A Future Proof Spectrum Policy

RIETI Policy Symposium December 4, 2003

Peter K. Pitsch Communications Policy Director Intel Corporation

A New Age Opportunity v. Age-Old Obstacles

- Going digital = revolutionary change in RF
 - Most significant technical change in RF history
 - Any computing device will also communicate

But...

- Command and Control Still Predominates in Regulation
 - Cumbersome, Litigation-prone, Politicized
 - Allows incumbents to block innovators to stymie competition
 - Rigidities lock in less valuable uses and technologies
 So. . .
- Spectrum reform is next big thing
 - Technical flexibility must predominate

Radio Free Intel-How "Moore's law meeting Marconi's transmitter" will unleash innovation in radio.

inta

Moore's law impact #1- More MIPS By 2010 based on Moore's Law, a single microprocessor will contain several billion transistors and process more than a trillion instructions per second.

Moore's law influence #2- CMOS RF

56Hz Transformer Coupled Ouad. VCO

Siliconizing Radios

1 transistor design

VCO power amplifier low noise amplifier synthesizer high quality passives

• 90 nm digital CMOS process: Low V device used Low V digital device speed can be used effectively Highest speed oscillator achieved in CMOS Scaling CMOS benefits microwave circuits int_{ol}.

Intel Labs

Digital Convergence

A physical device designed for a specific purpose ... Transparent

A core function embedded in every device.

Radio Free Intel The Vision

Fully integrated Always connected Multiple networks

Radio Free Intel System-level Innovation

Adapting to the User

Adapting to the Network

000

Adapting to Physics

IF (> log N and

8ec ≤ N3-4e

his probability is at most

Spectrum Scarcity

FCC Spectrum Allocations (3KHz – 300GHz)

...And it's all spoken for (spectrum is a scarce resource)!

And It's Getting Scarcer

intel

But Is This Scarcity Artificial?

Inefficient distribution of a sufficient supply

- Too much in low valued uses
- Too little in high valued uses
- Markets can't improve the distribution because of improperly structured spectrum rights
 - Limited to specific uses
 - Limited to specific users
 - Some not available to any users

What is the Solution?

Markets

 Increase the use of competitive markets in determining who has the spectrum and how it is used

Technology

- Increase supply by improving technical efficiency in response to market incentives
- Increase competition by making spectrum more fungible

Recommendations

Support non-interfering easements –Underlays, e.g., UWB –Overlays, e.g., agile radios Support license spectrum reforms

Our Regulatory Responsibility

C

MCI

MII

RAI

MIC

MPHPT

SITT FCC

C

TEL

ANATEL

Regulatory Enablers, Not Barriers

Ultra Wideband (UWB)

- Very high data rates
 "Underlay" technology
- Peaceful coexistence
- All-CMOS, low power & cost

intel

Underlay (UWB) Policy

Fundamental Problems

- Asymmetrical competition (one service against many); by operating over a wide swath of spectrum, UWB collects a wide swath of opponents.
- UWB has no status in ITU (no allocation, operates on "non-conforming exception)
- ALL CURRENT ACTIVITY UNDERTAKEN FROM A HOSTILE, PROTECTIONIST CONTEXT

Doctrinal Issues

- What is "Acceptable Interference"?
 - "Why should I (incumbent) accept any?"
 - 1 db rise in noise floor
 - US- NO, cites Public Safety
 - EC- Maybe
- Un-intentional vs. Intentional
 - Analogous to non-profit entities being exempt from taxes.
 - Big distinction for ITU
 - Used by opponents.
- Exclusivity

inte

- What rights of exclusion do licensed operators have?

Agile Radios

- Able to find and use opportunistically vacant "white-space" in spectrum.
- Utilizes new techniques to decide how/where to operate based on current environment.
 - Spectrum sampling to learn your current environment "Cognitive"
 - Use various control mechanisms (TPC, DFS, Location, etc.) to adjust radio operating parameters to mitigate interference.

Agile radio policy International Proceedings- Intel Positions

• EC TCAM Sub Working Group on SDR & R&TTE Directive

- Examining impact of SDR on R&TTE Directive for conformity.
- Main issue is who is responsible for software changes
 - Intel believes the R&TTE directive does not pose a barrier to SDR deployment; and
 - Questions arising from responsibility for software software changes can be addressed by industry standards initiatives.

ITU-R Report/Recommendation on SDR

- Intel Drafted US Submission
 - Promote innovative spectrum management
 - Access to new spectrum
 - "Impedance" matching spectrum to service.
 - Global circulation
 - Allow frequency agile devices to migrate
 - Coordinate certification regimes
 - Encourage standards activity
 - Justifies forbearance by regulators

Agile radio policy

• FCC U-NII Devices in 5Ghz (FCC 03-110)

- Intel strongly supportive
- Only the central controller is required to have DFS capability
- No mandated TPC triggers or DFS implementations
- Compliance date for rules tied to test procedure availability

Use of Vacant "white-space" Spectrum

- Unlicensed Devices in TV bands (FCC 02-380)
 - Radical reform
 - Great propagation characteristics
 - -75 Companies filed comments
- Intel Recommendation
 - Spectrum sampling to learn your current environment
 - Use various control mechanisms (TPC, DFS, Location, etc.) to adjust radio operating parameters to mitigate interference
 - Demonstrate cognitive system < 1st H '04

