Note: Collateral Constraints, Emerging Market Business Cycles, and R\&D Activities

Keiichiro Kobayashi*
RIETI
Kengo Nutahara ${ }^{\dagger}$
U-Tokyo and JSPS

July 24, 2007
[Question] Can the collateral constraint in R\&D activities account for the features of the emerging economy?

- Emerging market business cycles exhibit strongly counter-cyclical current accounts, consumption volatility that exceeds income volatility, and" sudden stops" in capital inflows. (Auiar and Gopnath, 2006)

[Approach]

- We construct a dynamic general equilibrium model with R\&D activities à la Romer (1990).
- In our model, the working capital for the production of effective labor is subject to the collateral constraint because of the lack of a commitment problem à la Kiyotaki and Moore (1997).
- Consider the collateral constraints are binding in the emerging economies while they are not binding in the developed ones.
- R\&D technology, δ_{A}, tightness of collateral constraint, ϕ, and Hicks neutral statonaty technology level, ζ are exogenous and $\operatorname{AR}(1)$ process.
- Investigate the impulse responses to R\&D technology and TFP growth.

[Results]

- The impulse responses of binding and not-binding constraints are almost same. The labor inputs' resonses of binding case are bigger than those of binding case. (Our hypothesis is rejected.)

[^0]
1. The Model

Households:

$$
\begin{align*}
& \quad \max _{c_{t}, n_{t}, i_{i}, k_{t}} E_{0} \sum_{t=0}^{\infty} \beta^{t} \frac{\left[c_{t}^{1-\xi}\left(1-n_{t}\right)^{\xi}\right]^{1-\varepsilon}}{1-\varepsilon}, \tag{1}\\
& \text { s.t. } c_{t}+i_{t}=w_{t} n_{t}+r_{k, t} k_{t-1}+\pi_{t}, \tag{2}\\
& \tag{3}\\
& k_{t}=\left(1-\delta_{k}\right) k_{t-1}+i_{t} .
\end{align*}
$$

Effective Labor Producer:

$$
\begin{align*}
\max _{z_{A, t}, z_{y, t}, n_{A, t}, n_{y, t}, a_{t}} & E_{0} \sum_{t=0}^{\infty} \beta^{t} \lambda_{t}\left[\hat{t}_{t}\left(z_{A, t}+z_{y, t}\right)-w_{t}\left(n_{A, t}+n_{y, t}\right)+\left(r_{a, t)}+q_{t}\right) a_{t-1}-q_{t} a_{t}\right], \tag{4}\\
\text { s.t. } & z_{A, t} \tag{5}\\
\quad z_{y, t} & =n_{A, t}, \tag{6}\\
& w_{t}\left(n_{A, t}+n_{y, t}\right)=\phi q_{t} a_{t-1} . \tag{7}
\end{align*}
$$

Final Goods Firms:

$$
\begin{gather*}
\max _{y_{t}, y_{t}, a_{t-1}, x_{t}}\left[y_{t}-\hat{w}_{t} z_{y, t}-r_{a, t} a_{t-1}-\int_{0}^{A_{t-1}} p_{t}(i) x_{t}(i) d i\right], \tag{8}\\
\text { s.t. } y_{t}=\zeta z_{y, t}^{(1-\gamma)(1-\alpha)} a_{t-1}^{(1-\gamma) \alpha}\left[\int_{0}^{A_{t-1}} x_{t}(i) d i\right] . \tag{9}
\end{gather*}
$$

Intermediate Goods Firms:

$$
\begin{equation*}
P_{A, t}(i)=\frac{1}{\beta^{t} \lambda_{t}} E_{t} \sum_{s=t}^{\infty} \beta^{s} \lambda_{s}\left[p_{s}(i) x_{s}(i)-\eta r_{k, s} x_{s}(i)\right] . \tag{10}
\end{equation*}
$$

R\&D Firms:

$$
\begin{equation*}
\max _{z_{A, t}} \sum_{t=0}^{\infty} \beta^{t} \lambda_{t}\left[P_{A, t} \delta_{A} A_{t}-\hat{w}_{t}\right] z_{A, t} . \tag{11}
\end{equation*}
$$

