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Abstract

This paper considers the properties of an optimal monetary policy when house-

holds are subject to counter-cyclical uninsured income shocks. We develop a tractable

incomplete-markets model with Calvo price setting. In our model the welfare cost of

business cycles is large when the variance of income shocks is counter-cyclical. Never-

theless, the optimal monetary policy is very similar to the optimal policy that emerges

in the representative agent framework and calls for nearly complete stabilization of

the price-level.
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1 Introduction

Recent empirical studies have found that individuals face highly persistent idiosyncratic in-

come shocks and that the variance of these shocks is countercyclical (Storesletten, Telmer,

Yaron, 2004; Meghir and Pistaferri, 2004). If asset markets are incomplete and these in-

come shock are not insurable, then the welfare cost of business cycles can be very large as

shown, for instance, by Krebs (2003) and De Santis (2007). In this paper, we investigate

how monetary policy should be conducted in the presence of persistent and countercyclical

idiosyncratic risk.

We consider a New Keynesian model with Calvo-style price rigidity, augmented with

uninsured idiosyncratic income shocks.1 As shown, for instance, by Schmitt-Grohé and

Uribe (2007), the optimal monetary policy obtained in the standard New Keynesian model

calls for (nearly) complete inflation stabilization. That is, in the context of the classical

trade-off between inflation and output fluctuations, the monetary authority should almost

exclusively focus on the stabilization of inflation. This result, however, is produced in the

representative-agent framework, in which the welfare cost of business cycles is negligible,

as is originally shown by Lucas (1987). Our model with persistent and countercyclical

idiosyncratic risk yields a sizable cost of business cycles, and it is interesting to see how

this alters the trade-off between inflation and output stabilization.

Our model builds on the exchange economy studied by Constantinides and Duffie

(1996) and extends it to a production economy with endogenous labor supply. We assume

that the labor productivity of each individual follows a geometric random walk, and there

are no insurance markets for that risk. Assuming such idiosyncratic shocks would in

general require that the wealth distribution, an infinite-dimensional object, be included as

a state variable, which causes a “curse of dimensionality” problem. In order to maintain

tractability, we assume that the return to savings of each individual is also subject to

idiosyncratic risk. Under these assumptions we can show that the no-trade theorem of

Constantinides and Duffie (1996) extends to a production economy with endogenous labor

supply.2

We also demonstrate that there exists a representative-agent economy with preference

shocks that yields the same aggregate quantities and prices in equilibrium as the original
1There is large literature on New Keynesian models. Useful overviews are provided by, for instance,

Woodford (2003) and Gaĺı (2008).
2Papers that apply the no-trade result of Constantinides and Duffie (1996) include, among others, Saito

(1998), Krebs (2003, 2007), De Santis (2007). Angeletos (2007) considers a model with idiosyncratic shocks

to the return to individual savings. None of these consider endogenous labor-leisure decision.
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heterogeneous-agents economy with incomplete markets.3 We show that an increase in

the variance of idiosyncratic income shocks in our incomplete-markets economy has the

same effect as an increase (resp. decrease) in the discount factor in the corresponding

representative-agent economy if the elasticity of intertemporal substitution of consumption

is less (resp. greater) than unity.

We then embed this incomplete-markets model into an otherwise standard New Keyne-

sian model with monopolistic competition and the Calvo price setting. Calvo price setting

makes profit maximization of each firm an intertemporal problem. When the financial

markets are incomplete, shareholders, in general, do not agree on how to value future

dividends.4 In the context of the Calvo model, this would imply that when a firm obtains

an opportunity to adjust the price of its product, its shareholders do not agree upon what

price it should charge. Fortunately, however, under our assumptions, we establish that

there is no disagreement problem and that all shareholders value future dividends in the

same way.

We consider two kinds of aggregate shocks: a shock to the level of aggregate produc-

tivity and a shock to the variance of idiosyncratic income shocks. We are particularly

interested in the case where the variance of idiosyncratic shocks is negatively correlated

with the shock to the aggregate productivity level, so that idiosyncratic risk is counter-

cyclical. For the productivity shock process, we consider two laws of motion, a geometric

random walk, and a stationary, autoregressive process. We start by showing that the

welfare cost of business cycles can be large in our economy. Consistent with the previ-

ous finding on the exchange economy (De Santis, 2007), with countercyclical idiosyncratic

risk, the welfare cost of business cycles can be sizable (around 10% permanent decline in

consumption) with a reasonable coefficient of relative risk aversion, regardless of whether

the aggregate productivity shock is permanent or temporary.

We then use our model to answer the following question. How does such a large welfare

cost of business cycles affect the trade-off between output and inflation stabilization?

To examine this question, we compare two policy regimes: the Ramsey regime and the

inflation-targeting regime. In the Ramsey regime, the monetary authority sets (with

commitment) the state-contingent path of the inflation rate so as to maximize the average

utility level. In the inflation-targeting regime, the monetary authority sets the inflation

rate at zero at all times. Schmitt-Grohé and Uribe (2007) show in a representative-agent

economy that the equilibrium obtained under the Ramsey regime is nearly identical to
3For a general discussion on the correspondence between incomplete-markets economies and

representative-agent economies, see Nakajima (2005).
4For the overview on the theory of incomplete markets, see, for instance, Magill and Quinzii (1996).
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the equilibrium obtained under the inflation-targeting regime. Thus, the question here

is how much the equilibria under these two policy regimes would differ in the presence

of countercyclical idiosyncratic risk. We find that a similar result arises in our model.

