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Abstract 
Many countries are expected to face rapidly declining and aging populations. Meanwhile, urbanization 
continues worldwide, preserving the power law for city size distribution at the country level. We have 
developed a spatial statistical model based on the theory of economic agglomeration to predict the 
future geographic distribution of the population at the 1 km grid level. The model considers growth 
factors for cities and grids, while maintaining the power law for city size distribution at the country 
level. Japan is an ideal case study of a shrinking economy. It highlights the challenges that the rest of 
Asia and the world are likely to face. Cities in aging regions will decline more rapidly, shifting the 
center of gravity of the country's population distribution. Smaller cities are more vulnerable to 
population decline, but with declining transportation and communication costs, even large cities are 
not immune to elimination. The future urban economy will revolve around fewer and more distant 
larger cities. 
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1 Introduction

Many developed countries around the world are expected to face aging and declining
populations. This trend is particularly pronounced in Asian countries, where immigra-
tion is not a major contributor to population growth (Fig. 1A). Meanwhile, urbanization
continues worldwide (United Nations, 2018, Fig. 1B for Asian examples). In a country
where the population begins to decline while urbanization progresses, the number of
sustainable cities necessarily decreases. In this paper, we propose a simple statistical
model to predict the rise and fall of individual cities in a shrinking and aging economy.
Japan is an ideal case study of such an economy. It highlights the challenges that the
rest of Asia and the world are likely to face.

Figure 1. Forecasts of population and urban share of population in Asia

Notes: Data underlying the graphs in Panels A and B are obtained from United Nations (2022, 2018),
respectively.

We consider a city as a population agglomeration whose geographic extent evolves
over time in response to the changes in the conditions in its nearby area as well as those
at the county level. Looking at the regional economy through the lens of cities, a clear
structure emerges. It is well known that the distribution of city sizes within a country
generally follows a power law (e.g., Gabaix and Ioannides, 2004), a phenomenon not
seen in other regional aggregates such as administrative regions (Fig. 2). Although
often abstracted in the literature (e.g., Behrens et al., 2014; Duranton and Puga, 2014,
§5.7), the relationship between population and geographic arrangement of cities is not
random, but is generally characterized by a recursively nested regional structure, with
each nested region consisting of a group of small cities surrounding a large one whose
city size distribution follows a similar power law (Mori et al., 2020). The fact that
national economic geography manifests such a spatial fractal structure with a power
law for city size has already been given a theoretical explanation by modern central
place theory (Hsu, 2012; Mori et al., 2023a).

In this paper, we propose a framework for predicting the evolution of the geographic
population distribution in the national geography of Japan at the 1 km grid level. Our
forecasting model is obtained by ensembling statistical models that account for both
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Figure 2. The size distributions of prefectures, municipalities and cities in Japan

Notes: Each city in Japan in 2020 was identified as the set of 1km grid cells that (i) have a population
density of at least 1,000 per square kilometer, (ii) are geographically contiguous, and (iii) have a total
population of at least 1,000. Population count data in 30”×45” grids were obtained from the Grid
Square Statistics of the 2020 Population Census of Japan. The graphs include 46 prefectures, 1,907
municipalities, and 1,965 cities in the Japanese archipelago that are connected by road to the four major
islands of Japan, Hokkaido, Honshu, Shikoku, and Kyushu in 2020. The horizontal axis shows the
ranking of regions by their population size, and the vertical axis shows their population size.

grid- and city-level growth factors, and a model that imposes a city growth process
consistent with a power law for the national city size distribution. We update the set
of cities at each point in time by identifying each city as a population agglomeration
over a contiguous set of 1 km grid cells, whose intertemporal evolution we track over
time.

We begin by showing that the evolution of Japan’s cities over the past half century
is highly consistent with the theory of economic agglomeration (Akamatsu et al., 2023).
During this period, Japan experienced a substantial reduction in transportation and
communication costs. Specifically, Japan’s nationwide high-speed rail and highway
networks were developed from scratch and gradually expanded into nationwide net-
works. Meanwhile, the Internet was introduced and became ubiquitous throughout
the country, reducing communication costs.

