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Zipf’s power law is a ubiquitous empirical regularity found in many systems, thought to result from

proportional growth. Here, we establish empirically the usually assumed ingredients of stochastic growth

models that have been previously conjectured to be at the origin of Zipf’s law. We use exceptionally

detailed data on the evolution of open source software projects in Linux distributions, which offer a

remarkable example of a growing complex self-organizing adaptive system, exhibiting Zipf’s law over

four full decades.
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Power law distributions are ubiquitous statistical fea-
tures of physical, natural and social systems [1,2].
Specifically, the probability density function (PDF) pðxÞ
of some physical variable x, usually a size or frequency,
exhibits the power law dependence when

pðxÞ � 1=x1þ� with �> 0: (1)

To qualify as a suitable description of a data set, such a
PDF should hold within a range xmin � x � xmax of at least
2–3 decades (xmax=xmin � 102–3), and one should under-
stand the origin of the deviations that often appear at both
ends x < xmin and x > xmax. After claims of universality
[3], it is now understood that many different physical
mechanisms may be at the origin of power laws in different
systems, with possibly widely different exponents � (see
for instance [4–6]).

However, among all power law distributions, one of
them, that we refer to as Zipf’s law, plays a special role,
as it corresponds to the particular value � ¼ 1, which is at
the borderline between converging and diverging uncondi-
tional mean hxi. Historically, Zipf’s law described the
inverse proportionality between the variable and its rank
in a rank-frequency plot [7], which is just another way to
state that the distribution of the data follows a power law
with the special value � ¼ 1. Zipf’s law has been docu-
mented empirically to describe the distribution of the
frequency of words in natural languages [7], the distribu-
tion of city sizes [8] as well as firm sizes [9–11] all over the
world, several distributions characterizing Web access sta-
tistics and Internet traffic characteristics [12,13] as well as
in bibliometrics, infometrics, scientometrics, and library
science (see [14] and references therein). One key chal-
lenge is to find and validate the mechanism(s) underlying
this universality class � ¼ 1.

Yule’s theory of the power law distribution of the num-
ber of species in a genus, family or other taxonomic group
[15] and Champernowne’s theory of stochastic recurrence
equations [16] showed that there are important links be-

tween Zipf’s law and stochastic growth. On this basis,
Simon [17] articulated a simple mechanism for Zipf’s
law based on Gibrat’s law of proportionate effect [18]
implemented in a stochastic growth model with new en-
trants. A modern formulation of Gibrat’s law is that growth
is a random process, with successive stochastic realizations
of the growth rates that are independent of the size of the
entity (genera, city, firm, website popularity and so on).
This model has recently been rediscovered under the name
‘‘preferential attachment’’ to explain the scale-free net-
works found in social communities, the World Wide
Web, or networks of proteins reacting with each other in
biological cells [13,19]. The existence of new entrants in
the growth process is one of the additional ingredients
complementing Gibrat’s law that yields Zipf’s law
[8,16,20,21]. Gabaix has argued that the special value� ¼
1 emerges as a result of the condition of stationarity [8].
Malevergne et al. [22] showed recently that Gibrat’s law of
proportionate growth does not need to be strictly satisfied
in the presence of the birth and death of entities following a
stochastic growth process: as long as the standard deviation
of the growth rate increases asymptotically proportionally
to the size and that the average growth rate increases not
faster than the standard deviation, the distribution of sizes
follows Zipf’s law.
However, early on, Mandelbrot confronted Simon in a

