Production Networks, Geography and Firm Performance

Andrew B. Bernard Dartmouth College

Andreas Moxnes Yukiko U. Saito University of Oslo

RIETI

2016 RIETI WS

Motivation and Questions

• "Power of Network"

by Ministry of Economy, Trade and Industry (METI)

- Competitiveness of Japanese firms depends on strong connections with their suppliers.
- What determines buyer-supplier (firm-to-firm) connections?
- What are the consequences for firm performance?
- We'll develop a model in which:
 - Firms have a comparative advantage (CA) in producing a given task.
 - Searching for suppliers (observing price/quality) is costly.
 - Trade-off between benefits from exploiting CA and cost of search.
- We'll examine the quantitative importance of this mechanism.

Implications

- Variation in firm output and productivity across space (Sveikauskas 1975, Glaeser and Mare 2001, Combes et al 2012).)
 - − Using and searching for good suppliers which are less costly in central locations
 → Outsourcing & productivity ↑
- Substantial heterogeneity in firm sales (w/in localities and industries).
 - High productivity firms have an incentive to search harder for good suppliers.
- Effect of infrastructure on firm performance.
 - Lowers the cost of using & searching for suppliers.

Three Components of the Paper

- Facts about (Japanese) production networks
 - Comprehensive data on (nearly) complete production networks
- Model of producers and domestic sourcing.
 - Building on Antras, Fort and Tintelnot (2014).
- 'Natural' experiment testing predictions of model (effects of infrastructure)
 - Kyushu Shinkansen (2004).
 - Up to 75% fall in travel time for persons, 0% for goods.

Disclaimer: This paper is not about the relocation of inputs or firms. It applies only to within-firm identification.

Data Sources

- Tokyo Shoko Research (TSR):
 - Credit reporting agency (1 of 2 in Japan)
 - 950,000+ firms in the private sector.
 - Close to complete coverage of firms with 5+ employees.
 - Not limited to a particular sector.
 - More than 50% of all firms in Japan (relative to census).
 - Buyer-supplier linkages in 2005 & 2010 + firm sales & geolocation.
 - Firm address is geocoded to longitude and latitude data, using the system provided by the Center for Spatial Information Science (CSIS), University of Tokyo
- Kikatsu:
 - 1998-2008 data (balance sheet plus much more) from the results of the "Basic Survey of Japanese Business Structure and Activities" by METI (*Kigyo Katsudo Kihon Chosa, in Japanese*)
 - All firms with 50+ employees & capital of more than 30 million yen (US \$300,000).

TSR Data - Network

- Each firm provides a rank ordered list of suppliers & customers (max 24).
- We use a combination of own-reported and other-reported information.
 - A supplies B if both firms are in the TSR data and
 - A reports B as a customer or
 - B reports A as a supplier.

TSR Data - Network

- In-degree (# of suppliers) = 2 (1 own-reported + 1 other-reported)
- Out-degree (# of customers) = 2 (1 own-reported + 1 other-reported)

Network Structure:

- 3,783,711 supplier-customer connections.
- Among firms with positive degree:
 - Mean (median) # customers is 5.6 (1).
 - Mean (median) # suppliers is 4.9 (2).
- 1/slope is -1.32 (in-degree) and -1.50 (out-degree).

The Production Network : Facts

• Key relationships that inform the model:

- Larger firms have more suppliers.
- The majority of connections is formed locally.
- Larger firms have suppliers in more locations and their distance to suppliers is longer.
- Negative degree assortativity among sellers and buyers.

Fact I : Larger firms have more suppliers

Fact II : The majority of connections is formed locally

Fact III : Larger firms have suppliers in more locations

Fact III : Larger firms have suppliers located farther away

A firm with more suppliers - those suppliers have fewer customers. A firm with fewer suppliers - those suppliers have more customers.

The Model

- We build on the international sourcing model of Antras et al (2014) and introduce:
 - In-house production or outsourcing
 - Continuum of locations \leftarrow domestic sourcing

The Model : Upstream

Upstream stage:

- Unit continuum of tasks ω produced in location *i*.
- PF $y_U(\omega) = zU(\omega)l_U(\omega)$.
- Task productivity $z_U(\omega)$ from Frechet(T, q).
- Iceberg trade costs: $\tau(i, j) \ge 1$.
- Perfect competition.

The Model : Downstream

Downstream stage:

- PF $y(z,j) = zl^{\alpha}v(z,j)^{1-\alpha}$ v(z,j) is CES task composite, z is efficiency.
- ω produced in-house or outsourced:
- In-house: PF $y_l(\omega) = zl(\omega)ll(\omega)$.
 - Task productivity $z_l(\omega)$ from $Frechet(T_0, q)$.
 - No trade costs.
- Outsourced:
 - Firm sees price distribution in *i* but not individual prices $p(\omega, i)$.
 - Firm in j must pay f(j) to observe individual $p(\omega, i)$.
- Monopolistic competition & CES final demand.