The theory of economic agglomeration (Akamatsu et al., 2023; Mori et al., 2023b)
predicts that reduced transportation costs will facilitate the concentration of popula-
tion into larger and fewer cities, thus skewing the distribution of city sizes towards
larger cities. Within a city, on the other hand, they induce a dispersion of population
in the form of a flattening of cities. For a given population size of a city, the residen-
tial distribution will spread over a larger area, decreasing both the maximum and the
average population densities (Fig. 5). In addition to the persistent power law for city
size distribution at the country level, this is exactly what has happened in Japan over
the past half century (see Figs. 6 and 7). With the rapid advance of automated logistics
systems and virtual communication technologies, a further and unprecedented reduc-
tion in distance friction is one of the obvious future trends that we can expect. The
theory therefore suggests that the trend we have seen over the past half century will
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continue in the future.
Of course, what we observed in the evolution of cities is a consequence of a number

of factors, not just the reduction of transportation and communication costs. Never-
theless, the theory of economic agglomeration seems to be a strong predictor of the
evolution of cities, as it can simultaneously explain the concentration toward larger
cities at the country level and the flattening of individual cities, while maintaining the
power law for the distribution of city sizes over the past half century.

Thus, we train our statistical model on the evolution of Japanese cities over the past
half-century and take the trend of declining transportation costs over this period as
the baseline for the future. Otherwise, our baseline projection extrapolates the spatial
distribution of population into the future under the official projection of Japan’s total
population obtained from National Institute of Population and Social Security Research
(NIPSSR) (2023b) (Fig. 8A) and the observed trend of urbanization (Fig. 8B).

We confirm that the predicted rise and fall of cities is consistent with the theoretical
implications (Akamatsu et al., 2023; Mori et al., 2023b). Namely, we continue to observe
concentration toward larger and fewer cities, whereas smaller cities and cities in less
advantageous locations are shuffled out and disappear. Cities will generally flatten
out over a larger area, while reducing their maximum population density. However,
there is a large regional variation in the rise and fall of cities, which appear to depend
on their relative location and the aging of their residents.

Other than Tokyo, the only city projected to see a significant increase in population
share is Fukuoka, which is currently the fourth largest city. Fukuoka has the advantage
of being outside the influence of Tokyo’s urban agglomeration, unlike the second
and third largest cities, Osaka and Nagoya, which lie between Tokyo and Fukuoka.
Fukuoka’s population share will increase by 61% between 2020 and 2120, while those
of Osaka and Nagoya will remain unchanged. Cities in aging eastern regions will
decline more rapidly, causing the center of gravity of population distribution to shift
toward the western part of the country.

We also attempt future projections of the spatial distribution of the population
under alternative rates of reduction in distance friction over time. These exercises
allow us to face a rapidly shrinking economy and stay ahead of the curve in developing
sustainable regional policies by identifying sustainable cities and the underlying factors
for sustainability.

The rest of the paper is organized as follows. We begin in Section 2 with the strong
correspondence between the observed evolution of cities and the theory of economic
agglomeration on which our statistical forecasting model is based. In Section 3, we
describe the basic data and explain how we track the evolution of individual cities over
time. In Section 4, we introduce our statistical forecasting model and demonstrate the
importance of city-level aggregation in predicting the future geographic distribution
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of the population. In Section 5, we present our baseline projections of city growth and
shrinkage through 2200, and discuss the relationship between aging and city growth.
In Section 6, we explore alternative scenarios regarding the rate of reduction of distance
friction, as reflected in the rate of change of the power law coefficient. In Section 7,
we discuss the implications of our predictions for place-based policy, housing policy,
urban planning, and disaster risk management in cities.

2 Facts and theory about the evolution of cities in Japan

In this section, we show how useful the theory of economic agglomeration is in ex-
plaining the geographic distribution of the population and its responses to changes in
key parameters. Our main data for estimating the model are the population counts in
30”×45” grids (approximately 1 km by 1 km) obtained from the Grid Square Statistics
of the Population Census of Japan by Ministry of Internal Affairs and Communications
of Japan (MIAC hereafter) for every five years from 1970 to 2020. This last half-century
of Japan is an ideal period for our purpose.