Optimal monetary policy is essentially given by complete price stabilization even with

countercyclical idiosyncratic risk.

The rest of the paper is organized as follows. In Section 2, we describe our heterogeneous-

agents economy with incomplete markets, and then construct a corresponding representative-

agent economy which yields the same equilibrium as the original economy. In Section 3,

we present our numerical results. In Section 4, we conclude.

2 The model economy

In this section we describe our model economy. It is a version of the neoclassical growth

model with uninsurable idiosyncratic income shocks studied in Braun and Nakajima

(2008), augmented with monopolistic competition and nominal price rigidities as in Calvo

(1983). For simplicity we consider a cashless economy as in Woodford (2003).

2.1 Individuals

The economy is populated by a continuum of individuals of unit measure, indexed by

i ∈ [0, 1]. They are subject to both idiosyncratic and aggregate shocks. We assume

that idiosyncratic shocks are independent across individuals, and a law of large numbers

applies. All individuals are assumed to be identical ex ante, that is, prior to period 0.

Individuals consume and invest a composite good, which is produced by a continuum

of differentiated products, indexed by j ∈ [0, 1]. If the supply of each variety is given by

Yj,t, for j ∈ [0, 1], the aggregate amount of the composite good, Yt, is given by

Yt =
(∫ 1

0
Y

1− 1
ζ

j,t dj

) 1

1− 1
ζ (1)

where ζ > 1 denotes the elasticity of substitution across different varieties. This composite

good is used for consumption and investment:

Yt = Ct + It (2)

where Ct and It denote the aggregate amounts of consumption and investment in period

t, respectively. Let Pj,t denote the price of variety j in period t. It then follows from cost

minimization that the demand for each variety is given by

Yj,t =
(
Pj,t
Pt

)−ζ
Yt (3)
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where Pt is the price index defined by

Pt =
(∫ 1

0
P 1−ζ
j,t dj

) 1
1−ζ

(4)

Preferences of each individual are described by the utility function defined over stochas-

tic processes of consumption and leisure:

ui,0 = Ei0

∞∑
t=0

βt
1

1− γ

[
cθi,t(1− li,t)1−θ

]1−γ
(5)

where β is a subjective discount factor, ci,t is individual i’s amount of consumption of the

composite good in period t, and li,t is her labor supply in period t. We use Eit to denote

the expectation operator conditional on the history of idiosyncratic shocks to individual

i up to and including period t as well as the history of aggregate shocks over the same

time period. The expectation operator conditional on the history of aggregate shocks up

to and including period t is denoted by Et. For later reference, we define γc as

γc ≡ 1− θ(1− γ) (6)

Thus, 1/γc is the intertemporal elasticity of substitution of consumption with a constant

level of leisure.

The idiosyncratic risk faced by individual i is represented by a geometric random walk

{ηi,t}:

ln ηi,t = ln ηi,t−1 + ση,tεη,i,t −
σ2
η,t

2
(7)

where εη,i,t is N(0, 1) and i.i.d. across individuals and over time. The standard deviation,

ση,t, is allowed to fluctuate over time, in a way whose evolution is specified below. All

agents are assumed to start with the same initial realization of η, i.e., ηi,−1 = η−1, for

all i. The process {ηi,t} affects individual i’s income in two ways. First, ηi,t represents

the productivity of individual i’s labor (her efficiency units of labor). Thus, if wt is the

real wage rate per efficiency unit of labor, the labor income of individual i in period t

is given by wtηi,tli,t. If the idiosyncratic risk only affects individuals’ labor income, then

the distribution of wealth would have to be included in the vector of aggregate state

variables, which would make the numerical evaluation of optimal monetary policy very

costly to undertake. We circumvent this problem in the following way. Following Braun

and Nakajima (2008), we assume that the rate of return to individuals’ savings is also

subject to idiosyncratic risk, ηi,t.
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Suppose that claims to the ownership of physical capital and the ownership of firms

are traded separately. We abstract from government bonds. Let qj,t be the period-t price

of a share in firm j ∈ [0, 1], and ei,j,t be the share in firm j held by individual i at the end

of period t. Below we look for an equilibrium in which all individuals choose the same

portfolio weights, and hence they hold equal shares of all firms, that is, ei,j,t = ei,t for all j ∈
[0, 1]. Let si,t be the value of stocks held by individual i: si,t ≡

∫ 1
0 qj,tei,j,t dj = ei,t

∫ 1
0 qj,t dj,

and let Rs,t be the gross rate of return on equities: Rs,t ≡
∫ 1
0 (qj,t + dj,t) dj/

∫ 1
0 qj,t−1 dj.

