RIETI-METI-NEDO-AIST Symposium ''R&D Partnership under the Globalized Economy - Our Experience and the Future'' September 3, 2007

Challenges to "Eco-Innovation" - Energy Saving and Beyond -

Michiharu Nakamura, Ph.D. Fellow, Hitachi, Ltd.

1. Energy Demand

and Energy Saving Policy

1-1

Inspire the Next

1-2 Innovation Stages of Japanese Electronics Industry

Eco-Innovation

Energy Saving Policy by METI

Sector	Challenges		
Industry	 Super-combustion Technology 		
Consumer	 Energy-saving House Structure Energy-saving Equipments 		
Transport	Intelligent Transport Systems		
Common / Basic	Power Devices for Automobiles & Information Appliances		

Energy Saving Action Plans of Japanese Industries

Industry	Targets	
Iron & Steel	 10% energy saving in manufacturing processes 	
Chemical	10% reduction of energy consumption rate	
Paper		
Cement	 Energy saving to the utmost 	
Electric Power	•20% reduction of CO ₂ emission rate	
· · · · · · · · · · · · · · · · · · ·	····	

(1997 'Nippon Keidanren', *i.e.* Japan Business Federation)

State-of-the-art Energy-saving & Eco-In**no**vation Green Technology - Energy Saving & Beyond -Knowledge-based innovation Multi-disciplinary technologies Linkage of technologies and

art / social sciences

1-4

Promotion for Eco-Innovation

- ✓ Maximizing resource recycling
- ✓ Multi-step energy utilization
- ✓ Developing substitute materials for rare metals

(2) Zero Emission Type Social Infrastructure

- Super-efficient energy supply system (Power Generation and Energy Storage)
- ✓ Super-efficient energy transport system

(3) Sustainable Living

Renovation for rationale of environmental values

(4) Human-centric Innovations

✓ KANSEI (Sensibility) and technology assimilation

(5) Software Tools for Eco-Innovations

 ✓ e.g. Visualizing environmental loads through whole supply chain

(6) Global Collaboration

Innovation Roadmap, collaborative development

1-5 Strategic Technologies in Energy Field

Reproduced from Roadmap of METI

Power Generation and Energy Storage

- ✓ High Temperature Gas Turbine
- ✓ A-PFBC (Advanced Pressurized Fluidized Bed Combustion Combined Cycle)
- ✓ AHAT (Advanced Humid Air Turbine)
- ✓ A-USC (Advanced Ultra Supercritical Steam Turbine)
- ✓ IGCC (Integrated Coal Gasification Combined Cycle)
- ✓ Lithium Ion Battery
- ✓ Fuel Cell: SOFC (Solid Oxide Fuel Cell) / PEFC (Polymer Electrolyte Fuel Cell)

Energy Saving

- ✓ Micro Plant System
- ✓ Information Equipment & System: Multi Processor / Sever / Network / Storage
- ✓ High Efficiency Heat Pump
- ✓ High Efficiency Lighting: LED / Organic EL
- ✓ Hybrid & Electric Vehicle / FC Vehicle
- ✓ Highly Insulated Airtight House and Building
- ✓ Device: SiC / Spintronics / 3D-Device / Low Power HDD / Flexible Display

New Challenges in Power Generation & Energy Storage

2-2 Class 700 °C A-USC* Plant System

HITACHI Inspire the Next

2-3

Today

Cell-phone

0

maxell

Applications of Li-ion Battery

Emergency Power Source for Wireless Base Station →

Large-scale Power Storage/ Electric-load Leveling

Energy Storage System for Smoothing Grid Integration \rightarrow **Plug-in Hybrid** Motor Vehicle

Near Future

Supported by NEDO

SOFC* Co-generation System

Class 10 kW Module Structure

Supported by NEDO Copyright © Hitachi, Ltd. 2007. All Rights Reserved

3

3. New Challenges in Energy Saving

3-1

Microreactor

Conventional Batch Process

- Reaction in Large Space
- ✓ Heterogeneous Mixing
- ✓ Limited Yield

Microreactor

- ✓ Reaction in Small Space
- ✓ Homogeneous Mixing
- ✓ Higher Yield with lower energy e.g. 58%(batch) □ 98% (bromination of dimethyl phenol)

