Exchange Rate, Quality, and Export Prices

Mi Dai Yaqi Wang Jianwei Xu

December 2014

Mi Dai, Yaqi Wang, Jianwei Xu () Exchange Rate, Quality, and Export Prices

Introduction

- Data description
- Estimating response of export price to exchange rates
- Quality and response of export price to exchange rates
- Further discussions

- How prices respond to exchange rate movements is a classic topic in international economics.
- important to understand the price differences across countries.
- central to access the impact of exchange rates on real economic variables e.g. trade balance, unemployment
- A vast literature on exchange rate pass-through.

- Two reasons why exchange rate passthrough merits further investigation
- 1. There is still limited evidence on how the price of individual firms respond heterogeneously to exchange rates.
 - Recent trade and macro models with heterogeneous firms show that the price response to shocks could be different cross firms.
 - This heterogeneous response at firm level could have substantial impact on passthrough at an aggregate level.
- 2. which sources of firm heterogeneity matter for the response is still underexplored.
 - In particular, there is only limited evidence on how price responses to exchange rates depend on product quality.

Introduction

- We Investigate how export prices of firms respond to exchange rate shocks using micro-level data covering the universe of Chinese exporters during 2000-2006.
- The highly disaggregate nature of the data allows us to estimate the impacts of exchange rate changes at firm-product-country level.
- We find several facts:
- 1. responses of export prices(denominated in RMB) to exchange rate shocks are low
 - A 10% depreciation of the RMB is associated with a 0.6% increase in export price.
- 2. the elasticity increases with the income level of the destination country.
 - A 10% depreciation leads to 1% increase in export price for exports to high income countries.
 - on significant impacts on export prices to low income countries.

- What explains these facts?
- A possible explanation is quality
- If the prices of low quality goods respond less to exchange rates:
- the average response of export prices to exchange rates is low in China because China mainly exports low quality products
- price respnose to exchange rates are larger for exports to high-income countries because products exported to high-income countries are associated with higher quality.

- We empirically investigate the impact of quality on exchange rate pass-through.
- We infer product quality at the firm-product level using information on prices and quantiy (Khandewal et al.,2013).
- An increase of product quality by one standard deviation increases the elasticity of export prices to exchange rates by 2.51%.
- This conclusion is robust to alternative specifications, samples, and measurements of quality
- Quantitatively, the impact of quality is comparable to other firm-level characteristics, such as productivity and import intensity.

• Literature on exchange rate pass-through.

- earlier work at country level or sectoral level. (Campa and Goldberg,2005; Gaulier et al. 2008)
- Recent studies at firm-level: Berman et al. (2012); Chatterjee et al. (2013); Amiti et al. (2013)
- Quality and exchange rate passthrough: Auer and Chaney(2012); Chen and Juvenal(2013)
- Literature on quality and trade
 - quality as an important determinant of international trade flows: Schott(2004),Hallak (2006), Fieler (2011)
 - quality as an important dimension of firm heterogeneity:Manova and Zhang(2012); Crozet et al.(2012); Kugler and Verhoogen(2012)

Introduction

Data description

- Estimating response of export price to exchange rates
- Quality and response of export price to exchange rates
- Further discussions

- Main data set: Transaction trade data from General Administration of China Customs.
 - Covers the universe of exporters and importers in China during 2000-2006.
 - Detailed information on export\import value and quantity,by product(HS8), country of destination/origin, trade mode, unit, etc.
 - We work at HS6 level in order to have a consistent product classification over time.
- Supplement data: Annual Survey of Industrial Firms, 2000-2006.
 - Covers all State Owned Enterprises and non-SOE that are 'above scale".
 - Balance sheet information: output, wages, material costs etc.
 - Only used for robustness checks to control for marginal cost shocks.

	Obs	Mean	Std Dev	Min	Max	
A.Based on Cumstom Data						
<pre># products (HS6)</pre>	6,620,810	80	121.57	1	678	
# Destination Countries	6,620,810	13	13.86	1	68	
$\Delta \ln NER_{ct}$	6,620,810	0.01	0.06	-0.17	0.18	
$\Delta \ln p_{fpct}$	6,620,810	0.02	0.59	-2.04	2.12	
B.Based on Annual Industrial Survey of Manufacturing Firms					ns	
TFP	2,331,611	4.95	1.04	2.34	7.67	
Intermediate Import Ratio	2,716,886	0.03	0.09	0	0.57	
$\Delta \ln(Wage)$	2,711,261	2.71	0.6	1.14	4.57	
(log change of) import price	1,956,778	0.01	0.05	-0.16	0.23	

