

Lessons for Japan from the U.S. Growth Resurgence

Dale W. Jorgenson Harvard University

May 30, 2003

Three Goals of this Presentation

- Analyze the sources of recent U.S. economic growth
 - Incorporate 2002 GDP revisions
 - Evaluate the impact of information technology
 - Jorgenson, Ho, and Stiroh (2002)
 - Oliner and Sichel (2002)
- Project the potential growth of average labor productivity
 - Abstract from business cycles by focusing on 1973-1995 and 1995-2000
 - Highlight uncertainties about IT development

Project average labor productivity Growth for Japan

 Abstract from business cycles by focusing on 1981-1995 and 1995-2000

Reviewing the Historical Record

Fundamental Identity

 Growth of GDP is the sum of growth of hours worked and growth of labor productivity (GDP/hour worked)

Data issues

- Output defined as gross domestic product (GDP), including government, and household sectors
- Headline BLS productivity figures are for the nonfarm business sector, excluding government, housing, and farm sectors

• Compare 1995-2000 to 1973-1995

- Examine sources of output and labor productivity growth
- Incorporate new and revised data on output, investment, and labor input

Hours and Labor Productivity Accelerated after 1995

Three Sources of Labor Productivity Growth

- Capital deepening
 - Investment provides more and better capital to workers.
- Labor quality growth
 - Increase in the proportion of more productive workers.
- Total factor productivity (TFP) growth
 TFP defined as output per unit of capital and labor inputs.

What Changed after 1995?

Capital deepening increased

- IT capital input accelerated.
- Non-IT capital input decelerated.

Stronger IT Capital Deepening

Average annual share-weighted growth rate.

What Changed after 1995?

Capital deepening increased

- IT capital input accelerated
- Non-IT capital input decelerated

Labor quality growth slowed

- Unemployment rate plummeted
- Labor force participation rate increased

Labor Quality Contribution Slowed

Average annual share-weighted growth rate.

What Changed after 1995?

Capital deepening increased

- IT capital input accelerated
- Non-IT capital input decelerated

Labor quality slowed

- Unemployment rate plummeted
- Labor force participation rate increased

• **TFP growth accelerated**

- Productivity in IT production rose
- Productivity in Non-IT production also rose

Faster TFP Growth

Average annual share-weighted growth rate.

IT Drove the U.S. Productivity Revival	
	1995-2000 Less 1973-1995
Growth in Labor Productivity	0.74
Capital Deepening, IT- Inputs	0.50
Capital Deepening, Other	-0.06
Labor Quality	- 0.06
TFP, IT- Production	0.24
TFP, Other	0.12

Projecting Productivity Growth

Two key assumptions to remove transitory effects

- Output and reproducible capital grow at the same rate
- Hours growth matches labor force growth

Three scenarios

- Pessimistic
- Base Case
- Optimistic

Two Sets of Assumptions

Alternative assumptions vary across scenarios

- TFP growth in IT production
- TFP growth elsewhere in the economy
- Capital quality growth

Common assumptions in all scenarios

- Hours and labor quality growth from demographic projections
- Capital, labor, and IT output shares at historical averages

Calibrating Alternative Assumptions

Base Case scenario

- "International Technology Roadmap for Semiconductors"
 - Eventual reversion to 3-year product cycle
- Use 1990-2000 averages

Calibrating Alternative Assumptions

Base Case scenario

- "International Technology Roadmap for Semiconductors"
 - Eventual reversion to 3-year product cycle
- Use 1990-2000 averages

Optimistic scenario

- Continuation of the 2-year product cycle
- 1995-2000 averages continue

Calibrating Alternative Assumptions

Base Case scenario

- "International Technology Roadmap for Semiconductors"
 - Eventual reversion to 3-year product cycle
- Use 1990-2000 averages

Optimistic scenario

- Continuation of the 2-year product cycle
- 1995-2000 averages continue

Pessimistic scenario

- Revert to 1973-1995 averages

TFP Contribution from IT

Average annual percentage.

Other TFP Contribution

Average annual percentage.

Capital Quality Growth

Average annual percentage.

Putting it All Together

 Demographic projections put hours growth at 1.0% per year in all scenarios

Average annual growth rate.

Putting it All Together

- Demographic assumptions put hours growth at 1.0% per year in all scenarios
- Labor quality growth continues to slow
 0.157% in all scenarios

Average annual growth rate.

Putting it All Together

- Demographic assumptions put hours growth at 1.0% per year in all scenarios
- Labor quality growth continues to slow 0.157% in all scenarios
- Alternative assumptions about capital quality and TFP growth – Pessimistic, Base Case, and Optimistic

Range of Labor Productivity Projections

Average annual share weighted growth rate.

Range of Output Projections

Average annual growth rate.

Projection Summary

- Base Case productivity below 1995-2000, due to slower capital deepening, and less labor quality growth
- Slower output growth due to reduced growth in hours and labor productivity
- Future of information technology is the key
 - Drives IT-related TFP and capital quality growth
 - Considerable uncertainty remains

Lessons For Japan

- Demographic assumptions put hours growth at –0.55% per year in all scenarios
- Labor quality growth continues to rise at 0.49%, the average for 1995-2000, in all scenarios
- Alternative assumptions about capital quality and TFP growth – Pessimistic, Base Case, and Optimistic

Alternative Assumptions

Base Case scenario

- Use 1980-1995 averages

Optimistic scenario

- Revert to 1995-2000 averages

Pessimistic scenario

- 1990-2000 averages continue

Range of Labor Productivity Projections (Japan)

Average annual share weighted growth rate.

Average annual growth rate.

Hours Labor Productivity

Conclusions

- Labor productivity growth for the U.S. will be lower than 1995-2000, but higher than 1973-1995.
- Labor productivity growth for Japan will also be lower than 1995-2000, and lower than 1980-1995.
- Output growth for the U.S. will be considerably lower than 1995-2000, and about the same as 1973-1995.
- Output growth for Japan will be lower than 1995-2000, and lower than 1980-1995.