ, λ′c and λ′d , the
WTPs are:

wc = 1−
[
(ρ− λ′c)(ρ + λ′dε1−η)(ρ + λ′d − λ′c)

ρ(ρ + λ′d )(ρ + λ′dε1−η − λ′c)

] 1
η−1

wd = 1−
[

(ρ + λ′d − λ′c)
(ρ + λ′dε1−η − λ′c)

] 1
η−1

wc,d = 1−
[
(ρ− λ′c)(ρ + λ′d − λ′c)

ρ(ρ + λ′dε1−η − λ′c)

] 1
η−1

Recall that ε1−η = s(η − 1) + 1.
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Example

As an example, consider two catastrophes we examined earlier: a
“mega-virus” and nuclear terrorism.

Mega-virus: causes death, not destruction. Spanish Flu of
1918 killed 4 to 5% of populations of Europe and U.S., but had
minimal impact on GDP and consumption of those who lived.
Nuclear terrorism: Hiroshima-grade bomb in a major city
might kill 200,000, but biggest impact would be economic:
major shock to GDP from worldwide reduction in trade and
economic activity, and vast resources devoted to averting
further attacks. So this is a “consumption” catastrophe.

Mean arrival rates and impact parameters:

Mega-virus: λd = .02, i.e., 10% chance of pandemic in next
10 years. Mean impact: death of 5% of population, so βd = 20.
Nuclear terrorism: λc = .04, i.e., 50% chance in next 17
years. Mean impact is 5.5% drop in consumption, so βc = 17.
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WTPs: Virus (wd) and Nuclear Terrorism (wc)

Parameters wc wd wc,d Avert:

Base Case η = 2 .1527 .2654 .3572 Both
η = 4 .0626 .1022 .1472 Both

n = 0 η = 2 .0710 .1478 .2010 Both
η = 4 .0445 .0781 .1123 Virus

s = 3 η = 2 .1390 .1341 .2423 Both
η = 4 .0564 .0493 .0969 Nuclear

s = 10 η = 2 .1605 .3404 .4229 Both
η = 4 .0661 .1351 .1784 Both

λd = 0 η = 2 .1250 0 .1250 Nuclear
η = 4 .0501 0 .0501 Nuclear

Note: Base case parameter: δ = g = n = .02 and s = 7. Also, λc = .04,

βc = 17, λd = .02, and βd = 20; τc = τd = .05.
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Which Catastrophes to Avert?

To answer that we need the cost of averting each catastrophe,
which we express as a permanent tax on consumption at a rate
just sufficient to pay what is required to avert the catastrophe.

Denote these costs by τc and τd for the consumption (nuclear)
and death (virus) catastrophes.

We set τc = .05 and τd = .05.

To find optimal policy, calculate net (of taxes) welfare of doing
nothing (W0), averting only nuclear (Wc), averting only the
virus (Wd), and averting both (Wc,d)

In this example, usually optimal to avert both. But reducing
VSL parameter to s = 3, which reduces value of averting the
virus, and if η = 4, optimal to only avert nuclear terrorism.
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Conclusions

Studies of potential catastrophes usually treat them in isolation.
Can lead to policies that are far from optimal.

Major catastrophes (by definition) are not marginal events. Thus
inherently interdependent.

Earlier work showed how to find set of catastrophes to be
averted, but based on loss of consumption.

Now we show how to incorporate death, using VSL estimates.

Get WTP to avert consumption catastrophe, to avert death
catastrophe, and to avert both.

Death far worse than “destruction.” In the example with “base
case” parameter values, wd is about twice as large as wc .

Application: valuing government subsidy for new antibiotics.
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