Image: A mathematical states and a mathem

э

- Introduction
- Data description
- Estimating response of export price to exchange rates
- Quality and response of export price to exchange rates
- Further discussions

$$\Delta \ln p_{\textit{fpct}} = lpha + eta \Delta \ln \textit{NER}_{\textit{ct}} + \mu_{\textit{pc}} + arphi_t + arepsilon_{\textit{fpct}}$$

- f: firm; p: product (HS6); c: country; t: year
- $\Delta \ln p_{fpct}$: log change of export unit value(in RMB)
- Δ In NER_{ct}: log change of nominal exchange rate (an increase in NER_{ct} implies an depreciation of the RMB).
- μ_{pc}: product-country fixed effects
- φ_t : year effects
- *E*_{fpct} : error term

(1)

	(1)	(2)	(3)	(4)	(5)
$\Delta \ln p_{fpct}$	Whole	Whole	High Inc	Middle Inc	Low Inc
$\Delta \ln NER_{ct}$	0.064***	0.071***	0.102***	0.018**	0.013
	(12.31)	(7.94)	(14.24)	(1.97)	(0.51)
Fixed effects					
μ_{pc}	Y	Ν	Y	Y	Y
μ_{fpc}	Ν	Y	Ν	N	Ν
Year	Y	Y	Y	Y	Y
R2	0.028	0.534	0.016	0.06	0.096
#Obs	6,620,810	6,620,810	4,921,105	1,330,424	369,281

э

- Export price response to exchange rates is low.
 - Berman et al. (2012), 0.13 for French exporters.
 - Amiti et al.(2013), 0.2 for Belgium exporters.
- Response is larger for exports to high-income countries.
 - Consistent with Frankel et al.(2012).

- Introduction
- Data description
- Estimating response of export price to exchange rates
- Quality and response of export price to exchange rates
- Further discussions

- Recent theoretical development have proposed several mechanisms linking quality and exchange rate pass-through.
- models with heterogeneous markups: Berman et al. (2012); Auer and Chaney (2014)
- Distribution costs: Chen and Juvenal(2013)

 $\Delta \ln p_{fpct} = \alpha + \beta \Delta \ln NER_{ct} + \gamma \Delta \ln NER_{ct} \times Q_{fpc} + \delta Z_{ft} + \mu_{pc} + \varphi_t + \varepsilon_{fpct}$ (1)

- $\Delta \ln p_{fpct}$: log change of export price(in RMB)
- $\Delta \ln NER_{ct}$: log change of nominal exchange rate.
- Q_{fpc} :measures of quality
- Z_{ft} : firm-level control variables(discussed later)
- μ_{pc} : product-country fixed effects
- φ_t : year effects
- ε_{fpct} : error term

- Quality is generally unobservable and needs to be inferred from data.
- We infer quality at firm-product level following the methodology in Khandelwal et al.(2013).

$$lnx_{fhct} = \sigma \ln p_{fhct} + \phi_h + \phi_{ct} + \varepsilon_{fhct}$$
(2)

- Inx_{fhct}: log export quantity
- In *p_{fhct}*: log export price
- ϕ_h : HS6 product fixed effects
- ϕ_{ct} : country-year fixed effects
- ε_{fhct} : error term

- Impute some value of σ and estimate Equation (2) by OLS and take residuals: $\hat{\varepsilon}_{\textit{fhct}}$
- $\hat{\varepsilon}_{fhct}$ serves as a measure of quality.
- Intuition: conditional on price, varieties with higher sales have higher quality(within the same product category).
- In robustness checks we also use other quality measures.

Benchmark results

	(1)	(2)	(3)	(4)	(5)
$\Delta \ln p_{fpct}$	$\sigma({\sf median})$	$\sigma(mean)$	$\sigma = 10$	50%	75%
$\Delta \ln NER_{ct}$	0.062***	0.062***	0.063***	0.057***	0.058**
	(11.46)	(11.65)	(12)	(7.93)	(10.13)
$\Delta \ln NER_{ct} * Q_{fpc}$	0.003**	0.003***	0.002***		
	(2.03)	(3.65)	(2.59)		
$\Delta \ln NER_{ct} * HQ_{fpc}$				0.015*	0.026**
				(1.72)	(2.81)
Fixed effects					
μ_{pc}	Y	Y	Y	Y	Y
Year	Y	Y	Y	Y	Y
R2	0.028	0.028	0.028	0.028	0.028
#Obs	6,573,958	6,573,958	6,573,958	6,573,958	6,573,95

э

- The exchange rate elasticity of export price would increase by 2.51% (=0.003*8.35) if quality increases by a standard deviation.
- Firms with low quality increase their price 0.57% to 0.58% following a 10% depreciation. High quality firms have a stronger reaction of 0.7% to 0.9%.