Market Clearing Conditions:

$$
\begin{align*}
& c_{t}+i_{t}=y_{t}, \tag{12}\\
& n_{A, t}+n_{y, t}=n_{t}, \tag{13}\\
& a_{t}=1, \tag{14}\\
& A_{t}=\left(\delta_{A} z_{A, t}+1\right) A_{t-1} . \tag{15}
\end{align*}
$$

2. Equilibrium System

The equilibrium system with binding collateral constraint is

$$
\begin{align*}
& c_{t}^{(1-\xi)(1-\varepsilon)-1}\left(1-n_{t}\right)^{\xi(1-\varepsilon)}=\lambda_{t}, \tag{16}\\
& w_{t}=\frac{\xi}{1-\xi} \cdot \frac{c_{t}}{1-n_{t}}, \tag{17}\\
& 1=\beta E_{t}\left[\frac{\lambda_{t+1}}{\lambda_{t}}\left(1+r_{k, t+1}-\delta_{k}\right)\right], \tag{18}\\
& \hat{w}_{t}=w_{t}\left(1+\theta_{t}\right), \tag{19}\\
& q_{t}=\beta E_{t}\left[\frac{\lambda_{t+1}}{\lambda_{t}}\left\{r_{a, t+1}+q_{t+1}+\phi \theta_{t+1} q_{t+1}\right\}\right], \tag{20}\\
& w_{t} n_{t}=\phi q_{t}, \tag{21}\\
& \hat{w}_{t}=(1-\gamma)(1-\alpha) \frac{y_{t}}{n_{y, t}}, \tag{22}\\
& r_{a, t}=(1-\gamma) \alpha y_{t}, \tag{23}\\
& p_{t}=\gamma n_{y, t}^{(1-\gamma)(1-\alpha)} x_{t}^{\gamma-1}, \tag{24}\\
& x_{t}=\left[\frac{\gamma^{2}}{\eta r_{k, t}}\right]^{\frac{1}{1-\gamma}} n_{y, t}^{1-\alpha}, \tag{25}\\
& \hat{w}_{t}=P_{A, t} \delta_{A} A_{t-1}, \tag{26}\\
& n_{y, t}+n_{A, t}=n_{t}, \tag{27}\\
& c_{t}+i_{t}=y_{t}, \tag{28}\\
& A_{t}=\left(\delta_{A, t} n_{A, t}+1\right) A_{t-1}, \tag{29}\\
& y_{t}=\zeta \frac{A_{t-1}^{1-\gamma}}{\eta^{\gamma}} n_{y, t}^{(1-\gamma)(1-\alpha)} k_{t-1}^{\gamma}, \tag{30}\\
& k_{t-1}=\eta x_{t} A_{t-1}, \tag{31}\\
& k_{t}=\left(1-\delta_{k}\right) k_{t-1}+i_{t}, \tag{32}\\
& P_{A, t}=E_{t}\left[\beta \frac{\lambda_{t+1}}{\lambda_{t}} P_{A, t+1}+p_{t} x_{t}-\eta r_{k, t} x_{t}\right] . \tag{33}
\end{align*}
$$

There are 18 equations and 18 variables:

$$
\begin{aligned}
& c_{t}, n_{t}, n_{A, t}, n_{y, t}, \theta_{t}, \lambda_{t}, q_{t}, k_{t}, i_{t}, \\
& w_{t}, \hat{w}_{t}, r_{k, t}, r_{a, t}, p_{t}, x_{t}, y_{t}, P_{A, t}, A_{t} .
\end{aligned}
$$

For the de-trended system, we introduce the following notations:

$$
\begin{equation*}
\tilde{\psi}_{t}:=\frac{\psi_{t}}{A_{t-1}} \tag{34}
\end{equation*}
$$

for $\psi_{t}=c_{t}, q_{t}, k_{t}, i_{t}, w_{t}, r_{a, t}, y_{t},{ }^{1}$ and

$$
\begin{equation*}
\tilde{\lambda}_{t}:=\frac{\lambda_{t}}{A_{t-1}^{(1--\xi)(1-\varepsilon)-1}} \tag{35}
\end{equation*}
$$