heated debate over whether the idea of proportional growth
has any validity [23]. Surprisingly, the issue is still not
settled [4], as proportional growth has not been verified
directly in the same systems exhibiting Zipf’s law. Here,
we empirically verify the constitutive elements entering in
the mechanism operating to create the observed universal
Zipf’s law distribution. For this, we provide an analysis of
the growth of packages in open source softwares, as a
proxy for the evolution of complex adaptive systems
[24]. We study the operating system (Debian Linux).
Large Linux distributions typically contain tens of thou-
sands of connected packages, including the operating sys-
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tem and applications, which form a complex web of inter-
dependencies. A measure of the ‘‘centrality’’ of a given
package is the number of other packages that call it in their
routine, a measure we refer to as the number of in-directed
links or connections that other packages have to a given
package. We find that the distribution of in-directed links
of packages in successive Debian Linux distributions pre-
cisely obeys Zipf’s law over four orders of magnitudes. We
then verify explicitly that the growth observed between
successive releases of the number of in-directed links of
packages obeys Gibrat’s law with a good approximation.
As an additional critical test of the stochastic growth
process, we confirm empirically that the average growth
increment of the number of in-directed links of packages
over a time interval �t is proportional to �t, while its

standard deviation is proportional to
ffiffiffiffiffiffi

�t
p

, as predicted
from Gibrat’s law implemented in a standard stochastic
growth model. In addition, we verify that the distribution of
the number of in-directed links of new packages appearing
in evolving version of Debian Linux distributions has a tail
thinner than Zipf’s law, confirming that Zipf’s law in this
system is controlled by the growth process.

The Linux Kernel was created in 1991 by Linus Torvalds
as a clone of the proprietary Unix operating system
[25,26], and was licensed under GNU General Public
License. Its code and open source license had immediately
a strong appeal to the community of open source devel-
opers who started to run other open source programs on
this new operating system. In 1993, Debian Linux [27]
became the first noncommercial successful general distri-
bution of an open source operating system. While contin-
uously evolving, it remains up to the present the ‘‘mother’’
of a dominant Linux branch, competing with a growing
number of derived distributions (Ubuntu, Dreamlinux,
Damn Small Linux, Knoppix, Kanotix, and so on).

From a few tens to hundreds of packages (474 in 1996
(v1.1)), Debian has expanded to include more than about
18’000 packages in 2007, with many intricate dependen-
cies between them, that can be represented by complex
functional networks. Its evolution is recorded by a chrono-
logical series of stable and unstable releases: new packages
enter, some disappear, others gain or lose connectivity.
Here, we study the following sequence of Debian releases:
Woody: 19.07.2002; Sarge: 0.6.06.2005; Etch: 15.08.2007;
Lenny (unstable version): 15.12.2007; several other Lenny
versions from 18.03.2008 to 05.05.2008 in intervals of
7 days.

Figure 1 shows the number of packages in the first four
successive versions of Debian Linux with more than C in-
directed links, which is nothing but the un-normalized
complementary cumulative (or survival) distribution of
package numbers of in-directed links. Zipf’s law is con-
firmed over four full decades, for each of the four releases
(xmin ¼ 1 and xmax ’ 104 are the minimum and maximum
numbers of in-directed links). Notwithstanding the large
modifications between releases and the multiplication of

the number of packages by a factor of 3 between Woody
and Lenny, the distributions shown in Fig. 1 are all con-
sistent with Zipf’s law. It is remarkable that no noticeable
cutoff or change of regimes occurs neither at the left nor at
the right end-parts of the distributions shown in Fig. 1. Our
results extend those conjectured in Ref. [28] for Red Hat
Linux. By using Debian Linux, which is better suited for
the sampling of projects than the often used SourceForge
collaboration platform, we avoid biases and gather unique
information only available in an integrated environment
[29].
To understand the origin of this Zipf’s law, we use the

general framework of stochastic growth models, and we
track the time evolution of a given package via its number
C of in-directed links connecting it to other packages
within Debian Linux. The increment dC of the number
of in-directed links to a given package over a small time
interval dt is assumed to be the sum of two contributions,
defining a generalized diffusion process:

dC ¼ rðCÞdtþ �ðCÞdW; (2)

with rðCÞ is the average deterministic growth of the in-
directed link number, �ðCÞ is the standard deviation of the
stochastic component of the growth process and dW is the

