# **Standards and Market Entry**

Reiko Aoki Kyushu University Yasuhiro Arai Kochi University

## Introduction

Standards become beneficial when there are network effects



However, strategic use of standards is possible



What is the relationship between standards and innovation?

## **Standards and Innovation**

- Relationship between standards and innovation
  - Patent pools and innovation Lampe and Moser (2012)
  - Standards and innovation Farrell & Saloner (1985), Cabral & Salant (2013)

#### Entry Deterrence

- Entry Deterrence by Increasing standard inertia Farrel and Saloner (1987)
- Entry Deterrence by Increasing switching cost Klemperer (1987), Chen (1997)

## Focus of this Paper

• There is a standard in place.



- Incumbent can improve his technology to deter the entry.
- Entrant can also invest to improve his technology to counter the deterrence.

# Framework: Timing

Player

Firm 0 :incumbent

Firm 1 :new entrant

Consumers

- Timing of this game
  - 1. Invest in technology (sequential)
    - I. Firm 0 invests in technology
    - II. Firm 1 invests in technology
  - 2. Market competition (Bertrand competition)
  - We examine how investments relate to second stage subgame equilibria.

#### Framework: Consumer

- Consumers are located over unit interval (Hotelling)
  - > The surplus of a consumer  $x \in [0,1]$  is given by

 $v_0 - p_0 - tx$  :when he purchases from firm 0

 $v_1 - p_1 - S - t(1 - x)$  :when he purchases from firm 1

 $v_i$ : the value of products

 $p_i$ : price of the product

S: cost of changing to different standard (switching cost).

*t*: the per unit transportation cost

• We define the bench marks  $\hat{x}_0(p_0)$ ,  $\hat{x}_1(p_1)$  and  $\hat{x}(p_0, p_1)$  by

$$v_0 - p_0 - t\hat{x}_0(p_0) = 0$$
$$v_1 - p_1 - S - t(1 - \hat{x}_1(p_1)) = 0$$
$$v_0 - p_0 - t\hat{x}(p_0, p_1) = v_1 - p_1 - S - t(1 - \hat{x}(p_0, p_1))$$

• We assume  $v_i \ge 2t$ .

# **Hotelling Model**

Then

$$\hat{x}_{0}(p_{0}) = \frac{v_{0} - p_{0}}{t}, 1 - \hat{x}_{1}(p_{1}) = \frac{v_{1} - p_{1}}{t},$$
$$\hat{x}(p_{0}, p_{1}) = \frac{v_{0} - v_{1} - p_{0} + p_{1} + S + t}{2t}$$

By definition, it must be that either



• Firm 0 chooses  $p_0$  to maximize his profit

$$\pi_{0} = \begin{cases} \pi_{0}^{A} = p_{0}\hat{x}_{0} = \frac{p_{0}(v_{0} - p_{0})}{t} & \text{for } v_{0} - p_{0} \le t - v_{1} + S + p_{1} \\ \\ \pi_{0}^{B} = p_{0}\hat{x} = \frac{p_{0}(v_{0} - v_{1} - p_{0} + p_{1} + S + t)}{t} & \text{for } t - v_{1} + S + p_{1} < v_{0} - p_{0} \\ \\ \le t + v_{1} - S - p_{1} \\ \\ \pi_{0}^{C} = p_{0} & \text{for } t + v_{1} - S - p_{1} < v_{0} - p_{0} \end{cases}$$

• Firm 1 chooses  $p_1$  to maximize his profit

$$\pi_{1} = \begin{cases} \pi_{1}^{A} = p_{1}(1 - \hat{x}_{1}) = \frac{p_{1}(v_{1} - S - p_{1})}{t} & \text{for } v_{1} - S - p_{1} \le t - v_{0} + p_{0} \\ \\ \pi_{1}^{B} = p_{1}(1 - \hat{x}) = \frac{p_{1}(t - v_{0} + p_{0} + v_{1} - S - p_{1})}{t} & \text{for } t - v_{0} + p_{0} < v_{1} - S - p_{1} \\ \\ \le t + v_{0} - p_{0} \end{cases} \\ \\ \pi_{1}^{C} = p_{1} & \text{for } t + v_{0} - p_{0} < v_{1} - S - p_{1} \end{cases}$$