Throughout the paper, each city is identified as a Urban Agglomeration (UA) defined
by a spatially contiguous set of grids with a population density of at least 1,000 per 1
km2 and a total population of at least 10,000. The red areas in Figure 3 indicate the
431 UAs in 2020 identified using this definition. These UAs account for 80% of Japan’s
population while occupying 6% of the total land area. The urban share of population
has kept increasing, and the geographical organization of the population is essentially
dominated by cities.

Figure 3. Cities in Japan in 2020

Notes: Each disjoint red area is an urban agglomeration. The 10 largest cities in 2020 are listed, with the
numbers in the parentheses indicating their ranking by population size. The figure is linked to a web
map showing the geographic distribution of the population in Japan which can be scrolled and zoomed
in. Yellow and warmer colors indicate the grid cells with a population density at least 1,000.
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Japan’s population has been growing since the beginning of time, except for short-
term declines due to wars and natural disasters, and reached 104 million in 1970 at
the beginning of our study period. However, after reaching its peak of 128 million in
2010, it began to decline and reached 127 million in 2020. Thus, the 1970-2020 period
includes this turning point.

This is also the period in which Japan’s high-speed railways and highways were
developed almost from scratch into full-fledged nationwide networks. Construction of
Japan’s high-speed railways and highways began in time for the 1964 Tokyo Olympics.
The total length of high-speed railways (highways) increased from 515 km (216 km)
in 1964 to 3,067 km (13,189 km) in 2020, significantly reducing transportation costs
in Japan (Fig. 4). Meanwhile, the Internet was introduced in the 1990s and became
ubiquitous throughout the country in the 2000s and beyond, also significantly reducing
communication costs.

Figure 4. The development of high-speed transportation networks in Japan between
1970 and 2020

Notes: The shapefiles of the transport networks are obtained from the National Land Numerical In-
formation Download Service (NLNI) by the Ministry of Land, Infrastructure, Transport and Tourism
(MLIT) of Japan (https://nlftp.mlit.go.jp/).

Akamatsu et al. (2023) have shown that the most general class of microeconomic
models of economic agglomeration in the literature exhibit the response to the reduc-
tions in transportation costs shown in Figure 5.1 On the one hand, at the country level,
competition is becoming more global, and the market areas of firms in neighboring
cities are beginning to overlap. As a result, the economic hinterlands of these cities
start to interfere with each other, and some cities are squeezed out. The surviving cities
will be farther apart and will grow in size by attracting population from the declining

1Here, we exclude the large literature on the systems-of-cities models (see, e.g., Duranton and Puga,
2014), since they cannot address the geographic distribution of cities and has little to say about the
location of cities as they abstract from inter-city space.
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Figure 5. Cities’ response to the reduced transport costs

cities. On the other hand, at the city scale, both firms and workers have less incentive
to concentrate near the city center and disperse in search of cheaper space. As a result,
cities become flatter and more sprawling.

Figures 6 and 7 summarize what actually happened to cities in Japan during the
period 1970-2020. At the country level, the number of cities was 504 in 1970. It peaked
at 511 in 1975, at the end of Japan’s high-growth era, and continued to decline to 431 in
2020. Meanwhile, the distribution of city size has become clearly skewed toward larger
cities (Fig. 6), with larger cities becoming larger and smaller cities becoming smaller.

Within a city, the average and maximum population densities continued to decrease,
and the area occupied by a city continued to increase. Specifically, the average and
maximum population densities decreased by an average of 24% and 35%, respectively,
and the area occupied by a city increased by an average of 86% (Fig. 7), while the total
population of Japan increased by 22%. Thus, cities have clearly flattened out.

As discussed in the Introduction, we still expect a substantial reduction in distance
frictions in the coming century with rapidly advancing automated logistics systems
and virtual communication technologies. Thus, we expect a qualitatively similar
evolution of cities in the future, where there will be a concentration towards larger
and fewer cities, while each surviving city will flatten out. In addition, we have a
declining population that is shifting the distribution of city sizes downward, so that
more cities will be eliminated in the next half century than in the last half century.
An important validation of our forecasting model is the qualitative consistency of its
future projections with theory.
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Figure 6. Concentration at the country level

Notes: City size distributions of Japan in 1970 and 2020. Cities are identified as explained in Fig. 2.
The dashed lines are the fitted lines obtained from the log-linear regression of population size on the
rankings of cities in terms of population size.

