STRUCTURE AND CHANGE IN PRODUCTION NETWORKS: EVIDENCE FROM US FIRM LEVEL DATA

Vasco M Carvalho and Michael Gofman CREi/UPF/CEPR & UW - Madison

Tokyo, November 2012

INTRO

- Value intermediate input transactions is as large as GDP
 - these flows take place along supplier-customer networks
 - emerging literature stresses how these production networks facilitate the propagation of shocks and affect aggregates
- Yet, limited evidence about the network structure of production and how it changes over time.
 - Supplier-customer relationships are missing in time-series or cross-sectional analysis of firms.
- Our goal is to document important empirical facts about production networks that can help to evaluate existing models and inspire new models.
- Today I will present our preliminary results based on a new proprietary database of supplier-customer relationships.

What we do

- Use a new database of supplier-customer relationships to construct production chains
- Study the relationship between firm characteristics and existence of an supplier-customer relationship
- Search for evidence of positive assortative matching in production chains
- Study whether firm characteristics help understanding the duration of supplier-customer relationships
- Investigate whether matching with more productive suppliers has an impact on the customer

RELATED LITERATURE

- Firm-level network: Cohen and Frazzini (2008), Atalay et al (2011), Gofman (2011), Buraschi and Porchia (2012), Oberfield (2012)
- Industry-level network: Carvalho (2010), Menzly and Ozbas (2010), Acemoglu et al (2012), Antras et al (2012)

Country-level network: Rizova (2011), Chaney (2012)

DESCRIPTION OF OUR DATASET

- New proprietary panel dataset of customer-supplier relationships
- Information is collected from SEC filings, press releases, websites, interviews, and earnings transcripts as well as primary research by provider's analysts
- The data is collected and sold to hedge funds and corporations for portfolio construction, risk management, competitive and supply chain analysis.
- The dataset is similar to Compustat segment data, but it has more relationships because it uses additional sources and is updated daily.

DATA

Quick facts about the data:

- 180,000+ unique relationships (supplier, customer, competitors, partners) reported by for 15,000+ US-traded companies
- Relationships reported about public, private, foreign, domestic, government organizations, and educational institutions
- 34,000 supplier-customer relationships with percent of sales to this customer
- Spanning 2003-2011 (daily frequency)
- Observe start and end dates of customer-supplier relationship
- We use:
 - 38,725 unique supplier-customer relationships for publicly listed 5,260 firms

- US firms, relationships longer than 90 days
- Able to match with Compustat

STRUCTURE OF PRODUCTION CHAINS

FIGURE: Core of the Production Chains in 2010.

◆□ → ◆□ → ◆ 三 → ◆ 三 → つへぐ

I-O NETWORK DATA: FIRMS

Fig. 2. Buyer–supplier network in 2006. GM, Ford, and Chrysler are colored red. Their suppliers are colored orange. All other firms are gray.

- Proprietary data: for each firm gives most important suppliers & customers
- Updates it on a weekly basis; Jan 2003 -December 2011
- Hundreds of thousands of I-O relationships
- Over 15000 firms (>6000 publicly traded firms in US)
- Source: SEC filings, press releases, websites, interviews, earnings transcripts
- & primary research by the data provider's analysts

I-O NETWORK DATA: SECTORS

BEA Detailed Input-Use Data 1997.

- Detailed Sector I-O data from BEA
- Every five years: 1967-2002
- \blacktriangleright \simeq 500 sectors
- Consistent with US National Accounts

・ロト ・ 雪 ト ・ ヨ ト

^{(5%} Threshold)

I-O NETWORK DATA: SECTORS-COUNTRIES

- Sector-Country I-O data from WIOD
- Every year: 1995-2009
- 35 sectors in 40 countries

 Most of world trade included.

IO/Year	n	n_scc	d	ℓ	dm	r(out, in)	ī
Firms (06)	8961	1709	5	5.88	19	-0.04	0.08
US Sectors (02)	422	259	11	4	10	-0.11	0.32
Int. Trade (06)	1485	964	11	6.51	19	-0.05	0.42

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

All Directed, Unweighted Networks

IO/Year	n	n_scc	d	ℓ	dm	r(out, in)	ī
Firms (06)	8961	1709	5	5.88	19	-0.04	0.08
US Sectors (02)	422	259	11	4	10	-0.11	0.32
Int. Trade (06)	1485	964	11	6.51	19	-0.05	0.42

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

All Directed, Unweighted Networks

Short Average Path Length

<i>IO/Year</i>	n	n_scc	d	ℓ	dm	r(out, in)	ī
Firms (06)	8961	1709	5	5.88	19	-0.04	0.08
US Sectors (02)	422	259	11	4	10	-0.11	0.32
Int. Trade (06)	1485	964	11	6.51	19	-0.05	0.42