Then, without idiosyncratic shocks to the return on savings, the flow budget constraint

for each individual would be given by

ci,t + ki,t + si,t = Rk,tki,t−1 +Rs,tsi,t−1 + ηi,twtli,t

where ki,t is the amount of physical capital obtained by individual i in period t, and Rk,t

is the gross rate of return on physical capital, that is,

Rk,t = 1− δ + rk,t (8)

where rk,t is the rental rate of capital and δ is its depreciation rate. Instead we will assume

that the return to savings is also subject to the idiosyncratic risk, so that the flow budget

constraint becomes

ci,t + ki,t + si,t =
ηi,t
ηi,t−1

(Rk,tki,t−1 +Rs,tsi,t−1) + ηi,twtli,t (9)

Since individuals are identical ex ante,

ki,−1 = K−1, and si,−1 = S−1 (10)

for all i ∈ [0, 1]. To rule out Ponzi schemes, we impose ki,t ≥ 0 and si,t ≥ 0. These last

two constraints will not bind in equilibrium.

In equation (9), ηi,t/ηi,t−1 is an idiosyncratic shock to the return on savings. This

assumption is purely a technical requirement that makes it possible for us to extend

the result obtained by Constantinides and Duffie (1996) in an exchange economy to our

production economy. Under this assumption “permanent income” of individual i, which

is defined as the sum of human and financial wealth, is proportional to ηi,t. Under our

assumption shocks to ηi,t magnify the effect of idiosyncratic risk on wealth as compared

to the specification where they affect labor income only. As we shall see below, however,

our main finding is that the presence of idiosyncratic shocks does not matter much for

the conduct of monetary policy. Therefore, this feature of our model strengthens our

conclusions.
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At date 0, each individual chooses a contingent plan {ci,t, li,t, ki,t, si,t} so as to maximize

her utility (5) subject to the sequence of flow budget constraints (9) and the short-selling

constraint on {ki,t, si,t}. The Lagrangian for the household’s problem is

L = E0

∞∑
t=0

βt

{
1

1− γ

[
cθi,t(1− li,t)1−θ

]1−γ
+ λi,t

[
ηi,t
ηi,t−1

(Rk,tki,t−1 +Rs,tsi,t−1) + ηi,twtli,t − ci,t − ki,t − si,t
]}

Then the first-order conditions are

θc−γci,t (1− li,t)(1−θ)(1−γ) = λi,t (11)

1− θ
θ

ci,t
1− li,t

= wtηi,t (12)

λi,t = βEitλi,t+1
ηi,t+1

ηi,t
Rk,t+1 (13)

λi,t = βEitλi,t+1
ηi,t+1

ηi,t
Rs,t+1 (14)

and the flow budget constraint (9). The transversality conditions for ki,t and si,t are given

respectively as

lim
t→∞

Ei0β
tλi,tki,t = 0 (15)

lim
t→∞

Ei0β
tλi,tsi,t = 0 (16)

Given a vector stochastic process {Rk,t, Rs,t, wt}, a solution to the utility maximization

problem of each individual is a state-contingent plan {ci,t, li,t, ki,t, si,t, λi,t} that satisfies

the first-order conditions (9)-(14), as well as the transversality conditions (15)-(16) and

the initial conditions (10).

2.2 Aggregation

Nakajima (2005) establishes that incomplete-markets economies can be aggregated into

representative-agent economies with stochastic shocks to the utility function. That is

also true for our economy and, in addition, the utility function of the corresponding

representative agent has an explicit form. The result here extends a previous result of

Braun and Nakajima (2008) to an economy with monopolistic competition and staggered

price setting.

Consider a representative agent with preferences defined by the utility function:

U0 = E0

∞∑
t=0

βt
1

1− γ
νt

[
Cθt (1− Lt)1−θ

]1−γ
(17)
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where Ct is the amount of consumption of the composite good defined in (1) in period t,

and L is the amount of labor supply in period t. Here, νt is the preference shock to the

representative agent’s utility in period t defined by

νt ≡ exp

[
1
2
γc(γc − 1)

t∑
s=0

σ2
η,s

]
(18)

where γc is defined in (6), and ση,t is the standard deviation of the idiosyncratic shocks in

period t, as in (7). Note that νt is the cross-sectional average of η1−γc
i,t :

νt = Et[η
1−γc
i,t ]

where Et denotes the expectation operator conditional on the history of aggregate shocks

up to and including period t.

Suppose that the representative agent faces the following flow budget constraint:

Ct +Kt + St = Rk,tKt−1 +Rs,tSt−1 + wtLt (19)

and initial conditions K−1, S−1 > 0. Here Kt and St are the amount of physical capital

and the value of stocks held by the representative agent in period t. We assume the

short-selling constraints: Kt, St ≥ 0. These two constraints do not bind in equilibrium.

Given prices and the initial condition, the representative agent chooses a contingent plan

{Ct, Lt,Kt, St} so as to maximizes the lifetime utility U0 in (17) subject to the sequence of

flow budget constraints (19) and the short-selling constraints. Let us form the Lagrangian

as

L = E0

∞∑
t=0

βtνt

{
1

1− γ

[
Cθt (1− Lt)1−θ

]1−γ
+ λt [Rk,tKt−1 +Rs,tSt−1 + wtLt − Ct −Kt − St]

}
The first-order conditions are given by

θC−γct (1− Lt)(1−θ)(1−γ) = λt (20)

1− θ
θ

Ct
1− Lt

= wt (21)

λt = Etβ
νt+1

νt
λt+1Rk,t+1 (22)

λt = Etβ
νt+1

νt
λt+1Rs,t+1 (23)

and the flow budget constraint (19). The transversality condition for Kt and St are,

respectively,

E0β
tνtλtKt = 0 (24)

E0β
tνtλtSt = 0 (25)
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Given the initial conditions K−1 and S−1, a solution to the utility maximization problem

of the representative agent is given by {Ct, Lt,Kt, St, λt} that satisfies the first-order con-

ditions (19)-(23), as well as the transversality conditions (24)-(25). The next proposition

establishes the relationship between the solution to the utility maximization problem of

the representative agent, and the solution to the utility maximization problem of each

individual described in the previous subsection.

