

Koji Sakai, Iichiro Uesugi, and Tsutomu Watanabe

September 2005

Focus of the paper

Evolution of borrowing costs among Japan's small businesses as they age

Many studies on the evolution of real activity variables

Evans (1987), Cabral and Mata (2003), Davis et al. (1996) But not many on the financial variables

Two distinct channels in the evolution

Selection – nonviable firms are separated from survivors and forced to exit Adaptation – surviving firms (or surrounding agents) change their behavior as they age

Three questions to be answered

- 1. Selection vs. Adaptation?
- 2. Natural vs. Unnatural Selection?
 - Caballero et al. (2004), Peek and Rosengren (2005), Nishimura et al. (2003)

Inefficient "zombie" firms are not weeded out: evidence for unnatural selection

- 3. Track Record vs. Size?
 - Does firm age directly (Diamond (1989)), or indirectly (through size) affect borrowing costs?

Empirical approach: Data

- A data set of more than 200,000 small firms
- Able to identify default, "selection," and "adaptation"

Number of Observations

Year	All Firms	Surviving Firms	Defaulting Firms	Default Ratio (%)
1997	240,384	232,811	7,573	3.150
1998	232,811	224,005	8,806	3.782
1999	224,005	215,404	8,601	3.840
2000	215,404	208,644	6,760	3.138
2001	208,644	203,337	5,307	2.544
2002	203,337	203,337		
Total	1,324,585	1,287,538	37,047	2.797

Empirical approach: Identifying age effects

Borrowing cost as a confluence of the year, cohort, and age effect

$$R_{i}(t,\tau) = \alpha(t) + \beta(\tau) + \gamma(t-\tau) + \varepsilon_{i}(t,\tau)$$

Remove the year effect by subtracting a weighted prime lending rate from *R*.

Then the slope of age profile of borrowing cost is

$$R_{i}'(t+1,\tau) - R_{i}'(t,\tau) = \gamma(t-\tau+1) - \gamma(t-\tau) + \varepsilon_{i}(t+1,\tau) - \varepsilon_{i}(t,\tau)$$

1. Selection vs. adaptation

Total evolution of borrowing costs from year t to t+1 can be decomposed into a "selection" effect and an "adaptation" effect

$$E_{i\in A(t+1,\tau)}R_{i}(t+1,\tau)-E_{i\in A(t,\tau)}R_{i}(t,\tau)$$

$$= \underbrace{\Theta(t,\tau)\left[E_{i\in S(t,\tau)}R_{i}(t,\tau)-E_{i\in D(t,\tau)}R_{i}(t,\tau)\right]}_{(t,\tau)}+\underbrace{E_{i\in A(t+1,\tau)}R_{i}(t+1,\tau)-E_{i\in S(t,\tau)}R_{i}(t,\tau)}_{(t,\tau)}$$

Selection Effect

Adaptation Effect

- Both selection and adaptation are negative
- Adaptation contributes more than selection

