Greenhouse-Gas Emission Controls and International Carbon Leakage through Trade Liberalization

Jota Ishikawa (Hitotsubashi Univ) and

Toshihiro Okubo (Keio Univ)

Introduction

- Globalisation promotes free trade and high capital/labour mobility (footloose workers and firms)
- Recent environmental issues are global (trans boundary)
- Relationship between globalisation and global warming (GHG emissions) are controversial issue (Antweiler et al., 2001; Copeland and Taylor, 1995)
- Issue: Pollution Haven (carbon leakage by firm relocation) Sectoral difference (Ederington et al. 2005; Cole et al, 2010)

This paper

- This paper studies NEG model and emission policies
 - Impact of emission policies on location choice
 - Trade liberalisation impact on pollution haven, or carbon leakage by firm relocation
- Three sectors FC model
 - Two different manufacturing sectors: pollution intensive sector (D-sector) and less intensive sector (C-sector)
- Three emission policies
 - Emission tax
 - Emission quota
 - Emission standard
- Unilateral environmental policy
 - Only North take policies
- For simplicity (focus on location issue)
 - No North-South game structure

Main findings

- Pollution haven occurs under emission policies
- Trade liberalisation increases pollution haven
- Quota occurs spatial sorting
 - D-sector moves to South and C-sector moves to North
 - Less carbon leakage (polution haven) than other policies
- Dispersion force is larger in tax. Tax is the worst with small trade costs: All firms move to South.
 Complete carbon leakage.

Basic model

- Three sectors (A sector + Two manufacturing sectors, i.e. C-sector and D-sector)
- A sector (CRS, PC without trade costs)
- D and C sectors (monopolistic comp with trade costs and with emissions)
 - Dixit-Stiglitz type of Monopolistic comp
 - Iceberg type trade costs
 - Sectoral difference: Emission intensities: D-sector: $\gamma>1$ unit of GHG per production, C-sector: 1 unit of GHGs
- Different market size (North is bigger than South)

Standard FC Model

Utility func

$$\begin{split} U &= \mu \ln C + \mu \ln D + A - f(\chi + \chi^*), \\ C &\equiv \left(n c^{1 - 1/\sigma} + n^* c_S^{1 - 1/\sigma} \right)^{1/(l - 1/\sigma)}, \quad D \equiv \left(m d^{1 - 1/\sigma} + m^* d_S^{1 - 1/\sigma} \right)^{1/(l - 1/\sigma)}, \quad 1 > \mu > 0, \quad \sigma > 1 \end{split}$$

Demand func

$$c = \frac{\mu p^{-\sigma} s}{n p^{1-\sigma} + n^* p^{*1-\sigma}}$$

• Profit func:
$$\pi_C = \left(\frac{s}{\Delta_C}s + \frac{\phi(1-s)}{\Delta_C^*}\right)\frac{\mu}{\sigma} \text{ and } \pi_C^* = \left(\frac{\phi s}{\Delta_C} + \frac{1-s}{\Delta_C^*}\right)\frac{\mu}{\sigma}$$

Emissions:

$$\chi \equiv n(x+x^*) + m\gamma(y+y^*) = n\beta \left(\frac{s}{\Delta_C} + \phi \frac{1-s}{\Delta_C^*}\right) + m\beta\gamma \left(\frac{s}{\Delta_D} + \phi \frac{1-s}{\Delta_D^*}\right)$$

$$\chi^* \equiv n^* \beta \left(\phi \frac{s}{\Delta_C} + \frac{1-s}{\Delta_C^*} \right) + m^* \beta \gamma \left(\phi \frac{s}{\Delta_D} + \frac{1-s}{\Delta_D^*} \right),$$

Eq

- Profit eq:
$$\pi_C - \pi_C^* = \frac{\mu(1-\phi)}{\sigma} \left(\frac{s}{\Delta_C} - \frac{1-s}{\Delta_C^*} \right) = 0.$$

- Firm share
$$n = m = \frac{1}{2} + \left(\frac{1+\phi}{1-\phi}\right)(s-\frac{1}{2})$$

- Emissions
$$\chi_0 = \frac{(1+\gamma)(s-(1-s)\phi)}{1-\phi}, \quad \chi_0^* = \frac{(1+\gamma)(1-s-s\phi)}{1-\phi} \text{ and } \chi_0^W = 1+\gamma.$$

No emission policies

- No emission policies
- Never affects cost (nor impact on prices)
- Eq is equivalent to the standard model
 - Gradual agglomeration in both sectors
 - All firms in both sectors make full agglomeration in North
- Gradually increasing global emissions

Emission Tax

Tax

- Tax (Only North), t (per-unit emission tax)
 - C-sector in North $p = \frac{1+t}{1-1/\sigma}$; $p^* = \frac{\tau(1+t)}{1-1/\sigma}$.

$$p = \frac{1+t}{1-1/\sigma}; \quad p^* = \frac{\tau(1+t)}{1-1/\sigma}$$

- D-sector in North $p = \frac{1+\gamma t}{1-1/\sigma}$; $p^* = \frac{\tau(1+\gamma t)}{1-1/\sigma}$

$$p = \frac{1 + \gamma t}{1 - 1/\sigma}; \quad p^* = \frac{\tau(1 + \gamma t)}{1 - 1/\sigma}$$

