A Close Look at Loan-To-Value Ratios in Japan: Evidence from Real Estate Registries

Arito Ono, Hirofumi Uchida, Gregory Udell, and Iichiro Uesugi

Presented at

HIT-TDB-RIETI International Workshop on the Economics of Interfirm Networks
November 30, 2012

Hirofumi Uchida
Graduate School of Business Administration, Kobe University

[Views expressed in this paper are those of the authors and do not necessarily reflect the views of the institutions with which they are affiliated]
BACKGROUND AND MOTIVATION
Recent financial crisis witnesses:

+ Credit booms/busts often accompanied by surges in real estate prices
+ "excessive risk taking by banks"
 - loans secured by real estate underwritten based on lax lending standards

A measure of risk-taking: Loan-to-value (LTV) ratios

+ \(\frac{\text{amount of a loan}}{\text{value of assets pledged as collateral}} \)
 - represent lenders’ risk exposure
 - decrease in V by 1-LTV percent \(\rightarrow \) debtor is in negative equity \(\rightarrow \) lender may suffer from losses (given default)
Background and Motivation

- LTV ratios are important in shock amplification mechanism within an economy
 - Effects of income shocks on house prices and/or mortgage borrowings are larger in countries/periods where the LTV ratios are higher
 - strong financial accelerator mechanism positively associated with high LTV ratio
Background and Motivation

- Discussion on macroprudential policy
 - to construct the effective framework to
 - ... deal with banks’ excessive risk-taking through secured loans
 - ... curb the amplification of external shock within market /economy
- One prospective measure
 - restriction (cap) on LTV ratio (e.g., FSB 2012)
 - Already applied in a number of countries to tame real estate booms and busts
 - Example) Hong Kong and Korea (hard limit), U.S., U.K. and Germany (soft limit (BIS risk weight))
 - But mostly for residential loans
 - Japan: No restriction
Background and Motivation

- Our focus: LTV ratios for business loans
 - LTV for business loans also important
 - Taking real estate as collateral is a common practice
 - “fixed-asset lending” as one of the lending technologies (Berger and Udell 2002)
 - Japan’s experience during its bubble period (late 1980s – early 1990s)
 - Conventional wisdom
 - Banks’ excessive risk-taking through higher LTV ratio loans
 - Lax lending standards in anticipation of further surges in real estate prices
 - Credit bubbles and the bad loans problems
 - “Caps on the LTV ratio could have curbed banks’ excessive risk-taking?”
Sparse empirical evidence on the LTV ratio using micro-data

→ validity of the conventional wisdom unclear:
 1. whether the LTV ratio procyclical
 2. what determines the ratio?
 3. whether high LTV borrowers perform poorly?

→ also, no evidence to judge:
 × whether we should impose caps on LTV ratios
 ✴ Do the caps constrain risky loans only?

→ Important to answer the questions above
Aim of the paper: answer these questions by showing various facts of the LTV ratios

- We examine
 1. the evolution of loan-to-value (LTV) ratios,
 2. their determinants, and
 3. the ex post performance of the borrowers by LTV ratios

- Using unique data
 - nearly 400,000 LTV ratios from 1975 to 2009
 - Source: real estate registry info compiled by the Teikoku Databank (TDB)
 - the largest credit information provider in Japan
LTV definition

- LTV ratios = L/V (443,379 obs.)
 - L: loan amount (extended or committed)
 - Available in the TDB database
 - V: value of land pledged
 - Lands pledged identified in the TDB database
 - V= its acreage * estimated price (hedonic approach: Appendix A)
- Other information (to link with LTV)
 - Basic borrower characteristics (for 288,472 obs. (in 1981-2009))
 - e.g., # of employees, industry, location, and identity of mortgagees (lenders)
 - Borrower financial statement information (for 73,454 obs.)
 - Lender financial variables (for a further subset of the sample)
 - For ordinary banks, Shinkin banks
Data restrictions