[^1]The de-trended system is

$$
\begin{align*}
& \tilde{c}_{t}^{(1-\xi)(1-\varepsilon)-1}\left(1-n_{t}\right)^{\xi(1-\varepsilon)}=\tilde{\lambda}_{t}, \tag{36}\\
& \tilde{w}_{t}=\frac{\xi}{1-\xi} \cdot \frac{\tilde{c}_{t}}{1-n_{t}}, \tag{37}\\
& 1=\beta E_{t}\left[\frac{\tilde{\lambda}_{t+1}}{\tilde{\lambda}_{t}}\left(1+g_{t}\right)^{(1-\xi)(1-\varepsilon)-1}\left(1+r_{k, t+1}-\delta_{k}\right)\right], \tag{38}\\
& \tilde{q}_{t}=\beta E_{t}\left[\frac{\tilde{\lambda}_{t+1}}{\tilde{\lambda}_{t}}\left(1+g_{t}\right)^{(1-\xi)(1-\varepsilon)}\left\{\tilde{r}_{a, t+1}+\tilde{q}_{t+1}+\phi \theta_{t+1} \tilde{q}_{t+1}\right\}\right], \tag{39}\\
& \tilde{w}_{t} n_{t}=\phi \tilde{q}_{t}, \tag{40}\\
& \tilde{w}_{t}\left(1+\theta_{t}\right)=(1-\gamma)(1-\alpha) \frac{\tilde{y}_{t}}{n_{y, t}}, \tag{41}\\
& \tilde{r}_{a, t}=(1-\gamma) \alpha \tilde{y}_{t}, \tag{42}\\
& p_{t}=\gamma n_{y, t}^{(1-\gamma)(1-\alpha)} x_{t}^{\gamma-1}, \tag{43}\\
& x_{t}=\left[\frac{\gamma^{2}}{\eta r_{k, t}}\right]^{\frac{1}{1-\gamma}} n_{y, t}^{1-\alpha}, \tag{44}\\
& \tilde{w}_{t}\left(1+\theta_{t}\right)=P_{A, t} \delta_{A}, \tag{45}\\
& n_{y, t}+n_{A, t}=n_{t}, \tag{46}\\
& \tilde{c}_{t}+\tilde{i}_{t}=\tilde{y}_{t}, \tag{47}\\
& g_{t}=\delta_{A, t} n_{A, t}, \tag{48}\\
& \tilde{y}_{t}=\zeta \frac{1}{\eta^{\gamma}} n_{y, t}^{(1-\gamma)(1-\alpha)}\left[\frac{\tilde{k}_{t-1}}{1+g_{t-1}}\right]^{\gamma}, \tag{49}\\
& \tilde{k}_{t-1}=\eta x_{t}\left(1+g_{t-1}\right), \tag{50}\\
& \tilde{k}_{t}=\frac{1-\delta_{k}}{1+\tilde{g}_{t-1}} \tilde{k}_{t-1}+\tilde{i}_{t}, \tag{51}\\
& P_{A, t}=E_{t}\left[\beta \frac{\tilde{\lambda}_{t+1}}{\tilde{\lambda}_{t}}\left(1+g_{t}\right)^{(1-\xi)(1-\varepsilon)-1} P_{A, t+1}+p_{t} x_{t}-\eta r_{k, t} x_{t}\right] \tag{52}
\end{align*}
$$

where

$$
\begin{equation*}
g_{t+1}:=\ln \left(\frac{A_{t+1}}{A_{t}}\right) \tag{53}
\end{equation*}
$$