Profit equalisation

$$\pi_C - \pi_C^* = \frac{\mu}{\sigma} \left(\frac{s}{\Delta_C} + \frac{\phi(1-s)}{\Delta_C^*} \right) (1+t)^{1-\sigma} - \frac{\mu}{\sigma} \left(\phi \frac{s}{\Delta_C} + \frac{1-s}{\Delta_C^*} \right) = 0 \quad \text{a}$$

$$\pi_D - \pi_D^* = \frac{\mu}{\sigma} \left(\frac{s}{\Delta_D} + \frac{\phi(1-s)}{\Delta_D^*} \right) (1+\gamma t)^{1-\sigma} - \frac{\mu}{\sigma} \left(\phi \frac{s}{\Delta_D} + \frac{1-s}{\Delta_D^*} \right) = 0.$$

Eq

$$n = \frac{(1+t)^{1-\sigma}(s+\phi^2-s\phi^2)-\phi}{(1-\phi(1+t)^{1-\sigma})((1+t)^{1-\sigma}-\phi)} \quad \text{and} \quad m = \frac{(1+\gamma t)^{1-\sigma}(s+\phi^2-s\phi^2)-\phi}{(1-\phi(1+\gamma t)^{1-\sigma})((1+\gamma t)^{1-\sigma}-\phi)}$$

Tax (results)

- Full agglomeration in North with intermediate trade costs
- Full agglomeration in South with small trade costs
- D-sector is more likely to make agglomeration in South and less likely to make agglomeration in North.

Figure 1: Locational Equilibrium (Low Tax rates)

Figure 2: Locational Equilibrium (High tax rates)

Figure 3: Global Emissions (tax)

Emission quota

Quota

- Quota (endogenously determined, q) in North
 - Given total Northern emission with quota market.
- C-sector and D-sector

$$p = \frac{1+q}{1-1/\sigma} \qquad p = \frac{1+\gamma q}{1-1/\sigma}$$

Eq: profit eq plus "Quota constraint"

$$\begin{split} n \left(\frac{s}{\Delta_C} + \frac{\phi(1-s)}{\Delta_C^*} \right) & (1+q)^{-\sigma} + \gamma m \left(\frac{s}{\Delta_D} + \frac{\phi(1-s)}{\Delta_D^*} \right) (1+\gamma q)^{-\sigma} - \overline{\chi} = 0 \;, \\ \pi_C - \pi_C^* &= \frac{\mu}{\sigma} \left(\frac{s}{\Delta_C} + \frac{\phi(1-s)}{\Delta_C^*} \right) (1+q)^{1-\sigma} - \frac{\mu}{\sigma} \left(\phi \frac{s}{\Delta_C} + \frac{1-s}{\Delta_C^*} \right) = 0 \;, \\ \pi_D - \pi_D^* &= \frac{\mu}{\sigma} \left(\frac{s}{\Delta_D} + \frac{\phi(1-s)}{\Delta_D^*} \right) (1+\gamma q)^{1-\sigma} - \frac{\mu}{\sigma} \left(\phi \frac{s}{\Delta_D} + \frac{1-s}{\Delta_D^*} \right) = 0 \;. \end{split}$$

Figure 4: Locational Equilibrium (Quota)

Figure 5: Quota prices

Emission standard

Emission standard

- North sets a maximum unit of emissions
- Ass: Only D-sector is not satisfactory.
- D-firms are required to pay abatement costs (b>1) so as to satisfy the standard

(21)
$$\pi_c - \pi_c^* = \frac{\mu}{\sigma} \left(\frac{s}{\Delta_c} + \frac{\phi(1-s)}{\Delta_c^*} \right) - \frac{\mu}{\sigma} \left(\phi \frac{s}{\Delta_c} + \frac{1-s}{\Delta_c^*} \right) = 0$$
,

(22)
$$\pi_D - \pi_D^* = \frac{\mu}{\sigma} \left(\frac{s}{\Delta_D} + \frac{\phi(1-s)}{\Delta_D^*} \right) b^{1-\sigma} - \frac{\mu}{\sigma} \left(\phi \frac{s}{\Delta_D} + \frac{1-s}{\Delta_D^*} \right) = 0$$

Figure 7: Locational Equilibrium (Emission standard)

Figure 8: Global Emissions (emission standard)

Welfare implications

Social welfare function

$$V \equiv Y''' + s \frac{\mu}{\sigma - 1} (\ln \Delta_C + \ln \Delta_D) + (1 - s) \frac{\mu}{\sigma - 1} (\ln \Delta_C^* + \ln \Delta_D^*) - f(\chi + \chi^*).$$

- FC model without any policies: "socially optimal" (Baldwin et al 2003)
- Our model has two twists: one is emission policy (tax, quota and standard) (which affects location patterns) and the other is global emissions
- Difficulty: unsolvable outcomes (e.g. quota prices) and case by case (many variables, emission intensities, disutility of emissions, etc).

Location patterns

- Standard FC model: bigger market should have more firms
- More firms in North is better.
 - Quota and Standard are better
 - All in South in case of tax

Global emissions

- Global emissions should be lower
- Pollution haven should be minimised
- North (under regulations) should have more firms
 - With small trade costs
 - Quota is better (All C-firms plus some D-firms)
 - Standard (All C-firms)
 - Tax (No firms in North)

Conclusions

- Environmental policies with free relocation results in carbon leakage
- Trade liberalisation increases carbon leakage
- Different policies affect different location patterns. Different emission levels
- Quota softens pollution haven. In this sense, quota is better policy.