In return for the rich information, the data have limitation

- Due to the data collection by TDB’s credit research

1. Sample firms mostly small and medium-sized enterprises (SMEs)
2. Limited coverage
 - Not cover the entire registration (but sufficient coverage)

 - 1975-2007 registration = those survived until 2008 on
 - Concern for survival bias
 - Control for firm- and loan-characteristics
Our analysis

Threefold analyses

1. the evolution of loan-to-value (LTV) ratios (sec. 3.1)
2. their determinants (sec. 3.2, 3.3)
3. the ex post performance of the borrowers by LTV (sec. 4)

Findings

1. LTV ratio exhibits counter-cyclicality
2. LTV ratios associated with many loan-, borrower- and lender-characteristics
3. No worse ex post performance for high LTV firms
RESULT 1

EVOLUTION OF LTV (SEC. 3.1)
Background information

- Business cycle and the land price evolution in Japan
 - Figure 2 (aggregate data): real GDP, the average land price, bank loans and the business conditions index
 - Confirm: surges during the bubble (late 1980s and early 1990s)
Evolution of L and V

- Figure 3: 25, 50, and 75 percentile of L and V through the business cycle (our micro data: for individual loans)
 + Finding: Both L and V fluctuate in a pro-cyclical manner
Evolution of LTV

- Figure 4: 25, 50, and 75 percentile of our LTV through the business cycle

- Finding: counter-cyclicality, at least until early 2000s
 - Increase in L during the bubble more than offset by increase in V
 - Banks’ exposure did not increase during the bubble
 - Simple LTV cap might not have been effective
Evolution of LTV

- **Anything wrong with data or methodology?**
 - Counter-cyclicality *not* due to land *price stickiness* (see fig. 3)
 - Unlikely due to *survival bias* (bias → older borrower better → more L for older borrowers → decreasing trend in LTV)

- Consistent evidence: counter-cyclicality of LTV for *housing* loans
Evolution of LTV

- Robustness

 + Figure 6: Median LTV under different definition of \(V \) (denominator)
 - Perfect foresight: \(V(t+1) \)
 - Naïve interpolation: \(V(t-1) \cdot \{V(t-1)/V(t-2)\} \)
Closer look at LTV during the bubble (y1991)
- Higher LTV for more land price surge? (lax lending?)
- Figure 7: LTV sorted by land price appreciation (V(91)/V(86))

Finding
- Panel (A): more land price surge \rightarrow lower LTV \rightarrow (interpretation) reluctant to lend more (given V)
- Panel (B) Counterfactual LTV (L(91)/V(86)): land price surge \rightarrow L larger (comp. w/V(86)) for higher LTV loans (Interpre.: lax standards)
RESULT 2

UNIVARIATE ANALYSIS (SEC. 3.2)
Univariate analyses

- Compare LTV by loan-, borrower-, and lender-characteristics

 + Aim

 - To show various facts of LTV ratios
 - Determinants of LTV ratios
 - Especially, association with borrower risk and performance (for policy purpose)

 + In this presentation

 - Below, we report only notable results

 ✴ The other results: please refer to the paper
Sec. 3.2.2 (Figure 9): Median LTV by mortgage priority

Finding

- Higher priority mortgages have lower LTV ratios (almost by definition)
Share of loans by priority

- Sec. 3.2.2 (Figure 10): Share of loans by priority

- Finding
 - Higher share for lower priority mortgages during the bubble period (interpretation: lax standard)
LTV by industry

- Sec. 3.2.3 (Figure 11): Median LTV by industry

- Finding
 - Higher LTV for Real estate, Services, and Retail and restaurants
 - Higher LTV for Construction before the bubble
 - Volatile LTV for Real estate
Sec. 3.2.4 (Figure 12): LTV by region

Finding

- Lower and stable LTV in urban areas (S. Kanto (incl. Tokyo), Keihanshin)
- Decreasing trend in 1980s apparent only for urban areas
- Earlier bottom for South Kanto (in 1988)
LTV by firm characteristics