• Firm 0's best response correspondence  $p_0 = R_0(p_1)$ 

i. If 
$$3t < v_0$$
, then  

$$R_0(p_1) = \begin{cases} v_0 - v_1 + S + p_1 - t & \text{for } v_1 - S - p_1 \le v_0 - 3t \\ \frac{v_0 - v_1 + S + p_1 + t}{2} & \text{for } v_1 - S - p_1 \ge v_0 - 3t \end{cases}$$

ii. If  $3t > v_0$ , then

$$R_{0}(p_{1}) = \begin{cases} v_{0} + v_{1} - S - p_{1} - t & \text{for } v_{1} - S - p_{1} \le t - \frac{v_{0}}{3} \\ \frac{v_{0} - v_{1} + S + p_{1} + t}{2} & \text{for } v_{1} - S - p_{1} \ge t - \frac{v_{0}}{3} \end{cases}$$
  
*iii.* If  $3t = v_{0}$ , then

$$R_0(p_1) = \frac{v_0 - v_1 + S + p_1 + t}{2} \qquad \text{for all } v_1 - S - p_1 \ge 0$$

• Firm 1's best response correspondence  $p_1 = R_1(p_0)$ 

*i.* If 
$$3t < v_1 - S$$
, then

ii.

$$R_{1}(p_{0}) = \begin{cases} \frac{v_{1} - S}{2} \text{ or } p_{0} - t - v_{0} + v_{1} - S & \text{for } v_{0} - p_{0} \le t - \frac{v_{1} - S}{2} \\ p_{0} - t - v_{0} + v_{1} - S & \text{for } t - \frac{v_{1} - S}{2} < v_{0} - p_{0} \le v_{1} - S - 3t \\ \frac{t - v_{0} + p_{0} + v_{1} - S}{2} & \text{for } v_{1} - S - 3t < v_{0} - p_{0} \end{cases}$$

If 
$$3t > v_1 - S$$
, then  

$$R_1(p_0) = \begin{cases} \frac{v_1 - S}{2} & \text{for } v_0 - p_0 \le t - \frac{v_1 - S}{2} \\ v_1 - S - t + v_0 - p_0 & \text{for } t - \frac{v_1 - S}{2} < v_0 - p_0 \le t - \frac{v_1 - S}{3} \\ \frac{t - v_0 + p_0 + v_1 - S}{2} & \text{for } t - \frac{v_1 - S}{3} < v_0 - p_0 \end{cases}$$

• Firm 1's best response correspondence  $p_1 = R_1(p_0)$ 

*iii.* If 
$$3t = v_0$$
, then  
$$R_0(p_1) = \frac{t - v_0 + p_0 + v_1 - S}{2} \qquad \text{for all } v_0 - p_0 \ge 0$$

#### Market Equilibrium

I. Only Firm 0 (Deter Entry):  $v_1 - S \le v_0 + 3t$ All consumers purchase from firm 0

$$p_0^* = v_0 - v_1 + S - t, \quad p_1^* = S$$
$$\pi_0^* = v_0 - v_1 + S - t, \quad \pi_1^* = 0$$

II. Only Firm 1 (Standard Replaced):  $v_1 - S \ge v_0 - 3t$ All consumers purchase from firm 1  $p_0^* = 0$ ,  $p_1^* = v_1 - v_0 - S - t$  $\pi_0^* = 0$ ,  $\pi_1^* = v_1 - v_0 - S - t$ 

III. Two firms co-exist in the market (unique equilibrium):  $v_0 + v_1 - S \ge 3t$  and  $v_0 - 3t < v_1 - S < v_0 + 3t$   $p_0^* = \frac{v_0 - v_1 + S + 3t}{3}$ ,  $p_1^* = \frac{v_1 - v_0 - S + 3t}{3}$  $\pi_0^* = \frac{1}{2t} \left( \frac{v_0 - v_1 + S + 3t}{3} \right)^2$ ,  $\pi_1^* = \frac{1}{2t} \left( \frac{v_1 - v_0 - S + 3t}{3} \right)^2$ 



IV. Two firms co-exist in the market (multiple equilibria):  $v_0 + v_1 - S < 3t$ 



If we also assume that the entrant is sufficiently efficient  $(v_1 - S \ge 2t)$ , then this regime never occurs.

