An Eaton-Kortum model of trade and growth

Takumi Naito

Waseda U

(日) (同) (三) (三)

Revival of Ricardian trade model

Dornbusch, Fischer, and Samuelson (1977, AER):

- two-country, continuum-good Ricardian model
- extensive margins of trade (numbers or fractions of traded varieties)

Eaton and Kortum (2002, EMA):

- extend DFS to $N(\geq 2)$ countries
- examine effects of various forms of trade liberalization on EM under cross-country asymmetries (unlike Melitz (2003, EMA))

static formulation overlooks:

```
(trade cost \downarrow \rightarrow) growth \uparrow \rightarrow EM of exports \uparrow
```

e.g., Hummels and Klenow (2005), Broda and Weinstein (2006), Kehoe and Ruhl (2009)

Why not extend Eaton-Kortum dynamically?

Extending Eaton-Kortum dynamically

Acemoglu and Ventura (2002, QJE):

- multi-country AK model: capital \rightarrow tradable intermediate \rightarrow final
- growth $\uparrow \rightarrow$ relative rental (\propto ToT) $\downarrow \rightarrow$ growth $\downarrow \rightarrow$ convergence
- intermediates are differentiated \rightarrow trade pattern is fixed, not evolving Naito (2012, JIE):
 - DFS × Acemoglu-Ventura
 - ullet unilateral trade liberalization ightarrow growth, welfare, & extensive margins

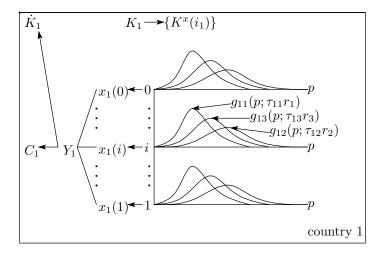
this paper:

- Eaton-Kortum × Acemoglu-Ventura
- various forms of liberalization → growth, welfare, & extensive margins (incl. preferential trade agreement)

Main results in three-country case

analytical results:

() a permanent fall in any trade cost raises the balanced growth rate


- \because τ_{12} (trade cost for country 1 to buy each variety from country 2) \downarrow
- \rightarrow 1's growth potential \uparrow
- \rightarrow 1's rental rates relative to 2 & 3 \downarrow
- \rightarrow 2 & 3's ToT against 1 \uparrow
- trade liberalization increases the liberalizing countries' long-run fractions of exported varieties to all destinations
 - $\because \tau_{12} \downarrow$
 - \rightarrow 1's rental rates relative to 2 & 3 \downarrow
 - \rightarrow it's cheaper for 3 (or 2) to import from 1 than from 2 (or 3)

numerical results:

 $\underline{\mathsf{long-run effects}} \neq \underline{\mathsf{short-run effects (static Eaton-Kortum)}}$

balanced growth market clearing

Overview (N = 3)

э

< 回 ト < 三 ト < 三 ト

Households

budget constraint:

$$p_{jt}^{Y}(C_{jt}+\dot{K}_{jt})=r_{jt}K_{jt};\dot{K}_{jt}\equiv dK_{jt}/dt.$$
(1)

w/ log utility, Euler equation:

$$\dot{K}_{jt}/K_{jt} = \dot{C}_{jt}/C_{jt} = r_{jt}/p_{jt}^{Y} - \rho_{j} \forall t \in [0, \infty).$$

$$(2)$$

イロン イヨン イヨン イヨン

Final good firms

unit cost function (= intermediate good price index):

$$q_j(\{p_j(i)\}_{i=0}^1) = B_j^{-1}(\int_0^1 p_j(i)^{1-\sigma_j} di)^{1/(1-\sigma_j)}; \sigma_j > 1.$$
(3)

profit maximization \Rightarrow zero profit:

$$p_j^Y = q_j. \tag{4}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Intermediate good firms: price distributions