FIG. 1 (color online). (Color Online) Log-log plot of the
number of packages in four Debian Linux Distributions with
more than C in-directed links. The four Debian Linux
Distributions are Woody (19.07.2002) (orange diamonds),
Sarge (06.06.2005) (green crosses), Etch (15.08.2007) (blue
circles), Lenny (15.12.2007) (blackþ’s). The inset shows the
maximum likelihood estimate (MLE) of the exponent� together
with two boundaries defining its 95% confidence interval (ap-
proximately given by 1� 2=

ffiffiffi

n
p

, where n is the number of data
points using in the MLE), as a function of the lower threshold.
The MLE has been modified from the standard Hill estimator to
take into account the discreteness of C.
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increment of the Wiener process (with hdWi ¼ 0 and
hdW2i ¼ dt where the brackets denote performing the
statistical average). Zipf’s law has been shown to arise
under a variety of conditions associated with Gibrat’s
law. The simplest implementation of Gibrat’s law writes
that both rðCÞ and �ðCÞ are proportional to C,

rðCÞ ¼ r� C; �ðCÞ ¼ �� C; (3)

with proportionality coefficients r and � obeying the fol-
lowing inequality r < �. This later inequality expresses
that the proportional growth is dominated by its stochastic
component [22]. Accordingly, the heavy tail structure of
Zipf’s law can be thought of as the result of large stochastic
multiplicative excursions. The rest of the Letter is devoted
to testing and validating this model.

First, we measure the time evolution of the in-directed
links of all packages in the successive Debian releases, by
retrieving the network of dependencies following the meth-
odology explained in Ref. [29]. For packages which are
common to successive releases, we find that their connec-
tivity, measured for instance by their number C of in-
directed links, increases on average albeit with consider-
able fluctuations. Consider for instance the update from
Etch (15.08.2007) to the latest Lenny version (05.05.2008).
For each package iwhich is common to these two versions,
we measure the increment �Ci of the number Ci of in-
directed links to that package from Etch to the latest Lenny
version. The left panel of Fig. 2 plots these increments�Ci

as a function of Ci. This figure is typical of the results
obtained on the increments �Ci between other pairs of
Debian releases. The scatter plot confirms the existence of
an approximate proportionality between �Ci and Ci, es-
pecially for the largest Ci values, in agreement with the
first equation of (3). The right panel of Fig. 2 shows the
standard deviation of�C as a function of C, confirming the
second equation of (3). These two panels are nothing but
direct evidence of Gibrat’s law for package connectivities,
which constitutes an essential ingredient of stochastic
growth models of Zipf’s law [8,16,20,21]. Notice that the

large scatter decorating the approximate proportionality
between �Ci and Ci observed in Fig. 2 and quantified in
the right panel of Fig. 2 is an essential ingredient for Zipf’s
law to appear [22].
We then combine (2) and (3) to predict that, over a not

too large time interval �t, (i) the average growth rate
Rð�tÞ � h�C=Ci should be given by

Rð�tÞ ¼ r� �t; (4)

and (ii) the standard deviation of the growth rate

�ð�tÞ � h½�C=C�2i1=2 (5)

should be equal to

�ð�tÞ ¼ ��
ffiffiffiffiffiffi

�t
p

: (6)

This last result derives from the properties of the Wiener
process increments dW. We test these two predictions (4)
and (6) as follows. Out of the four major Debian releases
from 19.07.2002 to 15.12.2007 as well as the several Lenny
releases from 18.03.2008 to 05.05.2008 in intervals of 7
days, 66 different time intervals can be formed. For each
time interval, we calculate the average growth rate defined
by Rð�tÞ � h�C=Ci and its standard deviation defined by
(5). Technically, we estimate Rð�tÞ [respectively�ð�tÞ] as
the slope (respectively the standard deviation of the resid-
uals) of the linear regression of�C as a function of C. This
method allows us to construct confidence bounds by boot-
strapping (we reshuffle 1000 times the linear regression
residuals). The left [right] panel of Fig. 3 shows the 66
values of Rð�tÞ [�ð�tÞ] as a function of their correspond-
ing time interval �t (respectively, square-root of �t),