- Sec. 3.2.5 (Figure 13 (A)): LTV by firm age

- Finding
 - Lower LTV for older firms (4th q.) especially during the bubble
 - (Interpretation: more assets or lower loan demand for older firms)
LTV by firm characteristics

- Sec. 3.2.5 (Figure 13): LTV by employee size (panel B), sales (panel C)

- Finding
 - Higher LTV ratio for larger firms, especially from the mid 2000s
 (Interpretation: large firms less financially constrained)
 - Smaller difference by firm size in pre-bubble period
LTV by firm characteristics

- Sec. 3.2.5 (Figure 13 (D)): LTV by ROA

- Finding
 - No clear relationship between LTV and profitability
LTV by firm characteristics

- Sec. 3.2.5 (Figure 13 (E)): LTV by capital asset ratio

- Finding
 - Lower LTV for higher capital-asset ratio firms (4th q.)
 - (Interpretation: lower loan demand for lower-leverage firm)
LTV by lender type

- Sec. 3.2.6 (Figure 14 (A)): LTV by lender type

Finding

- Lower LTV for city (larger) banks before 2000
- Stable and consistently low LTV for Shinkin banks (small-sized)
- Note: Difference by lender type or difference by region?
 - E.g., City banks lend to borrowers in rural areas
Finding

- Higher share for city banks during the mid 1980s
- (Interpretation: boom-and-bust cycle of real-estate loans by city banks)
- Maybe a consequence of financial disintermediation
 - Large banks lend to “non-traditional” borrowers
LTV by lender characteristics

- Sec. 3.2.8 (Figure 18 (A)): LTV by bank size

- Finding
 - LTV lower for larger banks (4th q.) until early 2000s
 - (Interpretation: larger clients for larger banks and/or larger banks more risk-averse)
Univariate analysis

- However, these are after all univariate analyses

 - To examine determinants of LTV, unsuitable

 → Regression analysis (sec. 3.3)
RESULT 3
REGRESSION (SEC. 3.3)
Regression

- Dependent variable: **LTV ratio**
- Independent variables:
 - **Loan characteristics**: Revolving or not, priority
 - **Borrower characteristics**: Sales, ROA, capital asset ratio, age, industry, region
 - **Lender characteristics**: Main bank status, bank type, asset size, ROA, capita asset ratio
 - **Action program dummy**: = 1 if \(year \geq 2004 \) and lender is *regional or Shinkin bank, or credit cooperative*
 - Effect of *Action Program on Relationship Banking* by the Financial Services Agency (FSA) from 2003
 - requested regional lenders (regional, Shinkin, and credit cooperatives) to avoid an “excessive” reliance on collateral and personal guarantees
 - Expected impact: positive
 - **Registration year dummies**: represents unexplained cyclicality
Regression

- Results: Table 2 (pls. see p.41)

- LTV lower for revolving mortgages
 - Lenders cautious for revolving mortgages that do not specify maturity

- LTV lower for senior loans

- LTV higher for larger firms
 - Smaller financial constraints for large borrowers

- LTV lower for sounder and older firms
 - Interpretation: no need to raise funds and/or sufficient assets to pledge

- LTV higher for Real estate, Retail and restaurants, and Services firms
 - Int.: lax lending for Real estate firms
 - Int.: insufficient properties to pledge for Retail/restaurants and Services
Regression

- Results: Table 2 (pls. see p.41)
- LTV lower for urban areas
 + Even after controlling for other borrower/lender characteristics
 + Interpretation: Merit of agglomeration
 + Int.: lenders cautious for revolving mortgages that do not specify maturity

![Table 2: Regression results]