Proposition 1. Given stochastic processes {Rk,t, Rs,t, wt, ση,t} and initial conditions {K−1, S−1},
consider the utility maximization problem of individual i described in the previous subsec-

tion and the utility maximization problem of the representative agent described in this

subsection. Suppose that {C∗t , L∗t ,K∗t , S∗t , λ∗t }∞t=0 is a solution to the representative agent’s

problem. For each i ∈ [0, 1], let c∗i,t = ηi,tC
∗
t , l∗i,t = L∗t , k

∗
i,t = ηi,tK

∗
t , s∗i,t = ηi,tS

∗
t , and

λ∗i,t = η−γci,t λ∗t . Then {c∗i,t, l∗i,t, k∗i,t, s∗i,t, λ∗i,t}∞t=0 is a solution to the problem of individual i.

Proof. TO BE ADDED.

In what follows we derive the equilibrium conditions for our incomplete-markets econ-

omy using the first-order conditions for the representative agent, (19)-(23) and the transver-

sality conditions (24)-(25). Note that in equilibrium the utility of the representative agent

(17) equals the cross-sectional average of individual utility (5):

E0[ui,0] = E0

∞∑
t=0

βt
1

1− γ
c1−γci,t (1− li,t)(1−θ)(1−γ)

= E0

∞∑
t=0

βt
1

1− γ
η1−γc
i,t C1−γc

t (1− Lt)(1−θ)(1−γ)

= E0

∞∑
t=0

βt
1

1− γ
Et[η

1−γc
i,t ]C1−γc

t (1− Lt)(1−θ)(1−γ)

= E0

∞∑
t=0

βt
1

1− γ
νtC

1−γc
t (1− Lt)(1−θ)(1−γ)

= U0

To see how the size of idiosyncratic shocks, ση,t, affects the economy, define the “effective

discount factor” between periods t and t+ 1, β̃t,t+1, as

β̃t,t+1 ≡ β
νt+1

νt
(26)

= β exp
[

1
2
γc(γc − 1)σ2

η,t+1

]
where the second equality follows from (18). This expression illustrates that the presence

of idiosyncratic shocks (ση,t > 0) makes the effective discount factor higher if γc > 1 and
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lower if γc < 1. Moreover, cyclical fluctuations in the variance of idiosyncratic shocks,

σ2
η,t, induce cyclical variations in the effective discount factor β̃t,t+1.

A special feature of our economy is that, in spite of market incompleteness, there is

agreement among individuals on the present value of future dividends of each firm. To see

this, note that the stochastic discount factor used by individual i is

β
λi,t+1

λi,t
= β

λt+1

λt

(
ηi,t+1

ηi,t

)−γc
= β

λt+1

λt
exp

(
−γcση,t+1εη,i,t+1 +

γc
2
σ2
η,t+1

)
Since εη,i,t+1 is i.i.d. across individuals and independent of the stochastic shocks faced by

each firm, all individuals evaluate a given future payoff in the same way. In particular,

we can use the stochastic discount factor of the representative agent, βλt+1νt+1/(λtνt), to

value future dividend streams of firms.

2.3 Firms

The production side of our economy is standard in the New Keynesian literature and

similar to the one considered by Schmitt-Grohé and Uribe (2007). Each differentiated

product is produced by a single firm in a monopolistically competitive environment. Firm

j ∈ [0, 1] has the production technology:

Yj,t = z1−α
t Kα

j,tL
1−α
j,t − Φt (27)

where zt is the aggregate productivity shock, Kj,t is the physical capital used by firm j in

period t, Lj,t is its labor input, and Φt is the fixed cost of production. The market clearing

conditions for capital and labor are∫ 1

0
Kj,t dj = Kt−1, and

∫ 1

0
Lj,t dj = Lt

Here, note that the stock of capital available for the production in period t is Kt−1. The

processes for zt and Φt are specified in the next subsection.