1. Selection vs. adaptation

Total Evolution, Selection, and Adaptation

1. Selection vs. adaptation

Total Evolution, Selection, and Adaptation

		Cohort									
		<u> 1950 - 19551956 - 19601961 - 19651966 - 19701971 - 19751976 - 19801981 - 19851986 - 19901991 - 1995</u>								All	
All	Total	-0.010	-0.020	-0.026	-0.031	-0.040	-0.048	-0.046	-0.053	-0.050	-0.036
	Selection	-0.007	-0.009	-0.010	-0.012	-0.012	-0.013	-0.014	-0.018	-0.021	-0.013
	Adaptation	-0.003	-0.011	-0.017	-0.019	-0.029	-0.035	-0.032	-0.036	-0.029	-0.023
	Total	-0.007	-0.021	-0.036	-0.042	-0.056	-0.064	-0.066	-0.076	-0.079	-0.050
Construction	Selection	-0.009	-0.015	-0.014	-0.018	-0.016	-0.021	-0.021	-0.027	-0.030	-0.019
	Adaptation	0.003	-0.005	-0.022	-0.024	-0.040	-0.042	-0.045	-0.049	-0.049	-0.031
	Total	-0.020	-0.020	-0.031	-0.039	-0.053	-0.055	-0.056	-0.075	-0.066	-0.046
Manufacturing	Selection	-0.009	-0.009	-0.010	-0.013	-0.012	-0.013	-0.011	-0.015	-0.018	-0.012
	Adaptation	-0.012	-0.011	-0.021	-0.026	-0.040	-0.042	-0.045	-0.060	-0.047	-0.034
	Total	0.002	-0.013	-0.017	-0.018	-0.031	-0.050	-0.049	-0.050	-0.054	-0.031
Wholesale	Selection	-0.008	-0.014	-0.009	-0.013	-0.012	-0.012	-0.019	-0.017	-0.019	-0.014
	Adaptation	0.010	0.001	-0.008	-0.005	-0.019	-0.038	-0.030	-0.033	-0.036	-0.018
	Total	-0.029	-0.060	-0.048	-0.051	-0.040	-0.039	-0.036	-0.051	-0.038	-0.044
Retail	Selection	-0.006	-0.009	-0.009	-0.010	-0.009	-0.010	-0.011	-0.016	-0.016	-0.011
	Adaptation	-0.023	-0.051	-0.039	-0.041	-0.032	-0.028	-0.025	-0.035	-0.022	-0.033
	Total	0.057	0.054	0.024	0.017	0.012	0.000	0.022	0.032	0.019	0.026
Real Estate	Selection	0.004	0.004	0.010	-0.001	0.004	0.006	0.001	-0.011	-0.013	0.000
	Adaptation	0.053	0.050	0.014	0.018	0.008	-0.006	0.021	0.043	0.032	0.026
Service	Total	0.030	0.008	-0.001	-0.008	-0.015	-0.031	-0.022	-0.016	-0.021	-0.009
	Selection	0.003	-0.004	-0.003	-0.006	-0.007	-0.004	-0.009	-0.009	-0.011	-0.006
	Adaptation	0.027	0.011	0.001	-0.001	-0.009	-0.027	-0.013	-0.007	-0.009	-0.003

2. Natural vs. unnatural selection

If unnatural selection, $\theta(t,\tau) \Big(E_{i \in S(t,\tau)} R_i(t,\tau) - E_{i \in D(t,\tau)} R_i(t,\tau) \Big) > 0 \quad \text{or}$ $\theta(t,\tau) \Big(E_{i \in S(t,\tau)} Q_i(t,\tau) - E_{i \in D(t,\tau)} Q_i(t,\tau) \Big) < 0$

where R is the borrowing cost and Q is firm's quality

We are able to reject the unnatural selection hypothesis not only for the entire sample, but also for almost all sub-samples

2. Natural vs. unnatural selection

One-tailed t-Test for the Borrowing Cost

					Cohort					
•	1950 - 1955	1956 - 1960	1961 - 1965	1966 - 1970	1971 - 1975	1976 - 1980	1981 - 1985	1986 - 1990	1991 - 1995	All
A 11	-0.410 a	-0.529 a	-0.521 a	-0.614 a	-0.562 a	-0.600 a	-0.614 a	-0.689 a	-0.729 a	-0.613 a
All	(0.032)	(0.038)	(0.032)	(0.029)	(0.027)	(0.027)	(0.027)	(0.023)	(0.027)	(0.008)
Construction	-0.348 a	-0.674 a	-0.510 a	-0.646 a	-0.626 a	-0.802 a	-0.770 a	-0.879 a	-0.847 a	-0.726 a
Construction	(0.097)	(0.104)	(0.071)	(0.059)	(0.050)	(0.048)	(0.050)	(0.041)	(0.048)	(0.017)
Manufacturing	-0.529 a	-0.521 a	-0.568 a	-0.748 a	-0.618 a	-0.614 a	-0.531 a	-0.649 a	-0.706 a	-0.612 a
Manufacturing	(0.054)	(0.058)	(0.052)	(0.052)	(0.050)	(0.055)	(0.058)	(0.051)	(0.069)	(0.015)
Wholecole	-0.401 a	-0.598 a	-0.418 a	-0.587 a	-0.616 a	-0.535 a	-0.689 a	-0.559 a	-0.623 a	-0.570 a
WIDlesale	(0.058)	(0.076)	(0.071)	(0.065)	(0.067)	(0.066)	(0.068)	(0.064)	(0.076)	(0.020)
Retail	-0.386 a	-0.594 a	-0.598 a	-0.574 a	-0.488 a	-0.549 a	-0.477 a	-0.651 a	-0.578 a	-0.523 a
	(0.082)	(0.112)	(0.097)	(0.084)	(0.079)	(0.077)	(0.072)	(0.063)	(0.068)	(0.024)
Real Estate	0.404	0.185	0.607	-0.009	0.179	0.279	0.033	-0.511 a	-0.865 a	-0.050
	(0.247)	(0.201)	(0.178)	(0.126)	(0.119)	(0.126)	(0.124)	(0.106)	(0.175)	(0.044)
Service	0.222	-0.318 b	-0.227 b	-0.464 a	-0.406 a	-0.278 a	-0.516 a	-0.437 a	-0.521 a	-0.405 a
	(0.151)	(0.167)	(0.134)	(0.113)	(0.098)	(0.092)	(0.080)	(0.064)	(0.072)	(0.029)

1) Standard errors are in parentheses

2) a: Significant at the 1 percent level. b: Significant at the 5 percent level. c: Significant at the 10 percent level.