The Model : Assumptions

For tractability:

- T_0 and T the same everywhere.
- Perfect labor mobility \rightarrow wages same everywhere.
- No trade costs on final good.
- Positive measure of downstream firms in each location *j*.
- Restrict to interior solution.

The firm's problem

Solve by backwards induction:

- Conditional on locations searched, firm chooses in-house / outsourcing in searched location for each task ω .
- Firm chooses locations to search, characterized by cutoff $\tau(z, j)$: highest trade cost of location.
 - $\tau(z, j)$ chosen to balance the benefit of lower MC against the cost of search.

Model and Data

 More productive firms outsource more tasks and therefore have more suppliers:

$$\frac{\partial \ln o(z,j)}{\partial \ln z} > 0,$$

- Locality of connection: Iceberg Trade cost
- More productive firms search more and costlier locations:

$$\frac{\partial \ln \bar{\tau}}{\partial \ln z} > 0$$

Negative degree assortivity:

Higher z (higher indegree) \rightarrow firm reaches costlier locations \rightarrow suppliers there are on average not very competitive in z's home market (low avg. outdegree).

A Distributional Assumption

- Every location faces a density of trade costs g(t, j).
- Assume g() inverse Pareto with shape g > q and support $[1, \tau_H]$.
 - A location has few nearby markets and many remote ones.
- Density fits empirical distance cdf well.

Two Propositions

- Proposition 1
 - Lower search costs f(j) lead to growth in sales among downstream firms in j.
 - Sales growth is stronger in input-intensive (low α) industries relative to labor intensive (high α) industries.

$$\frac{\partial \ln r(z,j)}{\partial \ln f(j)} < 0 \quad \text{and} \quad \frac{\partial^2 \ln r(z,j)}{\partial \ln f(j) \partial \alpha} > 0$$

- Two channels:
 - Direct: low α firms grow more because of large input share.
 - Indirect: low α firms search more markets when $f(j) \downarrow$ ($|\partial \overline{\tau}/\partial f|$ decreasing in α).

Two Propositions

- Proposition 2
 - Lower search costs f(j) lead to more outsourcing and suppliers from new locations (higher $\overline{\tau}$) among downstream firms in j.

$$rac{\partial o(z,j)}{\partial f(j)} < 0 \quad ext{and} \quad rac{\partial ar{ au}(z,j)}{\partial f(j)} < 0.$$

Shinkansen - A Natural Experiment

800 series Shinkansen

- High-speed train network (Shinkansen) opened in 2004.
- Operating speed: 260 km/h.
- 2-3 departures / hour; Capacity: 392 passengers per train.

Shinkansen - Geography

- Rail line connecting two prefectures (Kagoshima + Kumamoto) with a total population of 3.5 million.
- Travel time
 - − Kagoshima − Shin-Yatsushiro: $130 \rightarrow 35$ min.
 - − Kagoshima − Hakata: $4 \rightarrow 2$ hours.

Shinkansen - A Natural Experiment

- Do lower search costs improve firm performance by facilitating (better) linkages in the production network?
- Key advantages of the Shinkansen experiment:
 - Dramatic reduction in travel time between stations.
 - 75% reduction for many city pairs.
 - Goods do not travel by Shinkansen, just people.
 - No contemporaneous reduction in travel time for goods along this southern route.
 - Likely exogenous.
 - Planned decades in advance (1973). Timing of completion was subject to substantial uncertainty.

Shinkansen Factsheet

- Total length of 2,388 km and connects the majority of the JP population.
- Share of train passenger traffic larger than in any other country.
 - Rail has 28% of total passenger km in JP, 1% in US, and 8% in France
 - Car has 50% in JP, 85% in US, and France (Clever et al 2008).
- The modal shares of railways and airlines changed from 41% to 71% and 42% to 12% respectively between Fukuoka and Kagoshima prefectures (2000 to 2005). (Tokyo Institute of Technology, 2008).

Shinkansen Factsheet

• Shinkansen dominates medium distance travel:

Share of the Shinkansen in various long-distance transport modes "Features and economic and social effects of the Shinkansen", Japan Railway and Transport Review (1994)

Empirical Methodology

- Lower travel time should benefit input-intensive firms more than labor intensive firms (Proposition 1).
 - Lower f(j) has no impact on MC of firms belonging to $\alpha = 1$ industries.
- Classify industry k according to their 2003 intermediate input use:
 H_k = 1 labor share of industry k
- Define *Treat_f* = 1 if firm *f* is < 30 km from new Shinkansen station (stations between Kagoshima and Shin-Yatsushiro).
- Dependent variables: InSales, In(sales/employee), TFP (Olley-Pakes); relative to industry-year means.