 A_j : random variable for country j's unit capital requirement, i.i.d. across i capital productivity $1/A_j$ follows a Fréchet distribution:

$$F_j(z) \equiv \Pr(1/A_j \leq z) \equiv \exp(-b_j z^{- heta}); b_j > 0, heta > 1.$$

distrib. of unit cost $P_{nj} = \tau_{nj}r_jA_j$ & demand price $P_n = \min\{\{P_{nj}\}_{j=1}^N\}$:

$$\begin{aligned} G_{nj}(p) &\equiv \Pr(P_{nj} \le p) = 1 - \exp(-p^{\theta} b_j (\tau_{nj} r_j)^{-\theta}), \\ G_n(p) &\equiv \Pr(P_n \le p) = 1 - \exp(-p^{\theta} \Phi_n); \Phi_n \equiv \sum_{j=1}^N b_j (\tau_{nj} r_j)^{-\theta}. \end{aligned}$$

properties of $G_{nj}(p)$ and $G_n(p)$:

•
$$b_j \uparrow, \tau_{nj}r_j \downarrow \rightarrow G_{nj}(p) \uparrow$$
: P_{nj} tends to be lower
• $\theta \uparrow \rightarrow 1/A_j$ is less variable $\rightarrow \tau_{nj}r_j$ matters relatively more
• $G_n(p) \ge G_{nn}(p)$: trade makes lower P_n more likely

Three important properties (Eaton-Kortum)

probability that n buys a variety from j is:

$$\pi_{nj}(\{\tau_{nk}r_k\}_{k=1}^N) \equiv b_j(\tau_{nj}r_j)^{-\theta} / [\underbrace{\sum_{k=1}^N b_k(\tau_{nk}r_k)^{-\theta}}_{=\Phi_n}].$$
(6)

 conditional distribution of P_{nj}, given that n buys a variety from j, is the same as G_n(p)∀j

$$T: \Pr(P_{nj} \leq \min\{\{P_{nk}\}_{k \neq j}\}, P_{nj} \leq p) = \pi_{nj} G_n(p).$$

intermediate good price index function (3) for *n* is rewritten as:

$$Q_{n}(\{\tau_{nj}r_{j}\}_{j=1}^{N}) \equiv c_{n}[\underbrace{\sum_{j=1}^{N} b_{j}(\tau_{nj}r_{j})^{-\theta}}_{=\Phi_{n}}]^{-1/\theta};$$
(7)
$$c_{n} \equiv B_{n}^{-1}\Gamma(1+(1-\sigma_{n})/\theta)^{1/(1-\sigma_{n})}.$$

Implications of three properties

- π_{nj} : fraction of varieties *n* buys from *j*
 - \therefore probability π_{nj} applies to a large number of varieties in [0,1]
- π_{nj} is homogeneous of degree zero; Q_n is homogeneous of degree one, in $\{\tau_{nj}r_j\}_{j=1}^N$
- π_{nj} : cost share of varieties *n* buys from *j*

$$: \int_{I_{nj}} \underbrace{p_n(i_j) x_n(i_j)}_{E[\cdot|\cdot] = Q_n Y_n} di_j / (Q_n Y_n) = \pi_{nj} (\{\tau_{nk} r_k\}_{k=1}^N).$$
(13)

 \Rightarrow all adjustments in the cost shares occur at the extensive margins

Dynamic system

dynamic system ($r_N \equiv 1, \kappa_j \equiv K_j / K_N$):

$$\begin{aligned} \dot{\kappa}_{j} &= \kappa_{j} (\gamma_{j} (\{\tau_{jn} r_{n} / r_{j}\}_{n=1}^{N}) - \gamma_{N} (\{\tau_{Nn} r_{n}\}_{n=1}^{N})), j = 1, ..., N-1; \quad (14) \\ \gamma_{j}(\cdot) &\equiv \dot{C}_{j} / C_{j} = 1 / Q_{j} (\{\tau_{jn} r_{n} / r_{j}\}_{n=1}^{N}) - \rho_{j}, \\ \kappa_{j} &= \sum_{n=1}^{N} \pi_{nj} (\{\tau_{nk} r_{k} / r_{n}\}_{k=1}^{N}) \kappa_{n} / (r_{j} / r_{n}), j = 1, ..., N-1. \end{aligned}$$

(14): growth rate of κ_j = growth rate in j - growth rate in N(15): capital market-clearing condition in j relative to N(= labor market-clearing condition in Eaton and Kortum (2002))

ceteris paribus effects:

•
$$\tau_{jn} \downarrow, r_j/r_n \uparrow \rightarrow \gamma_j \uparrow$$

• $\tau_{nj} \downarrow, r_n/r_j \uparrow \rightarrow \pi_{nj} \uparrow$
• $\tau_{nk} \downarrow, r_n/r_k \uparrow \forall k \neq j \rightarrow \pi_{nj} \downarrow$