Topology of Concern

Ease of Channel Characterization using 3kHz Filter

Vacant Channels Exist in SF Bay Area Sweep between Channels 21-51 (Intel Data)

List of Channels Available SF Bay Area (Intel Data)

642 30th Street @280ft		2080 Gough Street @394ft			
Vacant	Unusable for TV Receiver	Vacant	Unusable for TV Receiver		
21	22	21	22		
23	25	23	25		
33	28	33	31		
35	31	35	40		
46	36	46	42		
	40		50		
	42				
	47				
	48				
	49				
	50				
	51				

Support license spectrum reforms

- Remove use restrictions
- Define outputs (emissions at boundaries)
- Assign spectrum ("Swiss cheese") exhaustively
- Facilitate simultaneous exchange
 - Voluntary
 - Reveals "opportunity cost"
 - Simultaneity
 - Reduces transaction costs and holdout problems
 - Facilitates aggregation and relocation

Broadband innovation 802.16; Designed from ground up for outdoor MAN

- Higher throughput at longer ranges (up to 50 km)
 - Better bits/second/Hz at longer ranges
- Scalable system capacity
 - Easy addition of channels maximizes cell capacity
 - Flexible channel bandwidths accommodate allocations for <u>both</u> <u>licensed and license exempt</u> spectrum
- Coverage
 - Standards-based mesh and smart antenna support
 - Adaptive modulation enables tradeoff of bandwidth for range
- Quality of Service
 - Grant/Request MAC supports voice and video
 - Differentiated service levels: E1/T1 for business; best effort for residential
- Cost & Investment Risk
 - Interoperable equipment lets operators purchase equipment from more than one vendor – WiMAX-Certified*
 - Standards-based platform improves OpEx by sparking innovation across the ecosystem: radio, NW mgmt, antennas, services

Broadband innovation *Evolution of Broadband Wireless*

Point to Multi-Point, Last Mile Wireless Equipment Timeline

'90's	'01	'02	'03		'04	'05
Off-the-Shelf 802.11 for License Exempt; Proprietary for Licensed		Proprietary 70+ OEMs		Solutions & Proprietary		
 Spectrum: License exempt 2.4 GHz Licensed MMDS 2.5 GHz (AT&T Project Angel, Sprint BB Direct) Licensed LMDS (26, 28, 39 GHz; Winstar, Teligent, ART) Data rate: 2-11 Mbps peak Chip sets: use 802.11 or DOCSIS PHY or proprietary 		 Spectrum: License exempt 2.4 & 5.x GHz Licensed 2.5, 3.5 GHz, etc. Data rate: 6-54 Mbps peak Chip sets: OEMs develop their own Silicon - some use 802.11x PHY with custom MAC Air interface: OFDM & CDMA approaches Proprietary mesh network and antenna techniques (beamforming, MIMO) 		 Spectrum: < 11 GHz Data rate: Up to 75 Mbps peak Chip sets: Volume silicon supplier Air interface: 256 OFDM Standards: Interoperable, carrier- class, economies of scale, rapid innovation, lower costs 		

Spectrum in 300-3000 MHz Range Fully Available to Market

Cellular 50 MHz
PCS 90 MHz
SMR 15 MHz
Other 2545 MHz

Spectrum Potentially Available for Market Allocation by 2007

Broadband Policy MMDS/ITFS NPRM

• 2.500-2.690 GHz

- Underutilized
- > Cellular & PCS
- Interleaved band plan
 - 1-way video
 - 2-way data precluded
- ITFS site licensing
- Reform
 - Coalition plan
 - Deinterleaving
 - Market by market transition
 - Improvements
 - Facilitate aggregation
 - Eligibility
 - Certainty

Prime Spectrum Candidate

Ingredients for Efficient Markets

Properly defined and assigned spectrum usage rights

- Exclusive licenses, clear rights and obligations
- Exhaustively assigned (all areas, all spectrum)
- Rights easily transferable, divisible, aggregatable
- Flexible choice of services and technology

Making Occupied Spectrum Available to the Market

- Exhaustively assign area-wide blocks with interference protection for incumbent uses: "license the Swiss cheese, protect the holes"
- Licenses should be exclusive, flexible and transferable
- Establish efficient market-like rules for clearing incumbents: new licensees can move incumbents to comparable facilities

Making Occupied Spectrum Available to the Market

- This "overlay" license approach successfully applied to PCS
- Should be applied more broadly- examples:
 - Applied to 60-69, but missing rules for efficient clearing of incumbents
 - MDS/ITFS
 - Reallocate ITFS for flexible use
 - Auction overlay licenses in ITFS spectrum

Key Messages

- Intel innovating through key wireless research
- Intel working with industry
- Intel working to define future spectrum policies
 - Cooperate with regulators and stake holders
 - Worldwide effort
 - Recognize fundamental problem
 - Make incremental reforms
 - "And/both" not "either/or"

Productivity Effects

- U.S. Labor productivity
 - '73-'95 1.35%
 - <u>– '95-'00 2.54%</u>
- ICT Contribution
 - 2/3's due to ICT
 - Production & Use
- Effect
 - Productivity = living standard
 - 2x living standard
 - 1.35% = 53 years
 - 2.54% = 28 years
 - One Generation Ahead!