## Market Equilibrium



Iso-consumer surplus curve Iso-social surplus curve



#### Investment

- We examine how investments relate to second stage subgame equilibria.
  - > Firm 0 (Incumbent) can invest in technology,  $\Delta_0$

 $v_0 = \bar{v} + \Delta_0$  (Upgrade)

$$\max_{\Delta_0} \pi_0(\Delta_0, \Delta_1, S) - C_0(\Delta_0)$$

- > Firm 1 (Entrant) can invest in technology, $\Delta_1$   $v_0 = \bar{v} + \Delta_1$  (Replace)  $\max_{\Delta_1} \pi_1(\Delta_0, \Delta_1, S) - C_1(\Delta_0)$
- Costs of investment are

$$C_0(\Delta_0) = \frac{\delta \Delta_0^2}{2}, C_1(\Delta_1) = \frac{\delta \Delta_1^2}{2}$$

# Subgame

- For simplicity, we assume that  $\bar{v} > 3t$
- If there is no investment ( $\Delta_0 = \Delta_1 = 0$ ),  $v_0 = v_1 = \bar{v}$ and regime (III) will transpire
- There are two possible regimes after Firm 0 has its investment choice.



## Subgame

 The final outcome depends on firm 1's investment choice. Next Proposition shows the equilibrium outcome of this game.

Proposition 2

In equilibrium, if  $\delta \le 1/3t$  or  $9t(3t\delta - 1)/(9t\delta - 1) < S$ ,  $\Delta_0^* + S > 3t$  and  $\Delta_1^* = 0$ Final outcome is regime I (Upgrade) if  $\delta > 1/3t$  and  $9t(3t\delta - 1)/(9t\delta - 1) > S$ ,  $\Delta_0^* + S < 3t$  and  $\Delta_1^* > 0$ Final outcome is regime III (Co-existence)

#### Conclusion

- Policy (competition, standardization) should be technology life cycle dependent
- Incumbent improving technology (upgrade) always makes consumer better-off
- Investment in installed base can reduce consumer surplus
- When technology is in infancy, entry deterrence (upgrade, switching cost) and persistence of single standard
- When technology matures, co-existence of new and old standards
- There will never be replacement in equilibrium (entrant never dominates)

## **Appendix:Dual Investment**

• There is a standard in place.



- Incumbent can invest in two things
  - 1. Increase standard inertia
    - Invest in installed base
    - Improve complementary technology
    - Increase switching cost
  - 2. Improve the standard (technology)

Entrant only invests to improve technology

# Appendix:Dual Investment

- We examine how investments relate to second stage subgame equilibria.
  - > Firm 0 (Incumbent) can invest in
    - 1. Technology improvement,  $\Delta_0$  $v_0 = \overline{v} + \Delta_0$ (Upgrade)
    - 2. Installed base = increase switching cost S

$$\max_{\Delta_0,S} \pi_0(\Delta_0, \Delta_1, S) - C_0(\Delta_0, S)$$

> Firm 1 (Entrant) invests in technology,  $\Delta_1$  $v_1 = \bar{v} + \Delta_1$  (Replace)

$$\max_{\Delta_1} \pi_1(\Delta_0, \Delta_1, S) - C_1(\Delta_1)$$

> Costs of investment are

$$C_0(\Delta_0, S) = \frac{\delta(\Delta_0 + S)^2}{2}, \qquad C_1(\Delta_1) = \frac{\delta \Delta_1^2}{2}$$

# Subgame

- For simplicity, we assume that  $\bar{v} > 3t$
- If there is no investment ( $\Delta_0 = \Delta_1 = S = 0$ ),  $v_0 = v_1 = \bar{v}$  and regime (III) will transpire
- There are two possible regimes after Firm 0 has its investment choice.



## Subgame

 The final outcome depends on firm 1's investment choice. Next Proposition shows the equilibrium outcome of this game.

Proposition 2

In equilibrium, if  $\delta \le 1/3t$ ,  $\Delta_0^* + S^* \equiv \Delta^* > 3t$  and  $\Delta_1^* = 0$ Final outcome is regime I (Upgrade) if  $\delta > 1/3t$ ,  $\Delta_0^* + S^* \equiv \Delta^* < 3t$  and  $\Delta_1^* > 0$ Final outcome is regime III (Co-existence)