- Additional Controls
- Alternative measures of quality

- Additional Controls
- Control for changes in marginal costs
 - wages
 - price of imported intermediate inputs
- Controlling for these variables requires merging the customs data with the balance sheet data.
 - the merged sample accounts for 35% of total export value in the customs data.

Robustness Checks

	(1)	(2)	(3)
Depdent Var.: $\Delta \ln p_{fpct}$	Add Wage	Add Import Price	Add Both
$\Delta \ln NER_{ct}$	0	-0.011	-0.009
	(0.03)	(-0.80)	(-0.61)
$\Delta \ln \textit{NER}_{ct}$ *Quality	0.032***	0.038***	0.031***
	(10.92)	(13.45)	(10.31)
$\Delta \ln(Wage)$	0.004***		0.005***
	(3.16)		(4.27)
$\Delta \ln(ext{import price})$		0.475***	0.480***
		(42.63)	(38.09)
Fixed effects			
μ_{pc}	Y	Y	Y
Year	Y	Y	Y
R2	0.0872	0.0864	0.0933
#Obs	1015885	1017491	899590

- Alternative measures of quality
- Intuition: within the same product, varieties with higher price have higher quality.
- Auer and Chaney (2009)

$$Q_{_{\mathit{fpct}}} = rac{p_{\mathit{fpct}} - \overline{p}_{\mathit{pct}}}{\mathit{sd}(p_{\mathit{fpct}})}$$

• Manova and Zhang (2012)

$$Q_{_{fpct}} = \ln p_{fpct} - \ln \overline{p}_{pct}$$

	(1)	(2)
Depdent Var.: $\Delta \ln p_{fpct}$	Quality:A&C	Quality:Manova
$\Delta \ln NER_{ct}$	0.066***	0.075***
	(12.55)	(12.93)
$\Delta \ln \textit{NER}_{ct}$ *Quality	0.066***	0.075***
	(12.55)	(12.93)
Fixed effects		
μ_{pc}	Y	Y
Year	Y	Y
R2	0.028	0.028
#Obs	6620786	6620810

э.

Image: A match a ma

- Introduction
- Data description
- Estimating response of export price to exchange rates
- Quality and response of export price to exchange rates
- Further discussions

- The role of scope for quality differentiation
- Since quality is not directly observable, one may argue that our estimated quality might reflect something other than quality.
- To address this, we exploit the variation across products in terms of the scope for quality differentiation.
- We use the Rauch(1999) classification: differentiated v.s. homogeneous.
- If quality is at work, we expect the coefficient before the interaction term to be larger for products with higher scope for quality differentiation.

	(1)	(2)
Depdent Var.: $\Delta \ln p_{fpct}$	Homogeneous	Differentiated
$\Delta \ln NER_{ct}$	0.048***	0.040***
	(3.24)	(6.45)
$\Delta \ln \textit{NER}_{ct}$ *Quality	-0.007	0.040***
	(-1.23)	(6.45)
Fixed effects		
μ_{pc}	Y	Y
Year	Y	Y
R2	0.0614	0.0256
#Obs	568616	5139309

-

Image: A mathematical states and a mathem

- Quantative implications
- How import is quality compared with other determinants of passthrough?
- Berman et al.(2012) argues that higher productivity firms have lower passthrough.
- Amiti et al.(2014) argues that firms with higher import intensity have lower passthrough.
- Is quality still important after controlling for these channels?

Further Discussion

	(1)	(2)	(3)
Depdent Var.: $\Delta \ln p_{fpct}$	Add TFP	Add Import Ratio	Add Both
$\Delta \ln NER_{ct}$	-0.014	0.071	0.047
	(-1.11)	(1.58)	(1.04)
$\Delta \ln NER_{ct}^*$ Quality	0.038***	0.035***	0.034***
	(14.26)	(12.4)	(12.01)
$\Delta \ln NER_{ct}$ *TFP		-0.014	-0.012
		(-1.59)	(-1.28)
$\Delta \ln NER_{ct}$ *Import Ratio	0.395***		0.405***
-	(4.49)		(4.36)
Fixed effects			
Country-Product	Y	Y	Y
Year	Y	Y	Y
R2	0.0789	0.0873	0.0873
Observations	1227977	1055361	1055361

32 / 33

æ

- Estimate responses of export prices to exchange rates using firm-product level data for China during 2000-2006.
- A low response of export prices to exchange rates.
- Higher response for exports to high-income countries.
- Exchange rate elasticity of export prices increases with constructed measures of quality.
- The low response of export prices to exchange rates in China might be explained by the low quality of Chinese products.