Comments for Deardorff 2016

RIETI Workshop on Trade Costs 2016
Waseda University
Toshi Ichida

Alan Deardorff (U. of Michigan)

"Rue the ROOs: Rules of Origin and the Gains (or Losses) from Trade Agreement"

- ROO = Rules of Origin
- FTA = Free Trade Agreements
- Fragmentation => 2 stage production process
 (First, use a_{Xin} unit of labor to produce input for X, then use a_{Xout} unit of labor and intermediate input (for X) to produce output X.)

This paper

- Uses stylized theoretical G.E. examples.
- Compares welfare among
 - 1. Autarky
 - 2. Final goods free trade
 - 3. Fragmentation (both final and intermediate goods free trade)
 - 4. (All pairwise) FTA with ROO
 - 5. No FTA with positive tariffs

This paper

- Compares welfare among
 - 1. Autarky
 - 2. Final goods free trade
 - 3. Fragmentation (both final and intermediate goods free trade)
 - 4. (All pairwise) FTA with ROO
 - 5. No FTA with positive tariffs
- 1 < 2 < 3 is obvious.

Model 1

	(Country A	4	(Country E	3	Country C			
Industry	Input	output	total	Input	output	total	Input	output	total	
X	1	2	3	3	1	4	2	3	5	
Υ	2	3	5	1	2	3	3	1	4	
Z	3	1	4	2	3	5	1	2	3	

- 3 Industries (X,Y,Z) each: input + output
- Ricardian (only labor used)
- Numbers are labor requirement coefficients
- Leontief utility: $c_X = c_Y = c_Z$, $u = min(c_X, c_Y, c_Z)$

Model: Autarky

	(Country A	4	(Country E	3	Country C			
Industry	Input	output	total	Input	output	total	Input	output	total	
X	1	2	3	3	1 4		2	3	5	
Υ	2	3	5	1	2	3	3	1	4	
Z	3	1	4	2	3	5	1	2	3	

- If labor endowment is L = 252 for A, B, C, then
- In autarky, each country needs 12 labor unit to produce (X,Y,Z) = (1,1,1) tuple.
- From $u = min(c_X, c_Y, c_Z)$, welfare is 21 = 252/12

Model: Free Trade (final goods)

	(Country /	4	(Country I	В	Country C			
Industry	Input	output	total	Input	output	total	Input	output	total	
Χ	1	2	3	3	1	4	2	3	5	
Υ	2	3	5	1	2	(3)	3	1	4	
Z	3	1	4	2	3	5	1	2	3	

- Final goods comparative advantage
- In 2.Final Goods Free Trade, each country needs 9 labor unit to consume (X,Y,Z) = (1,1,1).
- From $u = min(c_X, c_Y, c_Z)$, welfare is 28 = 252/9

Model: Fragmentation

		Country A	•	C	Country I	В	Country C		
Industry	Input	output		Input	output		Input	output	
Χ	1	2		3	1		2	3	
Υ	2	3		(1)	2		3	(1)	
Z	3	(1)		2	3		1	2	

- All goods (inputs and outputs) comparative advantage
- In 3.Fragmentation (both input and output free trade), each country needs 6 labor unit to consume (X,Y,Z) = (1,1,1) tuple.
- From $u = min(c_x, c_y, c_7)$, welfare is 42 = 252/6

This paper

- Compares welfare among
 - 1. Autarky u = 21
 - 2. Final goods free trade u = 28
 - 3. Fragmentation (both final and intermediate goods free trade) u = 42
 - 4. (All pairwise) FTA with ROO
 - 5. No FTA with positive tariffs
- 1 < 2 < 3 is obvious.
- 4 and 5 is not easy to see.

Model

	(Country A	4	(Country E	3	Country C			
Industry	Input	output	total	Input	output	total	Input	output	total	
X	1	2	3	3	1	4	2	3	5	
Υ	2	3	5	1	2	3	3	1	4	
Z	3	1	4	2	3	5	1	2	3	

 Because all 3 countries and industries are symmetric, we can analyze about X and extend the results without loss of generality.

Model

	(Country A	4	(Country E	3	Country C			
Industry	Input	output	total	Input	Input output total			output	total	
X	1	2	3	3	1	4	2	3	5	

- (All pairwise) FTA with ROO
 - A and B
 - B and C
 - C and A
- No FTA with positive tariffs
 - Ad valorem tariff t > 0 for all inputs and outputs
 - P(1+t) Not P+t (specific tariff)

All pairwise FTA with ROO

	(Country A	4		Country E	3	Country C			
Industry	Input	output	total	Input	output	total	Input	output	total	
X	1	2	3	3	(1)	4	2	3	5	

- In fragmentation, A produce input and B produce output and export to A and C.
- But FTA w ROO, B cannot ship to C.
- In A and B, they can consume X made with 1+1
 =2 unit of labor. In C, it can do best by use input from C and output B so consume X made with 2+1 = 3 units of labor.