Consider the cost minimization problem of firm j:

min
Kj,t,Lj,t

wtLj,t + rtKj,t

subject to

z1−α
t Kα

j,tL
1−α
j,t − Φt = Yj,t
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Let mcj,t be the Lagrange multiplier, which will be interpreted as the marginal cost of

production of firm j. Then the first-order conditions read

wt = mcj,t(1− α)z1−α
t Kα

j,tL
−α
j,t

rt = mcj,t αz1−α
t Kα−1

j,t L1−α
j,t

It follows that all firms choose the same capital-labor ratio:

Kj,t

Lj,t
=

α

1− α
wt
rt

and that the marginal cost is identical for all firms:

mcj,t = α−α(1− α)−1+αzα−1
t w1−α

t rαt

≡ mct

The first-order conditions for the cost-minimization problem of firm j can now be rewritten

as

wt = mct(1− α)z1−α
t Kα

t−1L
−α
t (28)

rt = mct αz1−α
t Kα−1

t−1 L
1−α
t (29)

Firm j’s profit in period t is then given as

Pj,t
Pt

Yj,t − wtLj,t − rtKj,t =
Pj,t
Pt

Yj,t −mct(Yj,t + Φt)

=
(
Pj,t
Pt

)1−ζ
Yt −mct

{(
Pj,t
Pt

)−ζ
Yt + Φt

}

The price of each variety is adjusted in a sluggish way as in Calvo (1983) and Yun (1996).

For each firm, the opportunity to change the price of its product arrives with probability

1 − ξ in each period. This random event occurs independently across firms (it is also

independent of all other stochastic shocks in our economy). Without such an opportunity,

a firm must charge the same price as in the previous period. Suppose that firm j obtains

an opportunity to change its price in period t. It chooses Pj,t to maximize the present

discounted value of profits:

max
Pj,t

Et

∞∑
s=0

βs
λt+sνt+s
λtνt

ξs

[(
Pj,t
Pt+s

)1−ζ
Yt+s −mct+s

{(
Pj,t
Pt+s

)−ζ
Yt+s + Φt+s

}]

where βsλt+sνt+s/(λtνt) is the stochastic discount factor used to evaluate (real) payoffs in

period t+ s in units of consumption in period t.
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All firms with the opportunity to change their prices will choose the same price, so

denote it by P̃t. Then the first-order condition for the above profit-maximization problem

is given by

Et

∞∑
s=0

(ξβ)s
λt+sνt+s
λtνt

{
(1− ζ)P̃−ζt P ζ−1

t+s Yt+s + ζ mct+s P̃
−ζ−1
t P ζt+sYt+s

}
= 0

Define ν̃t+s as

ν̃t+s ≡
νt+s
νt

= exp

{
1
2
γc(γc − 1)

t+s∑
u=t+1

σ2
η,u

}

Then, after some algebra, we can reexpress the first-order condition for P̃t as

x1
t =

ζ − 1
ζ

p̃tx
2
t (30)

where

p̃t ≡
P̃t
Pt

x1
t ≡ Et

∞∑
s=0

(ξβ)sλt+sν̃t+s

(
Pt+s
Pt

)ζ
Yt+s mct+s

x2
t ≡ Et

∞∑
s=0

(ξβ)sλt+sν̃t+s

(
Pt+s
Pt

)ζ−1

Yt+s

It is convenient to express x1
t and x2

t in a recursive fashion:

x1
t = λtYt mct +ξβEtν̃t+1π

ζ
t+1x

1
t+1 (31)

x2
t = λtYt + ξβEtν̃t+1π

ζ−1
t+1 x

2
t+1 (32)

where πt+1 is the gross inflation rate between periods t and t+ 1:

πt+1 ≡
Pt+1

Pt

Since all firms that adjust their prices in a given period choose the same new price,

P̃t, equation (4) implies that the price index, Pt, evolves as

P 1−ζ
t = ξP 1−ζ

t−1 + (1− ξ)P̃ 1−ζ
t

which can be rewritten as

1 = ξπ−1+ζ
t + (1− ξ)p̃1−ζ

t (33)
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To derive the aggregate production function, rewrite the production function of indi-

vidual firms (27) as

z1−α
t Kα

j,tL
1−α
j,t − Φt =

(
Pj,t
Pt

)−ζ
Yt

Using the fact that Kj,t/Lj,t is the same for all j, and integrating both sides of this equation

yields

ςtYt = z1−α
t Kα

t−1L
1−α
t − Φt (34)

where ςt ≤ 1 measures the inefficiency due to price dispersion:

ςt =
∫ 1

0

(
Pj,t
Pt

)−ζ
dj

The evolution of ςt can be written as

ςt = (1− ξ)p̃−ζt + ξπζt ςt−1 (35)

2.4 Aggregate shocks

The aggregate productivity shock is either permanent or temporary. For the case where

the productivity shock is permanent, we assume that zt is a geometric random walk:

ln zt = ln zt−1 + µ+ σzεz,t −
σ2
z

2
(36)

and the fixed cost of production, Φt, grows at the rate µ:

Φt = Φ exp(µt) (37)

where µ and σz are constant parameters, and εz,t is N(0, 1) and i.i.d. across periods. For

the case where the productivity shock is temporary, we assume that zt follows an AR(1)

process:

ln zt = ρz ln zt−1 + σzεz,t −
σ2
z

2(1 + ρz)
(38)

and that the fixed cost is constant:

Φt = Φ (39)

In both cases, the constant Φ is calibrated so that the aggregate profit is zero in the

non-stochastic steady state (balanced growth path) with zero inflation.
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The standard deviation of innovations to individual labor productivity, ση,t, is also

an aggregate shock. Evidence provided by Storesletten, Telmer and Yaron (2004) and

Meghir and Pistaferri (2004) suggests that it fluctuates countercyclically. Krebs (2003)

and De Santis (2007) have found that the welfare cost of business cycles can be sizable

with countercyclical idiosyncratic risk. Following this literature, we allow ση,t to covary

with the aggregate technology shock. Specifically, when the evolution of the aggregate

productivity is given by (36), we assume that the variance of idiosyncratic shocks evolves

as

σ2
η,t = σ̄2

η + bσzεz,t (40)

and when zt follows the temporary process given by (38), we assume that

σ2
η,t = σ̄2

η + b ln zt (41)

An important difference between these two specifications is that σ2
η,t is serially correlated

in (41) but not in (40).