FIG. 2. Left panel: Plots of �C versus C from the Etch release
(15.08.2007) to the latest Lenny version (05.05.2008) in double
logarithmic scale. Only positive values are displayed. The linear
regression �C ¼ R� Cþ C0 is significant at the 95% confi-
dence level, with a small value C0 ¼ 0:3 at the origin and R ¼
0:09. Right panel: same as left panel for the standard deviation of
�C.
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FIG. 3. Dependence of Rð�tÞ and �ð�tÞ defined, respectively,
by Rð�tÞ � h�C=Ci and (5) as a function of their time interval
�t for the 66 time intervals that can be formed between all the
Debian releases in our database (which includes the four major
Debian releases from 19.07.2002 to 15.12.2007 as well as the
several Lenny releases from 18.03.2008 to 05.05.2008 in inter-
vals of 7 days). The error bars show the 95% confidence
intervals, obtained by shuffling 1000 times the linear regression
residuals. The straight lines represent the best linear fits. The
existence of a genuine linear dependence of R as a function of�t
cannot be rejected (p < 0:05) and has a high significance level
(square of correlation coefficient R2 ¼ 0:93). The regression of
� versus

ffiffiffiffiffiffi

�t
p

enjoys the same high statistical confidence (p <
0:05 and R2 ¼ 0:97).
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providing a strong validation of the stochastic growth
model (2) and (3).

We now address the question of how the increase of the
number of packages interacts with the growth process of
the number of links between packages. This issue consti-
tutes an essential ingredient in all the examples where
Zipf’s law has been documented. Most stochastic growth
models based on Gibrat’s principle attempt to derive the
distribution of sizes directly from the distribution of the
size of a single entity as a function of time. Indeed, many
models start with the implicit or explicit assumption that
the set of entities was born at the same origin of time. This
approach is mathematically equivalent to considering that
the universe is made only of one single entity. Therefore,
the distribution of sizes can reach a steady state if and only
if the distribution of the size of a single entity reaches a
steady state, which is counterfactual. A more correct model
is to take into account the fact that entities do not appear all
at the same time but are born according to a more or less
regular flow of newly created objects. Competing with the
birth process, entities also disappear at a surprisingly high
rate. In the context of packages, the evolution of successive
Debian releases is indeed punctuated by additions and
deletions of many packages. For instance, at the release
of the latest stable release (Lenny, 15.12.2007), 885 pack-
ages disappeared, partly merged, or were renamed while
2983 packages appeared compared to the precedent re-
lease. Clearly, the dynamics of the connectivity between
packages depends on the birth as well as demise of pack-
ages. Therefore, the stochastic growth model (2) must be
supplemented by a model of the birth and death of pack-
ages. Such a general model shows that, when volatility
dominates over the average growth rate, Zipf’s law results
from the stochastic growth process and not from the dis-
tribution of new entrants’ sizes [22].

Figure 4 verifies that the distribution of the numbersC of
in-directed links of newly born packages has a tail thinner
than Zipf’s law, and converges progressively to Zipf’s law
as the time elapsed between two releases increases, reflect-
ing the increasing impact of the stochastic multiplicative
growth process. This confirms that Zipf’s law results in-
deed from the stochastic multiplicative growth process at
the level of individual packages in the presence of the birth
death of packages.
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FIG. 4. The right panel shows that the exponent � of the
distribution of C’s of new packages appearing between succes-
sive unstable Lenny releases separated by one week is a power
law with exponent � ’ 1:5; the left panel show that the same
power law has a smaller exponent closer to 1 as one considers the
new packages appearing between two more distant releases. We
have verified that this effect is systematic in our database. The
exponents � are obtained by maximum likelihood, adapted to
the discreteness of C values. The thin lines defined the 95%
confidence intervals.
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