All pairwise FTA with ROO

	(Country A	4	(Country E	3	Country C			
Industry	Input	output	total	Input	Input output total			output	total	
X	1	2	3	3	1	4	2	3	5	

- In A and B, they can consume X made with 2 unit of labor. In C, it can consume X made with 3 units of labor.
- In A, to consume (X,Y,Z) = (1,1,1) tuple, total usage of labor is 7.
- From $u = min(c_x, c_y, c_7)$, welfare is 36 = 252/7

This paper

- Compares welfare among
 - 1. Autarky u = 21
 - 2. Final goods free trade u = 28
 - 3. Fragmentation (both final and intermediate goods free trade) u = 42
 - 4. (All pairwise) FTA with ROO u = 36
 - 5. No FTA with positive tariffs
- 1 < 2 < 3 is obvious.
- 4 and 5 is not easy to see.

No FTA with positive tariffs

	(Country A	4	(Country I	3	Country C			
Industry	Input	output	total	Input	output	total	Input	output	total	
X	1	2	3	3	1	4	2	3	5	

- All transactions with positive tariffs
 - Ad valorem tariff t > 0 for all inputs and outputs
- In A, either consume domestic production (3) or export input 1*(1+t) to B and assemble in B (1+t) +1 = (2+t) and ship back to A: (2+t)*(1+t)

No FTA with positive tariffs

	(Country A	4	(Country E	3	Country C			
Industry	Input	output	total	Input	Input output total			output	total	
X	1	2	3	3	1	4	2	3	5	

- In B, either consume domestic production (input, output)=(B,B): cost is 4, or import input (1+t) from A and assemble in B: (A,B) cost (2+t).
 - Domestic production (B,B): Export to A and C at 4(1+t) or
 - A-input B-output case (A,B): Ship back to A or ship to C at (2+t)*(1+t)

No FTA with positive tariffs

	(Country A	4	(Country E	3	Country C			
Industry	Input	output	total	Input	Input output		Input	output	total	
X	1	2	3	3	1	4	2	3	5	

- In C, production patterns are (input, output) = (C,C), (A,A),(A,B),(A,C),(B,B)
 - Domestic production (C,C): Export to A and B at 5(1+t), this won't happen (because dominated by (A,A))
 - Import final goods from A, (A,A): 3(1+t)
 - A-input B-output case(A,B): Ship to A and C at (2+t)*(1+t)
 - Import only input from A, (A,C): 4+t
 - Import final goods from B, (B,B): 4(1+t) dominated by (A,A)

consume	Α	Α	Α	В	В	В	С	С	С	С
input	Α	Α	В	В	Α	Α	С	Α	Α	Α
output	Α	В	В	В	В	Α	С	Α	В	С
t	3	(2+t)(1+t)	4(1+t)	4	2+t	3(1+t)	5	3(1+t)	(2+t)(1+t)	4+t
2.1	3	12.71	12.4	4	4.1	9.3	5	9.3	12.71	6.1
2	3	12	12	4	4	9	5	9	12	6
1.9	3	11.31	11.6	4	3.9	8.7	5	8.7	11.31	5.9
1.5	3	8.75	10	4	3.5	7.5	5	7.5	8.75	5.5
1.2	3	7.04	8.8	4	3.2	6.6	5	6.6	7.04	5.2
1	3	6	8	4	3	6	5	6	6	5
0.9	3	5.51	7.6	4	2.9	5.7	5	5.7	5.51	4.9
0.8	3	5.04	7.2	4	2.8	5.4	5	5.4	5.04	4.8
$\sqrt{3}-1$	3	4.732	6.93	4	2.73	5.2	5	5.2	4.732	4.732
0.7	3	4.59	6.8	4	2.7	5.1	5	5.1	4.59	4.7
0.6	3	4.16	6.4	4	2.6	4.8	5	4.8	4.16	4.6
1/2 = 0.5	3	3.75	6	4	2.5	4.5	5	4.5	3.75	4.5
0.4	3	3.36	5.6	4	2.4	4.2	5	4.2	3.36	4.4
$(\sqrt{13} - 3)/2$	3	3	5.211	4	2.303	3.908	5	3.908	3	4.303
0.3	3	2.99	5.2	4	2.3	3.9	5	3.9	2.99	4.3
0.2	3	2.64	4.8	4	2.2	3.6	5	3.6	2.64	4.2
0.1	3	2.31	4.4	4	2.1	3.3	5	3.3	2.31	4.1

According to my calculation

consuming (input, output)

Country Tariff	A	В	C
2 < t	(A,A)	(B,B)	(C,C)
1 < <i>t</i> < 2	(A,A)	(A,B)	(C,C)
$\sqrt{3} - 1 < t < 1$	(A,A)	(A,B)	(A,C)
$\frac{1}{2} < t < \sqrt{3} - 1$	(A,A)	(A,B)	(A,B)
$\frac{\sqrt{13}-3}{2} < t < \frac{1}{2}$	(A,A)	(A,B)	(A,B)
$0 < t < \frac{\sqrt{13} - 3}{2}$	(A,B)	(A,B)	(A,B)

In page 16, it reads

- A can produce domestically at 3.
- A's export price is at 3(1+t).
- B can import input from A at (1+t) and do so if t < 2 because B's domestic input cost is 3.
- B's cost {1+min[(1+t), 3]} is always ≤ 4.
- B can export at the price (1+t){1+min[(1+t), 3]}.
- C will import A's input if t < 1. C's cost {3+min[(1+t), 2]} is always ≥ 4. C won't export.