2.5 Government

Government policy is very simple in our economy. First we abstract from fiscal policy:

the government does not consume, and there are no government bonds nor taxes. We

assume that the monetary authority can directly control the inflation rate. Thus, monetary

policy is specified as a state contingent path of the inflation rate, {πt}∞t=0. We consider

two regimes for the monetary policy. The first regime is “inflation targeting,” where the

monetary authority sets the inflation rate to zero at all times and in all contingencies,

that is, πt = 1, for all t. The second regime is “Ramsey,” where the monetary authority

precommits to the state-contingent path of the inflation rate so as to maximize the average

utility of individuals U0 = E0[ui,0].

3 Numerical results

In this section we analyze how the presence of idiosyncratic shocks affects the conduct of

monetary policy. We are particularly interested in the case where the idiosyncratic risk,

ση,t, fluctuates countercyclically. We show that even though countercyclical idiosyncratic

risk makes the welfare cost of business cycles sizable, properties of the optimal monetary

policy are little affected by the presence of idiosyncratic shocks.

The parameter values of our model are calibrated as follows. One period in the model

corresponds to a quarter. The share of capital is α = 0.36, and the depreciation rate is
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δ = 0.02. These are taken from Boldrin, Christiano and Fisher (2001). The probability of

price adjustment is set to 0.2, i.e., ξ = 0.8 and the elasticity of substitution across different

varieties of products is ζ = 5, following Schmitt-Grohé and Uribe (2007). The fixed cost

of production, Φ̄, is set so that the profit of each firm at the non-stochastic steady state

under optimal monetary policy is zero. The discount factor β is chosen so that the real

interest rate at the non-stochastic steady state is four percent a year. For the preference

parameter, we consider two values for γc, 0.7 and 2. For each value of γc, another preference

parameter θ is set so that the labor supply at the stochastic steady state is one third (then,

γ is determined as γ = 1 − (1 − γc)/θ). For the case of permanent productivity shock

(36), we follow Boldrin, Christiano and Fisher (2001) and set µ = 0.004, and σz = 0.018.

For the case of temporary productivity shock (38), we follow Schmitt-Grohé and Uribe

(2007)5 and set ρz = 0.8556 and σz = 0.0064/(1−α). For the idiosyncratic shock process,

we follow De Santis (2007) and set σ̄η = 0.1/2 and b = 0 or b = −0.8. As it turns out,

as long as we adjust β so as to make the steady state interest rate equals to a fixed rate

(i.e., four percent a year), the value of ση does not matter. When b = 0, the idiosyncratic

risk is acyclical; when b = −0.8, it is countercyclical. De Santis (2007) chooses b = −0.8

based on the evidence provided by Storesletten, Telmer and Yaron (2004).

In what follows, we compare dynamics of different versions of our model economy,

which differ in terms of the risk aversion parameter, γc ∈ {0.7, 2}; the cyclicality of the

idiosyncratic risk, b ∈ {0,−0.8}; the persistence of the aggregate productivity shock,

(36) and (38); or the policy regime, the Ramsey and the inflation-targeting regimes. In

addition, for each values of γc and b, and for each process for zt, we compute two normative

measures.

The first one is the welfare cost of business cycles as originally estimated by Lucas

(1987). Specifically, we consider the real-business-cycle version of our model, in which

there are no nominal rigidities, and compare the economy with positive aggregate shocks,

σz > 0, and the economy without aggregate shocks, σz = 0. In both cases we assume

that there are idiosyncratic shocks, σ̄η > 0. We also assume that both economies are at

the non-stochastic steady state prior to date 0 and compare the welfare conditional on

the state vector at t = −1.6 Let Xt denote the vector of the state variables, and let X̄

denote its value at the non-stochastic steady state. Further, let {Crbc
t , Lrbc

t } denote the

equilibrium process of aggregate consumption and labor supply in the RBC version of our
5Note that the productivity level zt in Schmitt-Grohé and Uribe (2007) corresponds to our z1−α

t , so

that their standard deviation must be adjusted by 1/(1− α).
6In this sense, our welfare cost measures are the conditional welfare cost, as opposed to the unconditional

one. Schmitt-Grohé and Uribe (2007) discuss a related issue.
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economy, and let {C̄, L̄} denote their values in the steady state. Then, define the lifetime

utility evaluated at period t = −1 by

V (X̄, σz; rbc) ≡ E−1

∞∑
t=0

βtνt
1

1− γ

[
(Crbc

t )θ(1− Lrbc
t )1−θ

]1−γ
where νt is given by (18). The corresponding value for the non-stochastic economy is given

by

V (X̄, 0; rbc) =
∞∑
t=0

βtν̄t
1

1− γ

[
(C̄)θ(1− L̄)1−θ

]1−γ
where ν̄t is defined by

ν̄t ≡ exp
[

1
2
γc(γc − 1)σ̄2

ηt

]
The welfare cost of business cycles is defined by ∆bc that solves

∞∑
t=0

βtν̄t
1

1− γ

[
((1−∆bc)C̄)θ(1− L̄)1−θ

]1−γ
= V (X̄, σz; rbc)

that is,

∆bc = 1−
{
V (X̄, σz; rbc)
V (X̄, 0; rbc)