On the balanced growth path, this system becomes

$$
\begin{align*}
& \tilde{c}^{(1-\xi)(1-\varepsilon)-1}(1-n)^{\xi(1-\varepsilon)}=\tilde{\lambda}, \tag{54}\\
& \tilde{w}=\frac{\xi}{1-\xi} \cdot \frac{\tilde{c}}{1-n}, \tag{55}\\
& 1=\beta(1+g)^{(1-\xi)(1-\varepsilon)-1}\left(1+r_{k}-\delta_{k}\right), \tag{56}\\
& \tilde{q}=\beta(1+g)^{(1-\xi)(1-\varepsilon)}\left\{\tilde{r}_{a}+\tilde{q}+\phi \theta \tilde{q}\right\}, \tag{57}\\
& \tilde{w} n=\phi \tilde{q}, \tag{58}\\
& \tilde{w}(1+\theta)=(1-\gamma)(1-\alpha) \frac{\tilde{y}}{n_{y}}, \tag{59}\\
& \tilde{r}_{a}=(1-\gamma) \alpha \tilde{y}, \tag{60}\\
& p=\gamma n_{y}^{(1-\gamma)(1-\alpha)} x^{\gamma-1}, \tag{61}\\
& x=\left[\frac{\gamma^{2}}{\eta r_{k}}\right]^{\frac{1}{1-\gamma}} n_{y}^{1-\alpha}, \tag{62}\\
& \tilde{w}(1+\theta)=P_{A} \delta_{A}, \tag{63}\\
& n_{y}+n_{A}=n, \tag{64}\\
& \tilde{c}+\tilde{i}=\tilde{y}, \tag{65}\\
& g=\delta_{A} n_{A}, \tag{66}\\
& \tilde{y}=\zeta \frac{1}{\eta^{\gamma}} n_{y}^{(1-\gamma)(1-\alpha)}\left[\frac{\tilde{k}}{1+g}\right]^{\gamma}, \tag{67}\\
& \tilde{k}=\eta x(1+g), \tag{68}\\
& {\left[1-\frac{1-\delta_{k}}{1+g}\right]_{\tilde{k}}=\tilde{i},} \tag{69}\\
& {\left[1-\beta(1+g)^{(1-\xi)(1-\varepsilon)-1}\right] P_{A}=\left(p-\eta r_{k}\right) x .} \tag{70}
\end{align*}
$$

There are 17 equations and 17 variables:

$$
\begin{aligned}
& \tilde{c}, n, n_{A}, n_{y}, \theta, \tilde{\lambda}, \tilde{q}, \tilde{k}, \tilde{i}, \\
& \tilde{w}, r_{k}, \tilde{r}_{a}, p, x, \tilde{y}, P_{A}, g .
\end{aligned}
$$

Equilibrium System without Collateral Constraint : If the collateral constraint is not binding, $\theta_{t}=0$. The equilibrium system is (16) - (33) except (21) with $\theta_{t}=0$. The de-trended system and the balanced growth path system are analogues of those under collateral constraints except (40) and (58) with $\theta_{t}=0$ and $\theta=0$, respectively.

References

[1] Auiar, M. and G. Gopnath (2006) "Emerging market business cycles: the cycle is the trend," Journal of Political Economy 115, 69-102.
[2] Kiyotaki, N. and J. Moore (1997) "Credit cycles," Journal of Political Economy 105, 21148.
[3] Romer, P. M. (1990) "Endogenous technological change," Journal of Political Economy 98, 71-102.

Table 1: Parameter Values

parameter	symbol	value
discount factor	β	.99
curvature of utility function	ε	.6
weight of leasure in utility	ξ	.6
relative share of land to labor in production	α	.01
share of capital in production steady-state technology growth	γ	.36
	\bar{g}	$.01 / 4$
depreciation rate of capital	δ_{k}	.025
steady-state tightness of collateral constraint	ϕ	.1
persistence of R\&D technology growth	$\rho_{\delta_{A}}$.95
persistence of production technology level	ρ_{ζ}	.95
persistence of tightness of collateral constraint	ρ_{ϕ}	.95

Figure 1: Impulse Response to R\&D Technology Level; Binding Collateral Constraint

Figure 2: Impulse Response to R\&D Technology Level; No Collateral Constraint

Figure 3: Impulse Response to TFP growth; Binding Collateral Constraint

Figure 4: Impulse Response to TFP growth; No Collateral Constraint

[^0]: *E-mail: kobayashi-keiichiro@rieti.go.jp
 ${ }^{\dagger}$ E-mail: ee67003@mail.ecc.u-tokyo.ac.jp

[^1]: ${ }^{1}$ Note that the variety of goods (or TFP) in the period t is determined at the previous period: A_{t-1}.