Table 2 Regression results

<table>
<thead>
<tr>
<th>Loan characteristics</th>
<th>Panel (A): w/o lender financial variables</th>
<th>Panel (B): w/ lender financial variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent variable: LTV</td>
<td>Coef.</td>
<td>Std. Err.</td>
</tr>
<tr>
<td>L_REV</td>
<td>-0.053***</td>
<td>0.012</td>
</tr>
<tr>
<td>L_PR1</td>
<td>-0.010***</td>
<td>0.021</td>
</tr>
<tr>
<td>L_PR2</td>
<td>-0.159***</td>
<td>0.022</td>
</tr>
<tr>
<td>L_PR3</td>
<td>0.097**</td>
<td>0.026</td>
</tr>
<tr>
<td>L_PR4</td>
<td>0.100**</td>
<td>0.031</td>
</tr>
<tr>
<td>Firm characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F_LN_SALES</td>
<td>0.178***</td>
<td>0.004</td>
</tr>
<tr>
<td>F_ROA</td>
<td>0.189**</td>
<td>0.025</td>
</tr>
<tr>
<td>F_CAP</td>
<td>-0.049***</td>
<td>0.005</td>
</tr>
<tr>
<td>F_AGE</td>
<td>-0.008</td>
<td>0.000</td>
</tr>
<tr>
<td>F_IND1</td>
<td>0.665**</td>
<td>0.027</td>
</tr>
<tr>
<td>F_IND2</td>
<td>0.568**</td>
<td>0.029</td>
</tr>
<tr>
<td>F_IND3</td>
<td>0.493**</td>
<td>0.029</td>
</tr>
<tr>
<td>F_IND4</td>
<td>0.876**</td>
<td>0.034</td>
</tr>
<tr>
<td>F_IND5</td>
<td>1.141**</td>
<td>0.035</td>
</tr>
<tr>
<td>F_IND6</td>
<td>0.527**</td>
<td>0.039</td>
</tr>
<tr>
<td>F_IND7</td>
<td>0.809**</td>
<td>0.032</td>
</tr>
<tr>
<td>F_REG1</td>
<td>0.623**</td>
<td>0.032</td>
</tr>
<tr>
<td>F_REG2</td>
<td>-1.131</td>
<td>0.017</td>
</tr>
<tr>
<td>F_REG3</td>
<td>-0.305**</td>
<td>0.024</td>
</tr>
<tr>
<td>F_REG4</td>
<td>0.217**</td>
<td>0.021</td>
</tr>
<tr>
<td>F_REG5</td>
<td>-0.398**</td>
<td>0.019</td>
</tr>
<tr>
<td>F_REG6</td>
<td>-0.515**</td>
<td>0.044</td>
</tr>
<tr>
<td>F_REG7</td>
<td>-0.490**</td>
<td>0.024</td>
</tr>
<tr>
<td>F_REG8</td>
<td>-0.734**</td>
<td>0.035</td>
</tr>
<tr>
<td>F_REG9</td>
<td>-0.459**</td>
<td>0.022</td>
</tr>
</tbody>
</table>
Regression

- Results: Table 2 (pls. see p.41)
- LTV higher for regional lenders (regional, Shinkin and credit cooperatives) and other lenders
 - Compared with city banks
- LTV lower for lenders subject to Action Program (to reduce dependence on collateral)
 - Inconsistent with prior prediction
 - Int.: to reduce NPLs (also aim of Program)
 - Int.: non-secured lending increased
- LTV exhibit counter-cyclicality!
 - Positive compared with y1990
 - Even after controlling for various factors
 - Even after controlling for bank financial variables
 - No lax lending standard during the bubble
EX POST PERFORMANCE (SEC. 4)
Ex post performance

- Prior prediction for ex post performance of high LTV borrowers
 - At first glance, **POOR**
 - High LTV ratio loans are **riskier**
 - high credit-risk **exposure** for the lender
 - (= reason for the **ceilings** on LTV)
 - To curb the riskiness of the lender
 - To prevent their excessive risk taking
 - But maybe **NOT POOR**
 - LTV is determined by **various factors**
 - Higher LTV ratio might be set for **safer** borrowers
 - (⇒ LTV cap might prevent creditworthy borrowers from borrowing)
Methodology