} 1
1−γc

The second normative measure is the cost of adopting a non-optimal policy regime

(the inflation-targeting regime) as opposed to the optimal policy regime (the Ramsey

regime). Somewhat abusing notation, we again use X̄ to denote the non-stochastic steady

state under the Ramsey regime. As it turns out, the steady-state inflation rate under the

Ramsey regime is zero. Therefore, X̄ is also the non-stochastic steady state associated

with the inflation-targeting regime. Suppose that the economy is at the steady state X̄

prior to date 0. Then the welfare cost of the inflation-targeting regime, ∆inf, is given as

∆inf = 1−
{
V (X̄, σz; inf)
V (X̄, σz; ram)

} 1
1−γc

where V (X̄, σz; inf) and V (X̄, σz; ram) are the lifetime utility associated with the inflation-

targeting and Ramsey regimes, respectively.

3.1 The case with permanent productivity shock

Let us first look at the case where the aggregate productivity level zt follows the process

given by (36) and the variance of idiosyncratic shocks follows the process given by (40).
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Then how do cyclical fluctuations in ση,t affect the economy? Recall that, given our

aggregation result, the idiosyncratic risk affects the aggregate dynamics through its effect

on νt, and hence, through its effect on the effective discount factor, β̃t,t+1, which is defined

in (26). When the processes for zt and ση,t are given, respectively, by (36) and (40), the

effective discount factor becomes

ln β̃t,t+1 = ln β̄ +
1
2
γc(γc − 1)bσzεz,t+1

where

β̄ ≡ β exp
[

1
2
γc(γc − 1)σ̄2

η

]
Since εz,t+1 is i.i.d. and standard normal, the effective discount factor in this case is also

i.i.d. and it is log-normal:

ln β̃t,t+1 ∼ N

(
ln β̄,

[
1
2
γc(γc − 1)bσz

]2
)

(42)

Thus, under the specification given by (36) and (40), the effect of cyclical idiosyncratic

risk is to make the effective discount factor an i.i.d. random variable with the distribution

given by (42).

Table 1 shows the welfare cost of business cycles, ∆bc, for γc = 0.7, 2 and for b =

0,−0.8. When the risk aversion is relatively low, γc = 0.7, the welfare cost of business

cycles is negative, that is, the expected utility is higher when σz > 0 than when σz = 0.

This result is consistent with the finding by Cho and Cooley (2005).7 Furthermore, in this

case, making the idiosyncratic risk countercyclical decreases the welfare cost of business

cycles (that is, it increases the welfare gain of business cycles). On the other hand, when

the relative risk aversion is higher, γc = 2, the welfare cost of business cycles is positive

and is magnified by cyclical fluctuations in ση,t. Indeed, when γc = 2 and b = −0.8,

the welfare cost of business cycles is about 7.3 percent of consumption, which is a sizable

amount.

Figures 1-4 show impulse response functions to a one-standard deviation shock to the

productivity growth under the policy regimes and for γc = 0.7, 2 and b = 0,−0.8. These

figures show that, regardless of the policy regime, changing b does not affect the impulse

response functions. In other words, changing β̃t,t+1 from a constant to an i.i.d. random

variable does not change the impulse response functions. In addition, for each value of γc
and b, the impulse response functions are the same between the two policy regimes.

7Note that our welfare measure is conditional on the initial state variable. It turns out that the

unconditional welfare cost of business cycles is positive for γc = 0.7.
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Turning back to Table 1, we see that the welfare cost of adopting the inflation-targeting

regime is negligible for all values of γc and b considered here. Even when γc = 2 and

b = −0.8, it is only 0.0006 percent (recall that the welfare cost of business cycles is 7.3

percent for that case). Thus we conclude that, under permanent productivity shocks,

cyclical fluctuations in the idiosyncratic risk do not affect how the monetary policy should

be conducted, even if it makes the welfare cost of business cycles very large.

3.2 The case with temporary productivity shock

Now consider the case where the productivity shock follows the process given by (38), and

the variance of idiosyncratic shocks follows the process given by (41). This specification

differs from the specification in the previous subsection in two important ways. First, the

productivity process (38) is stationary. Second, since ln zt is autocorrelated, so is ση,t.

This introduces predictable variability to the idiosyncratic risk, and thus, to the effective

discount factor, which was i.i.d. in the previous subsection. Specifically, the effective

discount factor is now given by

ln β̃t,t+1 = ln β̄ +
1
2
γc(γc − 1)b ln zt+1

Its conditional expectation then becomes

Et[ln β̃t,t+1] = ln β̄ +
1
2
γc(γc − 1)b

(
ρz ln zt −

σ2
z

2(1 + ρz)

)
which fluctuates over time. Indeed, when γc < 1 and b < 0, the productivity shock today

increases zt as well as the expected value of the effective discount factor, Et[ln β̃t,t+1]. On

the other hand, when γc > 1 and b < 0, the shock increasing zt decreases Et[ln β̃t,t+1].