In page 16,

- If t is not too large, then B will import the input from A and export the output to <u>both</u> countries.
- This "If t is not too large," actually means that "If $t < \sqrt{13} 3/2 = 0.3028$,"
- If $t > \sqrt{13} 3/2 = 0.3028$, B imports input from A, but export only to C. A will produce domestically.

Page 16 looks to say,

Country	A	В	C
2 < t	(A,A)	(B,B)	(C,C)
1 < t < 2	(A,A)	(A,B)	(C,C)
$\sqrt{3} - 1 < t < 1$	(A,A)	(A,B)	(A,?)
$\frac{1}{2} < t < \sqrt{3} - 1$	(A,A)	(A,B)	(A,?)
$\frac{\sqrt{13}-3}{2} < t < \frac{1}{2}$	(A,A)	(A,B)	(A,?)
$0 < t < \frac{\sqrt{13} - 3}{2}$	(A,B)	(A,B)	(A,B)

According to my calculation

Country	A	В	C
2 < t	(A,A)	(B,B)	(C,C)
1 < t < 2	(A,A)	(A,B)	(C,C)
$\sqrt{3} - 1 < t < 1$	(A,A)	(A,B)	(A,C)
$\frac{1}{2} < t < \sqrt{3} - 1$	(A,A)	(A,B)	(A,B)
$\frac{\sqrt{13}-3}{2} < t < \frac{1}{2}$	(A,A)	(A,B)	(A,B)
$0 < t < \frac{\sqrt{13} - 3}{2}$	(A,B)	(A,B)	(A,B)

If t < 30%,

- The production pattern is the same as fragmentation (free trade for both inputs and outputs).
- So welfare is the same as fragmentation.
- This is an artifact of the assumption about Leontief utility. (No consumption distortion)

This paper

- Compares welfare among
 - 1. Autarky u = 21
 - 2. Final goods free trade u = 28
 - 3. Fragmentation (both final and intermediate goods free trade) u = 42
 - 4. (All pairwise) FTA with ROO u = 36
 - 5. No FTA with positive tariffs u = 42
- 1 < 2 < 4 < 3 = 5

P17 says

- "Depending on how high tariff is, Country
 B may also use the X-input from itself, and
 Country C may produce the X output for
 itself."
- The above statement can be written more precise as follows: When tariff rate is above 200% for B and above 100% for C, the domestic procurement prevails for both countries.

Non prohibitive tariffs

- If t > 50%, then B chooses (C,B) to export to C.
- If t < 30%, then no FTA achieves the same welfare as Fragmentation (free trade).
- In model 1, there is no tariff levels that overlaps (no FTA = Fragmentation) and (B procures from inefficient source C) regions.
- So Deardorff comes up with Model 2.

Model 2

	Country A			Country B			Country C		
Industry	Input	output	total	Input	output	total	Input	output	total
X	10	30	40	20	10	30	15	40	55
Υ	15	40	55	(10)	30	40	20	10	30
Z	20	10	30	15	40	55	10	30	40

- L = 780, Autarky = 780/125 = 6.24
- Free trade = 780/90 = 8.666...
- Fragmentation = 780/60 = 13
- FTA with ROOs = 780/(20+20+25) = 12

According to my calculation

Country Tariff	Α	В	C
1 < t	(A,A)	(B,B)	(C,C)
$0.8979 \coloneqq \frac{\sqrt{23} - 3}{2} < t < 1$	(A,A)	(A,B)	(C,C)
$\frac{\sqrt{17} - 3}{2} < t < \frac{\sqrt{23} - 3}{2}$	(A,A)	(A,B)	(A,B)
$0 < t < \frac{\sqrt{17} - 3}{2} \coloneqq 0.5615$	(A,B)	(A,B)	(A,B)

 Are there any tariff levels within this where FTA with ROO forces inefficient outcome?

Model 2

	Country A			Country B			Country C		
Industry	Input	output	total	Input	output	total	Input	output	total
X	10	30	40	20	10	30	15	40	55
Υ	15	40	55	(10)	30	40	20	10	30
Z	20	10	30	15	40	55	10	30	40

- FTA with ROOs
- Focus on consumption in C
 - (A,B) case: (10+10)*(1+t)
 - (C,B) case: (15+10)
 - When t > 25%, choose (C,B)!

Cost of FTA w ROO

- May increase if
 - There are more production stages
 - There are more countries and industries

Comments

- Very interesting and relevant paper!
- Extremely well-thought out examples!
- How can I add values?