DID (difference-in-differences) comparison

1. **X**: performance variable
 - Firm size or growth: # of employees (y1981-), sales (y1989-)
 - Firm profitability: ROA (y1989-)
 - Firm soundness: capital-asset ratio (y1989-)

2. Take 5 year difference in X: $(X_{t+5} - X_t)$
 - to eliminate time invariant firm-fixed effects

3. Compare the 5 year difference by LTV ratio

DID measure = $(X_{t+5} - X_t$ for *high LTV* firms) − $(X_{t+5} - X_t$ for *low LTV* firms)
Ex post performance

- Sec. 4 (Figure 19 (A)): Median DID in employee size

\[(X_{t+5} - X_t) \text{ for high LTV firms} - (X_{t+5} - X_t) \text{ for low LTV firms}\]

- Finding: Better performance for high LTV ratio firms during the bubble in terms of firm growth
Ex post performance

- Sec. 4 (Figure 19 (B)) : Median DID in sales
 \[(X_{t+5} - X_t \text{ for high LTV firms}) - (X_{t+5} - X_t \text{ for low LTV firms})\]

- Finding: Better performance for high LTV ratio firms during the bubble in terms of firm growth
Ex post performance

- Sec. 4 (Figure 19 (C)) : Median DID in ROA

\[(X_{t+5} - X_t \text{ for high LTV firms}) - (X_{t+5} - X_t \text{ for low LTV firms}) \]

- Finding: Better performance for high LTV ratio firms during the bubble in terms of profitability
Ex post performance

- Sec. 4 (Figure 19 (D)) : Median DID in capital asset ratio

\[(X_{t+5} - X_t \text{ for high LTV firms}) - (X_{t+5} - X_t \text{ for low LTV firms})\]

- Finding: No significant difference in terms of soundness
Ex post performance

- Results summary
 - In terms of size and profitability (first 3 panels)
 - Around the peak of the bubble
 - Performance of high LTV firms (4th LTV quartile) better than that of low LTV firms (1st LTV quartile)
 - Other periods
 - No such differences
SUMMARY AND CONCLUSION
Main findings

1. **Sec. 3.1:** LTV ratio exhibits **counter-cyclicality**
 + Lower ratios during the bubble period *(fig. 4)*
 - Although L and V exhibit pro-cyclicality *(fig. 3)*
 + Robust to controlling for various loan-, borrower-, and lender-characteristics, and to the consideration for survival bias

2. **Sec. 3.2, 3.3:** LTV ratios **associated** with many loan-, borrower- and lender-characteristics
 + Various facts from univariate/regression analyses

3. **Sec. 4:** **No worse ex post performance** for high LTV firms
 + Rather better performance during the bubble period in terms of firm growth and profitability
Implication

- Conventional wisdom and our findings
 - Conventional wisdom
 - banks in Japan during the bubble lent with lax lending standards \(\rightarrow\) bad loan problems
 - Inconsistent with our MAIN findings
 - But some of our findings are in support of the wisdom
 - Larger amount of loans with high LTV during the bubble when land price surged
 - More low-priority mortgages during the bubble
 - \(\rightarrow\) At least more nuanced view of bank behavior during the bubble needed
Implication

- Policy implication
 - The cap on the LTV ratio as a macro prudential measure
 - Proponents
 - “Cap on LTV ratio \(\rightarrow \) risky loans curbed \(\rightarrow \) reduce bank risk”
 - Our findings
 - do not support this view
 - Low LTV ratios during the bubble period
 - No worse ex post performance for high LTV firms
 - Implication from our findings
 - Cap on the LTV ratio would be harmful for creditworthy borrowers
Extension

- Needed in many directions
 - Esp., need to focus on the margins of the LTV distribution
END OF PRESENTATION

THANK YOU