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

Three-country model

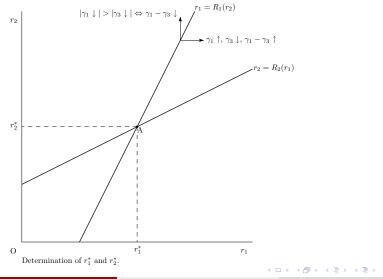
$$\dot{\kappa}_1 = \kappa_1(\gamma_1(1, \tau_{12}r_2/r_1, \tau_{13}/r_1) - \gamma_3(\tau_{31}r_1, \tau_{32}r_2, 1)), \tag{19}$$

$$\dot{\kappa}_2 = \kappa_2(\gamma_2(\tau_{21}r_1/r_2, 1, \tau_{23}/r_2) - \gamma_3(\tau_{31}r_1, \tau_{32}r_2, 1)),$$
(20)

$$\kappa_{1} = \pi_{11}(1, \tau_{12}r_{2}/r_{1}, \tau_{13}/r_{1})\kappa_{1} + \pi_{21}(\tau_{21}r_{1}/r_{2}, 1, \tau_{23}/r_{2})\kappa_{2}/(r_{1}/r_{2}) + \pi_{31}(\tau_{31}r_{1}, \tau_{32}r_{2}, 1)/r_{1},$$
(21)

$$\kappa_{2} = \pi_{12}(1, \tau_{12}r_{2}/r_{1}, \tau_{13}/r_{1})\kappa_{1}/(r_{2}/r_{1}) + \pi_{22}(\tau_{21}r_{1}/r_{2}, 1, \tau_{23}/r_{2})\kappa_{2} + \pi_{32}(\tau_{31}r_{1}, \tau_{32}r_{2}, 1)/r_{2}.$$
(22)

w/ κ_{1t} , κ_{2t} predetermined, (21), (22): r_{1t} , $r_{2t} \rightarrow$ (19), (20): $\dot{\kappa}_{1t}$, $\dot{\kappa}_{2t}$ BGP:


$$0 = \gamma_{1}(1, \tau_{12}r_{2}^{*}/r_{1}^{*}, \tau_{13}/r_{1}^{*}) - \gamma_{3}(\tau_{31}r_{1}^{*}, \tau_{32}r_{2}^{*}, 1) \Leftrightarrow r_{1}^{*} = R_{1}(r_{2}^{*}), \quad (23)$$

$$0 = \gamma_{2}(\tau_{21}r_{1}^{*}/r_{2}^{*}, 1, \tau_{23}/r_{2}^{*}) - \gamma_{3}(\tau_{31}r_{1}^{*}, \tau_{32}r_{2}^{*}, 1) \Leftrightarrow r_{2}^{*} = R_{2}(r_{1}^{*}). \quad (24)$$

and then, (21), (22): $\kappa_{1}^{*}, \kappa_{2}^{*}$
Takumi Naito (Waseda U)
An Eaton-Kortum model of trade and growth

$$12/2^{*}$$

Rental rates at the BGP

٠

Takumi Naito (Waseda U)

Transitional dynamics

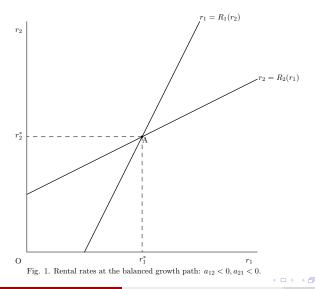
....

....

(19), (20), (21), (22):

$$\dot{\kappa}_1/\kappa_1 = d\gamma_1 - d\gamma_3 = \underbrace{a_{11}}_{>0} dr_1/r_1 + a_{12}dr_2/r_2,$$
 (27')