Empirical Methodology

• Estimate for 2000-2008 period

 $\ln y_{fkrt} = \alpha_f^1 + \alpha_{rt}^2 + \beta_1 \operatorname{Treat}_f \times H_k \times \operatorname{Post2004}_t + \gamma X_{fkrt} + \varepsilon_{fkrt},$

- where α_{f}^{1} and α_{rt}^{2} are firm and prefecture-year fixed effects.
- Triple differences:
 - Pre to post shock (1st diff)
 - Firms near stations relative to those not near stations (2nd diff).
 - High H_k relative low H_k firms (3rd diff).
- Positive β_1 if high H_k firms are growing faster relative to low- H_k firms near new stations relative to elsewhere.
- More controls:
 - Time-varying geographic controls by using average performance in f's municipality (≈ 1,400 municipalities).
 - Remaining interactions (*Treat*_f × H_k , etc.).

Potential Concerns

- Market access (demand side) effects:
 - No, because demand should affect both input- and labor-intensive firms.
- Different trends for input- and labor-intensive firms:
 - No, industry trends are differenced out.
- Location of the stations are endogenous:
 - Not a problem as long as locations are not determined based on differential growth for input/labor intensive industries.
- Pre-trends; input-intensive firms near new stations always grow faster relative to labor-intensive firms:
 - No evidence of this in placebo test.

Results

	Sales	Sales/employee	TFP
	• • • • · · · · · ·		
$Treat_f imes H_j imes Post2004_t$	0.47**	0.42*	0.29**
	(2.12)	(1.76)	(2.44)
Firm and city controls	Yes	Yes	Yes
Prefecture-year FE	Yes	Yes	Yes
Firm FE	Yes	Yes	Yes
N	148,264	146,466	145,058
R-sq	0.97	0.92	0.94

Note: Robust t-statistics in parentheses. Dependent variables in logs.

- A Shinkansen station increases sales by 0.47 log points more for a firm with $H_k = 1$ relative to a firm with $H_k = 0$.
- A firm in the 9th decile of the *H_k* distribution (industrial plastic products) increased sales by 0.10 log points more than a firm in the 1st decile of the *H_k* distribution (general goods rental and leasing).

Robustness : Placebo

• Use 1998-2002 data and Post2000 dummy.

	Sales	Sales/employee	TFP
$Treat_f imes H_j imes Post2000_t$	-0.30	-0.05	0.02
2	(1.05)	(0.22)	(0.17)
Firm and city controls	Yes	Yes	Yes
Prefecture-year FE	Yes	Yes	Yes
Firm FE	Yes	Yes	Yes
Ν	66,756	66,756	66,487
R-sq	0.99	0.94	0.95

Note: Robust t-statistics in parentheses. Dependent variables in logs.

More robustness

- Labor supply Recruiting now easier for knowledge intensive industries (which may happen to be input intensive).
 - Calculate R&D intensity of industries, add additional interactions
 → No change in results.
- The 'straw effect' Less economic activity in nearby locations.
 - Add interactions for firms 30-60km from new station
 - \rightarrow Small negative effect for these firms & no change in main results.
- Demand side again Input intensive industries may have more remote customers.
 - Should not see TFP effects.
 - corr (avg distance to customers, H_i) = -0.02.
- Drop the construction industry.
- Change 30 km threshold.

Shinkansen - New Connections

- Mechanism: Should see more supplier linkages in treated regions.
- Divide Japan into a grid consisting of 500 \times 500 locations (5.62 km²).
- Number of connections from *i* to *j* at time *t* is C_{ijt} , t = (2005;2010).
- Regress $\Delta \ln C_{ij} = \xi_i^1 + \xi_j^2 + \beta_1 Both_{ij} + \beta_2 One_{ij} + \gamma X_{ij} + \varepsilon_{ij},$

where ξ_i^1 and ξ_j^2 are source and destination FE, Both_{ij} = 1 if both locations *i* and *j* get a new station, One_{ij} = 1 if one of them gets a new station.

Shinkansen - New Connections

	(1)	(2)	(3)	(4)
Both _{ij}	0.07***	0.12***	0.39***	0.42***
-	(5.91)	(7.91)	(20.12)	(7.93)
One _{ii}	-0.02***	-0.01	0.19***	0.15***
·	(3.56)	(0.74)	(19.87)	(6.42)
In <i>Dist_{ij}</i>			-0.06***	-0.06***
-			(71.32)	(81.98)
$Both_{ij} imes ln Dist_{ij}$				-0.01
				(0.86)
One _{ij} × In Dist _{ij}				0.01*
				(1.87)
Destination FE	No	Yes	Yes	Yes
Source FE	No	Yes	Yes	Yes
# obs	386,294	386,294	386,294	386,294
# sources		7,613	7,613	7,613
# destinations		8,054	8,054	8,054
R-sq	0.00	0.17	0.18	0.18

Note: Bootstrapped t-statistics in parentheses with 200 replications. Dependent variable is $\Delta \ln C_{ij} = \ln C_{ij2010} + \ln C_{ij2005}$. *** significant at the 0.01 level, ** significant at the 0.05 level, *_significant at the 0.1 level.

Conclusions

- The supply network matters for firm performance:
 - Infrastructure shock generates significant performance gains.
 - Evidence that gains are related to new (or more efficient) buyer-seller linkages, as suggested by the model.