25 *µ* m

Numbering-up of Microreactors

- Same Reaction Mechanism as in Single Microreactors
- ✓ Less Time needed from Test-Tube-Scale R&D to Plant-Scale Production

Numbering-up

Variation of Microreactors

Emulsification Condensation

3-2 Electric Power Saving (EPS) Data Center

- User's own computer to computers over the network
- Evolution from mainframe to server to data center
- Computer has become one component of EPS data center

Equipment Mainframe	Open Server	PC Server	Blade Server	Module Server (Pico Server)
Equipment + Application Software	Commercial Software	Internet	Web Service	Web2.0, SaaS
<section-header></section-header>				 •Local cooling •Modularized servers, routers, storage •DC direct power supply

Dala Genie

3-3 Activities to Save Energy of ICT in U.S.

Activity	Promoting body	Purpose
Data Center Energy Efficiency Act	U.S. Congress	Promotion of energy efficient servers (enacted : Dec. 2006)
Energy Star	EPA	Study & promotion of energy efficient servers, PCs and data centers
Climate Savers Computing Initiative	Google, Intel	Realization of energy efficient PCs, promoted by manufacturers of PC and its components (Jun. 2007)
Green Grid	AMD, HP, Sun, IBM	NPO to Improve energy efficiency of data center (Feb. 2007)
SPECpower	SPEC	Benchmark for evaluating the energy efficiency for server class computers (discussion started: May 2006)

EPA : Environmental Protection Agency NPO : Non-Profit Organization

SPEC : Standard Performance Evaluation Corporation

4. Toward Eco-Innovations in ICT

4-1 R&D Challenges for Nano-ICT

- 1. Focused investment in energy-saving Nano-ICT projects
 - ✓ "More Moore" and "More than Moore" type R&D
 - Advanced CMOS, 3D System LSI, New Power Supply System, Optical Interconnection,
 - Novel Magnetic Recording, Flexible Display Panel, Energy-Saving Manufacturing, etc.
 - ✓ Increasing R&D budget
- 2. Industry-university-government collaboration for R&D on energy-saving Nano-ICT projects.
 - ✓ Improvement of Collaborative R&D Schemes (joint COE)
 - Collaborative R&D centers for Si technology (More Moore) have been established.
 - Nano-ICT R&D Platform for novel concept (*More than Moore*) is urgently needed.
 - Expected functions:
 - •R&D network hubs
 - Comprehensive research from material to system
 - Prototyping ability
 - Training and global recruiting of researchers
- 3. Enactment and Implementation of guideline

on energy-saving ICT

- ✓ Energy-saving goals and R&D Roadmaps
- ✓ Incentive to R&D on energy-saving ICT

4-2 Power Devices for Low Power Consumption

Copyright © Hitachi, Ltd. 2007. All Rights Reserved

HITACH

Inspire the Next

4-3

R&D on 3D-Device

3D Packaging for Reduction of I / F Power Consumption

3D Packaging Filter for Low Cost Power (Prof. Sakurai, U. of Tokyo)

- Breakthrough technology to achieve power reduction in the information explosion.
- Consolidation of optical technology with digital/analog CMOS technology.
- Si nano photonics is emerging technology.

Copyright © Hitachi, Ltd. 2007. All Rights Reserved

Progress of Hard Disk Drive Tech.

4-5

Non-Volatile RAM for Reducing Power Consumption of Mobile Equipment

Supported by MEXT

■Target : Large Area, Ultra Light, Ultra Thin, Highly Flexible, Low Temperature Process

Summary

- 1. For the sustainable development of the global society, a new paradigm of innovation, Eco-Innovation, is designed and ongoing.
- 2. Eco-Innovation is aimed at creating socially important outcomes based on the development and implementation of breakthrough technologies and the fusion of technology and art/social sciences.
- 3. Eco-Innovation includes sustainable manufacturing system, zero-emission-type social infrastructure and sustainable living.
- 4. In the era of information explosion, energy saving in ICT is critical. Nano-ICT plays a key role. Establishment of global COE for novel nano-ICT development and product incubation will be a countermeasure.
- 5. Global collaboration is a key for target setting, R&D efficiency improvement, and support for developing regions.

Thank you for your attention.

Hitachi Central Research Laboratory