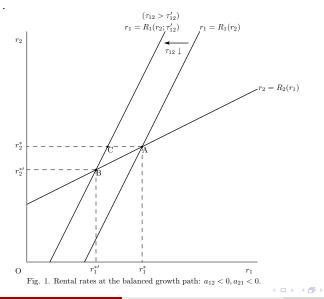
$$\dot{\kappa}_2/\kappa_2 = d\gamma_2 - d\gamma_3 = a_{21}dr_1/r_1 + \underbrace{a_{22}}_{>0}dr_2/r_2,$$
 (28')


$$dr_{1}/r_{1} = (r_{1}\kappa_{1}/\underbrace{c}_{>0})\underbrace{e_{11}}_{<0}d\kappa_{1}/\kappa_{1} + (r_{2}\kappa_{2}/c)e_{12}d\kappa_{2}/\kappa_{2}, \quad (29)$$

$$dr_2/r_2 = (r_1\kappa_1/c)e_{21}d\kappa_1/\kappa_1 + (r_2\kappa_2/c)\underbrace{e_{22}}_{<0}d\kappa_2/\kappa_2.$$
(30)

e.g.,
$$\kappa_{10} < \kappa_1^*, \kappa_{20} < \kappa_2^*$$

 $\rightarrow r_{10} > r_1^*, r_{20} > r_2^*(\because e_{11} < 0, e_{22} < 0)$
 $\rightarrow \gamma_{10} - \gamma_{30} > 0, \gamma_{20} - \gamma_{30} > 0(\because a_{11} > 0, a_{22} > 0)$
 $\rightarrow \kappa_{1t} \uparrow, \kappa_{2t} \uparrow, r_{1t} \downarrow, r_{2t} \downarrow$
 \therefore BGP is locally stable iff these "own effects" outweigh "cross effects" γ_{30}


Changes in rental rates at the BGP

٠

- ∢ ≣ →

Changes in rental rates at the BGP

Balanced growth rate

Proposition 2

For all j, $n = 1, 2, 3, n \neq j$, a permanent fall in τ_{jn} raises the balanced growth rate.

intuition:

$$\begin{array}{l} \tau_{12} \downarrow \\ \rightarrow \gamma_1 \uparrow \\ \rightarrow r_1 \downarrow, r_1/r_2 \downarrow: 3 \& 2's \text{ ToT against } 1 \uparrow \\ \rightarrow \gamma_3 \uparrow, \gamma_2 \uparrow \end{array}$$

3

소리가 소문가 소문가 소문가 ...

ヘロト 人間ト 人口ト 人口ト

Unilateral trade liberalization

Proposition 3

A permanent fall in τ_{12} increases π_{12}^*, π_{21}^* , and π_{31}^* , whereas it decreases π_{13}^* .

intuitions:

•
$$\tau_{12} \downarrow \rightarrow \pi_{12} \uparrow, \pi_{13} \downarrow$$

• $\tau_{12} \downarrow \rightarrow r_1 \downarrow, r_1/r_2 \downarrow \rightarrow \pi_{21} \uparrow, \pi_{31} \uparrow$

Bilateral trade liberalization

Proposition 4

Permanent falls in τ_{12} and τ_{21} , with r_1^*/r_2^* unchanged, increase $\pi_{12}^*, \pi_{21}^*, \pi_{31}^*$, and π_{32}^* , whereas they decrease $\pi_{11}^*, \pi_{13}^*, \pi_{22}^*, \pi_{23}^*$, and π_{33}^* .

intuitions:

•
$$au_{12} \downarrow \rightarrow |\pi_{12} \uparrow| > |\pi_{13} \downarrow| \rightarrow \pi_{11} \downarrow$$

•
$$au_{21} \downarrow \rightarrow |\pi_{21} \uparrow| > |\pi_{23} \downarrow| \rightarrow \pi_{22} \downarrow$$

• $au_{12} \downarrow, au_{21} \downarrow \rightarrow \textbf{r}_1 \downarrow, au_2 \downarrow \rightarrow \pi_{31} \uparrow, au_{32} \uparrow \rightarrow \pi_{33} \downarrow$