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

All Directed, Unweighted Networks

- Short Average Path Length
- Short Diameter

10/Year	n	n_scc	d	ℓ	dm	r(out, in)	ī
Firms (06)	8961	1709	5	5.88	19	-0.04	0.08
US Sectors (02)	422	259	11	4	10	-0.11	0.32
Int. Trade (06)	1485	964	11	6.51	19	-0.05	0.42

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

All Directed, Unweighted Networks

- Short Average Path Length
- Short Diameter
- Some Evidence for Negative Assortativity

IO/Year	n	n_scc	d	ℓ	dm	r(out, in)	ī
Firms (06)	8961	1709	5	5.88	19	-0.04	0.08
US Sectors (02)	422	259	11	4	10	-0.11	0.32
Int. Trade (06)	1485	964	11	6.51	19	-0.05	0.42

All Directed, Unweighted Networks

- Short Average Path Length
- Short Diameter
- Some Evidence for Negative Assortativity
- Little Clustering in Firm Net relative to IO or International Nets

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

PROBABILITY OF INPUT-SUPPLY RELATIONS

- Do firm characteristics help predict the existence of supplier-customer relationship?
- Logit specification:

$$\Pr{(i \rightarrow j)} = \mathcal{F}(\beta_0 + \beta_1 \text{Size}_i + \beta_2 \text{Size}_j + \beta_3 \text{L.Prod.}_i + \beta_4 \text{L.Prod.}_j + \beta_5 \text{SIC}_{ij})$$

- where:
 - F(.) is the cumulative logistic distribution
 - Size Proxies = log{Sales} or log{Employees}
 - ▶ Labor Productivity ≡ log(Sales) log(Employees)
 - $SIC_{ij} = 1$ if *i* and *j* are in the same 4 digit SIC sector
 - We implement logit for all input-supply diads in 2005

PROBABILITY OF INPUT-SUPPLY RELATIONS

Indep. variable	$\Pr(i \rightarrow j)$
Log employees of supplier	0.04***
Log employees of customer	0.75***
Labor productivity supplier	0.02*
Labor productivity customer	0.59***
Same 4 digit SIC	2.24***

Ν

Pseudo R^2

Robust Standard Errors; *** significant at 1%

<u>j)</u>

3676158 0.134

- Large, productive firms are more likely to demand from more firms
 - 1 s.d. of size (labor prod.) associated to 75% (59%) higher prob. that a link exists
- Large, productive firms are more likely to supply to more firms
 - 1 s.d. of size (labor prod.) associated to 4% (2%) higher prob. that a link exists
- Most trade is within narrowly defined sectors
 - Firms in same 4 digit SIC are twice as likely to trade with each other

DATA

DISPERSION IN SIZE OF FIRMS AS INPUT DEMANDERS

Top 10 Input Dem	anders, 2005
Firm	# Suppliers
Wal-Mart	204
IBM	203
General Electric	179
Hewlett-Packard	178
AT&T	167
Sprint Nextel	149
Verizon	131
Boeing	129
Ford	128
Lockheed Martin	120

PROBABILITY OF INPUT-SUPPLY RELATIONSHIPS

POSITIVE ASSORTATIVE MATCHING?

Indep. variable

Log employees of supplier Log employees of customer Interaction of Log employees Labor productivity supplier Labor productivity customer Interaction productivity Same 4 digit SIC

Ν Pseudo R^2

Robust Standard Errors: *** significant at 1%

$\Pr(i \rightarrow j)$	
0.04***	

 0.75^{***} 0.03*** 0.03*** 0.33***

 0.05^{***} 2.24***

3676158 0.135

Large, productive firms are more likely to supply to other large, productive firms

- 1 s.d. of size interaction associated to 3% higher prob. that a link exists
- 1 s.d. of productivity interaction associated to 5% higher prob. that a link exists
- Rank correlation also points to (modest) PAM:
 - Corr(Size_i,Size_i)=0.07***

Corr(L. Prod_i,L. $Prod_i = 0.06^{***}$

- We observe high turnover in input-supply relationships
 - For the average year, 48% of all input-supply relations are either formed (23%) or will cease to exist (25%) during that year
 - Mean duration of an input supply relation is 2.4 years but this conceals a lot of heterogeneity:

Histogram of Duration of input-supply relations (in_days) 🗇 🕨 🖉 🛓 👔 🖉 🔍 🔿

- Do firm characteristics help understanding the duration of supplier-customer relationships?
- Duration analysis (accounting for right-censoring):
 - Let θ(t, Xt) be the hazard rate at time t for input-supply relation characterized by covariates Xt
 - Recall: hazard rate gives the probability of terminating an input-supply relation at t conditional on surviving till time t
 - We implement a simple Weibull parametric specification (robust to other specifications)
 - ▶ Look at how the hazard rate depends on *X_t* covariates:
 - Size and productivity of supplier and customer in the relation

- Productivity of supplier relative to (simple) average productivity other suppliers of customer i
- Productivity of customer relative to (simple) average productivity other customers of supplier j
- Note: all variables given by average observed during input-supply relation