2. Natural vs. unnatural selection

One-tailed t-Test for the Operating Profit

					Cohort					
	1950 - 1955	1956 - 1960	1961 - 1965	1966 - 1970	1971 - 1975	1976 - 1980	1981 - 1985	1986 - 1990	1991 - 1995	All
Δ.ΙΙ	2.113 a	1.897 a	1.973 a	1.264 a	1.596 a	1.879 a	2.170 a	1.993 a	2.291 a	2.320 a
	(0.219)	(0.257)	(0.222)	(0.190)	(0.169)	(0.175)	(0.182)	(0.162)	(0.202)	(0.057)
Construction	0.952 c	0.942 c	1.911 a	0.195	1.249 a	1.193 a	1.457 a	0.927 a	1.322 a	1.448 a
Construction	(0.590)	(0.656)	(0.473)	(0.377)	(0.316)	(0.308)	(0.332)	(0.295)	(0.353)	(0.116)
Manufacturing	2.951 a	3.060 a	2.524 a	1.519 a	1.782 a	1.981 a	3.069 a	2.336 a	2.892 a	2.934 a
Manufacturing	(0.408)	(0.451)	(0.407)	(0.378)	(0.347)	(0.386)	(0.410)	(0.373)	(0.527)	(0.112)
Wholesale	2.084 a	1.144 a	2.068 a	2.132 a	1.413 a	2.637 a	2.267 a	1.831 a	2.089 a	2.171 a
WIDESale	(0.339)	(0.442)	(0.439)	(0.381)	(0.386)	(0.392)	(0.415)	(0.394)	(0.515)	(0.121)
Retail	1.132 b	1.127 c	1.889 a	0.595	2.454 a	1.908 a	1.811 a	3.131 a	3.172 a	2.388 a
	(0.579)	(0.749)	(0.672)	(0.580)	(0.525)	(0.522)	(0.527)	(0.461)	(0.546)	(0.170)
Real Estate	5.301 a	2.168 b	0.944	3.998 a	2.491 a	2.150 a	1.240 b	0.850 c	4.317 a	2.464 a
	(1.378)	(1.023)	(0.855)	(0.642)	(0.577)	(0.652)	(0.635)	(0.585)	(0.889)	(0.226)
Service	2.645 a	1.793 c	1.715 b	2.021 a	1.351 b	3.447 a	2.338 a	2.976 a	2.974 a	2.797 a
	(1.072)	(1.208)	(0.963)	(0.744)	(0.671)	(0.657)	(0.596)	(0.495)	(0.595)	(0.215)

1) Standard errors are in parentheses

2) a: Significant at the 1 percent level. b: Significant at the 5 percent level. c: Significant at the 10 percent level.

3. Track record vs. size

 Adaptation effect among surviving firms Diamond (1989)

Firm's track record of repayment contributes to its reputation and changes risk-taking behavior Cooley and Quadrini (2001)

More sizable firms borrow less to reduce the default probability

If track record story holds, age profile conditional on size is downward sloping

 $E_{i\in A(t+1,\tau)}R_{i}(t+1,\tau)-E_{i\in S(t,\tau)}R_{i}(t,\tau)=\sum \gamma_{t-\tau}(age_dumnies_{t-\tau})$

for each size category

3. Track record vs. size

3. Track record vs. size (additional)

- Another test between track record vs. size $R_i(t,\tau,s) = \sum \gamma_{t-\tau}(age_dummies_{t-\tau}) + \sum \phi_{\tau}(cohort_dummies_{\tau}) + \sum \delta_s(size_dummies_s)$
- Age profiles with/without size dummies are almost identical
- Size profile conditional on age shows nonlinearity between size and borrowing cost

3. Track record vs. size (additional)

Conclusion

Selection vs. adaptation?

Adaptation dominates in the evolution of borrowing costs

- Natural vs. unnatural selection?
 Natural selection prevails among small firms
- Track record vs. size in adaptation?

Track record story is more consistent

Still some inconsistencies in explaining firms' risk-taking behavior