Benchmark case

		unilateral		bilateral	
	old BGP	short-run	long-run	short-run	long-run
τ_{12}	2	1.9	1.9	1.9	1.9
τ_{21}	2	2	2	1.9	1.9
<i>r</i> ₁	1.	0.993982	0.982479	<u>1.00271</u>	0.98186
<i>r</i> ₂	1.	1.00862	1.	<u>1.00271</u>	<u>0.98186</u>
κ_1	1.	1.	1.07327	1.	1.13672
κ_2	1.	1.	1.05446	1.	1.13672
γ_1	0.0681566	0.0684447	0.0683163	0.0686664	0.0684871
γ_2	0.0681566	0.0683645	0.0683163	0.0686664	0.0684871
γ_3	0.0681566	0.0681356	<u>0.0683163</u>	<u>0.0681091</u>	<u>0.0684871</u>
π_{11}	0.8	0.792208	0.795667	0.78628	0.791068
π_{12}	0.1	0.110543	0.110012	0.114635	0.115333
π_{13}	0.1	0.097249	0.0943214	0.099085	0.0935993
π_{21}	0.1	0.103747	0.104875	0.114635	0.115333
π_{22}	0.8	0.794367	0.795667	0.78628	0.791068
π_{23}	0.1	<u>0.101886</u>	<u>0.0994583</u>	0.099085	0.0935993
π_{31}	0.1	0.1019	0.104875	0.0993531	<u>0.104466</u>
π_{32}	0.1	0.0975277	0.0994583	0.0993531	<u>0.104466</u>
π_{33}	0.8	<u>0.800572</u>	<u>0.795667</u>	<u>0.801294</u>	<u>0.791068</u>
U_1	-25.2097		-24.5479		-24.0169
U_2	-25.2097		-24.7112		-24.0169
U_3	-25.2097		-25.1823		-25.1627

Table: $\tau_{12} = \tau_{13} = \tau_{21} = \tau_{23} = \tau_{31} = \tau_{32} = 2, b_1 = b_2 = b_3 = 1$

Takumi Naito (Waseda U)

Calibratad case: CJK (j=1), NAFTA (j=2), EU (j=3)

		unilateral		bilateral	
	old BGP	short-run	long-run	short-run	long-run
τ_{12}	2.95638	2.85638	2.85638	2.85638	2.85638
τ_{21}	2.91636	2.91636	2.91636	2.84512	2.84512
<i>r</i> ₁	2.06116	2.05221	2.04319	2.05931	2.04572
r ₂	2.17016	2.18396	2.17361	<u>2.1753</u>	2.1539
κ_1	1.12636	1.12636	1.15914	1.12636	1.17587
κ2	0.733492	0.733492	0.756822	0.733492	0.782727
γ_1	0.0211024	0.0211283	0.0211236	0.0211424	0.0211393
γ_2	0.0211024	0.0211307	0.0211236	0.0211586	0.0211393
γ_3	0.0211024	0.0211015	0.0211236	<u>0.0211</u>	<u>0.0211393</u>
π_{11}	0.940682	0.938911	0.939228	0.937942	0.938159
π_{12}	0.0306209	0.0328175	0.0328628	0.0335221	0.0338598
π_{13}	0.0286966	0.0282713	0.0279095	0.0285361	0.0279814
π_{21}	0.044265	0.0456135	0.0455893	0.0479459	0.0475459
π_{22}	0.923504	0.921604	0.922076	0.919726	0.921026
π_{23}	0.032231	0.0327823	0.0323348	<u>0.0323278</u>	<u>0.0314277</u>
π_{31}	0.0672513	0.0681395	0.0689342	0.0674447	0.0686008
π_{32}	0.0506761	0.0497249	0.0503573	<u>0.0503266</u>	<u>0.051693</u>
π_{33}	0.882073	<u>0.882136</u>	<u>0.880708</u>	<u>0.882229</u>	<u>0.879706</u>
U_1	-136.896		-136.831		-136.796
U_2	-158.342		-158.272		-158.203
U_3	-142.84507		-142.84506		-142.847

Table: $\tau_{12} = 2.95638, \tau_{13} = 6.45658, \tau_{21} = 2.91636, \tau_{23} = 6.53986, \tau_{31} = 1.16897, \tau_{32} = 1.21261, b_1 = 0.119177, b_2 = 0.117, b_3 = 0.111751$

Takumi Naito (Waseda U)

An Eaton-Kortum model of trade and growth

Concluding remarks

policy implications:

- trade liberalization, be it unilateral, bilateral, or multilateral, raises global growth
 Romalis (2007), Estevadeordal and Taylor (2008), and Wacziarg and Welch (2008)
- import promotion acts as export promotion at the extensive margins Hummels and Klenow (2005), Broda and Weinstein (2006), Kehoe and Ruhl(2009)

possible extensions:

- b_j is increasing in κ_j (as externalities): qualitatively unchanged
- import tariffs: unchanged if long-run welfare gains are dominant
- N > 3: qualitatively unchanged, quantitatively weaker