Table 2 shows the welfare costs of business cycles, ∆bc, for γc = 0.7, 2 and for b =

0,−0.8. As opposed to the case of permanent shocks in the previous subsection, when

b = 0, ∆bc is negative for the both values of γc. In addition, its absolute value is much

smaller. As in the permanent-shock case, countercyclical idiosyncratic risk increases the

welfare gain of business cycles for γc = 0.7, and magnifies the welfare cost of business

cycles when γc = 2. When γc = 2 and b = −0.8, the welfare cost of business cycles is

sizable (12.2 percent), even though the productivity process is stationary.

Figures 5-8 show impulse response functions to a one-standard deviation shock. In

contrast to the previous subsection, now the impulse response functions under b = 0

and b = −0.8 differ significantly. When γc < 1, countercyclical idiosyncratic risk tends

to magnify the effect of a productivity shock: the responses of output, investment, and

labor are all greater when b = −0.8 than when b = 0. This is because when γc < 1, a
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current productivity increase tends to increase the discount factor between the current and

the next periods, which tends to increase the investment demand and the labor supply.

The opposite would happen when γc > 1, where a productivity increase in the current

period tends to reduce the effective discount factor between the current and the next

periods, which tends to lower investment and labor supply. Thus, now the cyclicality of

the idiosyncratic risk affects how the aggregate economy responds to a productivity shock.

But, as these figures show, again, the difference in the impulse response functions between

the two policy regimes is minimal. And as Table 2, the difference is negligible from the

viewpoint of welfare. The welfare cost of adopting the inflation-targeting regime remains

to be very small: ∆inf is merely 0.0024 percent for γc = 2 and b = −0.8, even though

∆bc = 12.2 percent in that case.

To summarize, with countercyclical idiosyncratic shocks, the welfare cost of business

cycles can be sizable, and also, it may amplify or dampen the responses of the aggregate

variables to a productivity shock, depending on the value of γc (inverse of the elasticity

of intertemporal substitution of consumption). However, it does not affect how monetary

policy should be conducted. Even with countercyclical idiosyncratic shocks, the optimal

monetary policy is essentially given by the one that keeps the inflation rate at zero.

4 Conclusion

In this paper we have developed a New Keynesian model with uninsured idiosyncratic

income shocks, and analyzed the optimal monetary policy. We are particularly interested

in the case where the variance of idiosyncratic income shocks fluctuate countercyclically

over time. Our calibration exercise shows that, although the existence of such idiosyncratic

income shocks implies a large welfare cost of business cycles, it does not affect much how

monetary policy should be conducted. Specifically, the optimal monetary policy remains to

be very close to the complete price-level stabilization even in the presence of countercyclical

idiosyncratic shocks.

Note that our assumption that idiosyncratic shocks hit both labor and capital income

tends to overemphasize the effect of idiosyncratic shocks. In a model where idiosyncratic

shocks only affect the labor income, the optimal conduct of monetary policy would be

even less affected by the presence of countercyclical idiosyncratic risk.
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γc 0.7 0.7 2 2

b 0 -0.8 0 -0.8

∆bc (%) -0.8191 -1.2983 2.0938 7.3301

∆inf (%) 0.0000 0.0000 0.0002 0.0006

Table 1: Welfare measures with permanent technology shocks

γc 0.7 0.7 2 2

b 0 -0.8 0 -0.8

∆bc (%) -0.0171 -0.6191 -0.0073 12.2258

∆inf (%) 0.0000 0.0001 0.0000 0.0024

Table 2: Welfare measures with temporary technology shocks
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Figure 1: Impulse responses to a permanent productivity shock when γc = 0.7 and b = 0.

Solid lines = Ramsey policy; dashed lines = inflation targeting.
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Figure 2: Impulse responses to a permanent productivity shock when γc = 0.7 and b =

−0.8. Solid lines = Ramsey policy; dashed lines = inflation targeting.
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Figure 3: Impulse responses to a permanent productivity shock when γc = 2 and b = 0.

Solid lines = Ramsey policy; dashed lines = inflation targeting.
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Figure 4: Impulse responses to a permanent productivity shock when γc = 2 and b = −0.8.

Solid lines = Ramsey policy; dashed lines = inflation targeting.
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Figure 5: Impulse responses to a temporary productivity shock when γc = 0.7 and b = 0.

Solid lines = Ramsey policy; dashed lines = inflation targeting.
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Figure 6: Impulse responses to a temporary productivity shock when γc = 0.7 and b =

−0.8. Solid lines = Ramsey policy; dashed lines = inflation targeting.
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Figure 7: Impulse responses to a temporary productivity shock when γc = 2 and b = 0.

Solid lines = Ramsey policy; dashed lines = inflation targeting.
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Figure 8: Impulse responses to a temporary productivity shock when γc = 2 and b = −0.8.

Solid lines = Ramsey policy; dashed lines = inflation targeting.
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