DETERMINANTS OF DURATION OF INPUT-SUPPLY RELATIONSHIPS

Indep. variable	Hazard rate
Log employees of supplier	1
Log employees of customer	0.99
Interaction of Log employees	1.01
Labor productivity supplier	0.65***
Labor productivity customer	0.63***
Interaction of labor productivity	1.01
Productivity of supplier w.r.t. other suppliers of j	0.82***
Productivity of customer w.r.t. other customers of i	0.81***
Interaction of relative productivities	0.92***
Ν	22081
Robust Standard Errors: significant at 1%	

Not reported: Evidence for increasing hazard rate over duration of an input-supply relation

DETERMINANTS OF DURATION OF SUPPLIER–CUSTOMER RELATIONSHIPS

- More productive firms are more likely to engage in longer input-supply relationships
 - ▶ a 1 s.d. increase of labor productivity of supplier (customer) leads to a 35% (37%) lower hazard rate
- For a given customer, its most productive suppliers tend to supply them for longer
 - ▶ a 1 s.d. increase in the gap between a supplier's productivity and the average productivity of suppliers of a given customer is associated with 18% lower hazard rate
- For a given supplier, its most productive customers tend to demand from them for longer times
 - ► a 1 s.d. increase in the gap between a customer's productivity and the average productivity of customers of a given supplier is associated with 19% lower hazard rate

- Above findings suggest selection of suppliers (on productivity):
 - a high turnover of suppliers (increase in the number of suppliers)
 - more productive suppliers tend to supply inputs for longer times
- Does matching with more productive suppliers have an impact on the customer?
- Panel analysis:
 - Dependent variable: customer's growth rates of sales, employment and labor productivity in year t
 - Independent variables: turnover rate of a firm's suppliers in year t, growth rate of average labor productivity of input suppliers in year t and interaction term
 - Firm and year fixed effects throughout + lagged growth rates of dependent variables

Indep. variable / Dep. variable	$\Delta Sales_{jt}$	$\Delta Employment_{jt}$	Δ L.P. $_{jt}$
Turnover of suppliers	0.06***	0.03***	0.03***
Δ Avg l.p. of suppliers	0.05***	0.01	0.05***
Turnover \times ΔAvg l.p. of suppliers	0.06***	0.01	0.05*
Customer & year fixed effects	Yes	Yes	Yes
Lagged dependent variable	Yes	Yes	Yes
Ν	9689	9689	9689

- Higher supplier turnover rates are associated with customer's growth (in sales, employment and labor productivity)
 - ► a 1 s.d. increase in the turnover rate of a firm is associated with a 3p.p. increase in labor productivity growth

Indep. variable / Dep. variable	$\Delta Sales_{jt}$	$\Delta Employment_{jt}$	Δ L.P. $_{jt}$
Turnover of suppliers	0.06***	0.03***	0.03***
Δ Avg l.p. of suppliers	0.05***	0.01	0.05***
Turnover $ imes$ Δ Avg l.p. of suppliers	0.06***	0.01	0.05*
Customer & year fixed effects	Yes	Yes	Yes
Lagged dependent variable	Yes	Yes	Yes
Ν	9689	9689	9689

- Growth in the average productivity of suppliers is associated with growth in sales and productivity of customers
 - a 1 s.d. increase in the average productivity growth of suppliers is associated with a 5p.p. increase in labor productivity growth

Indep. variable / Dep. variable	$\Delta Sales_{jt}$	$\Delta Employment_{jt}$	Δ L.P. $_{jt}$
Turnover of suppliers	0.06***	0.03***	0.03***
Δ Avg l.p. of suppliers	0.05***	0.01	0.05***
Turnover $ imes$ Δ Avg l.p. of suppliers	0.06***	0.01	0.05*
Customer & year fixed effects	Yes	Yes	Yes
Lagged dependent variable	Yes	Yes	Yes
Ν	9689	9689	9689

- Growth in average productivity of suppliers through adding and dropping suppliers is associated with growth in sales and productivity of customers
 - a 1 s.d. increase in the interaction term is associated with a further 5p.p. increase in labor productivity growth

RECAP

- Preliminary set of stylized facts on firm level input-supply relationships:
 - Large, productive firms are more likely to supply to (and demand from) more firms
 - Large, productive firms are more likely to supply to other large and productive firms (PAM)
 - There is high turnover of input-supply links
 - More productive firms tend to engage in longer input-supply relationships
 - For a given customer (supplier), its most productive suppliers (customers) tend to supply (demand from) them for a longer time
 - Growth in average productivity of suppliers through adding and dropping suppliers is associated with growth in sales and productivity of customers

FUTURE WORK

 Further study of supplier-customer relationships with focus on network formation models

- Using our descriptive results as moments for testing theoretical models that generate those moments
- Compare structure of production networks with other networks (e.g. social networks)