Figure 7. Dispersion at the city level

Notes: The blue and green lines show the means of average and maximum population densities of a city
and the orange line the mean total area of a city for each year indicated along the horizontal axis, while
the shaded area indicates the range covering 90% of the values for individual cities.

3 The basic setup and data preparation

Our goal is to predict the sustainability of individual cities in a future of rapid popula-
tion decline. Even in Japan, a country at the forefront of population decline, population
decline has only become apparent since the 2010 census, which is a relatively recent
phenomenon. Therefore, it is not advisable to use long time-series data going back in
time to predict the rise and fall of cities over the next 50 to 100 years, as it is likely to
underestimate population decline.

In the case of Japan, geographic population distribution data for the entire country
prior to 1970 are only available at the municipal level and thus have a much different
resolution than the post-1970 grid data. Although the time series data used to train the
model is short (11 time points), we believe that overall it provides more appropriate
learning data than adding earlier data with different trends and resolutions. Our main
data for training the model are the population counts in the 1-km grid cells obtained
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Figure 8. Forecasts of total population and urbanization in Japan

Notes: (A) Japan’s population for 1970–2020 is the observed value. Population projections for 2021 to
2120 were obtained from National Institute of Population and Social Security Research (2023a). The
baseline projection assumes the fertility rate, 1.36, and mortality rate in 2020 will persist in the future,
while the pessimistic (optimistic) projections assumes lower (higher) fertility rate, 1.13 (1.64), and higher
(lower) mortality rate will persist in the future. We extrapolated the projections to 2200 using spline-
based smoothing. (B) Urban share of total population. Observations in 1970–2020 are extrapolated to
2200 by assuming that the urban share increases log-linearly over time.

from the Grid Square Statistics of the Population Census of Japan for every five years
from 1970 to 2020.

The period of the last 50 to 20 years, when the declining population trend became
more pronounced not only in Japan but also in other countries, coincides with the
development of high-speed transportation networks and the spread of the Internet.
Thus, these data from recent decades are suitable for incorporating the effect of reduc-
ing distance frictions, which is expected to continue in the future due to advances in
automated driving and logistics, as well as video, voice, and communication technol-
ogy.

To project the geographic distribution of the population in Japan in the future, we
take as given the official projection of the total population of Japan provided by NISSR
(2023a) for the years 2025 to 2120. There are three versions, each of which assumes
that fixed fertility and mortality rates will continue into the future. These rates are set
to the 2020 values for the baseline case. We have extrapolated the projections to 2200
by applying a spline-based smoothing (Fig. 8A). We also assume that the urbanization
trend of the last 50 years will continue into the future. Since the urban share of the
population has a simple monotonic trend in the past, we extrapolate it by assuming a
log-linear function of time (Fig. 8B).

Let t ∈ {1, . . . ,36} represent the time index of the t-th year in the period 1970–2200
by 5-year intervals (i.e., t = year−1965

5 ). The set of cities is updated every t, new cities
may form, several cities may merge, and a city may split, disappear, and reappear.
We track each city over time based on the overlap of its spatial area at different time
points, assigning it a unique identifier throughout the study period (see Appendix A
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for details).

4 A forecasting model of city growth and decline

Our forecasting model has three levels: country, city, and grid levels. The country-level
model accounts for the growth process of cities, consistent with the power law for city
size distribution. The city- and grid-level models are time-series models for each city
and grid, respectively, accounting for city- and grid-specific growth factors. At the
grid level, we also account for the spatial correlation of growth in the area surrounding
each grid.

The spatial coverage of each city changes, which is captured by reidentifying the
set of cities at each point in time. Thus, the set of cities is endogenous, where there are
births, splits, and disappearances of cities. This section describes the details of each
model, how we ensemble them, and how we proceed to forecast the future set of cities.

4.1 The country-level model

It is assumed that cities tend to follow the power law for their (population) size
distribution at the country level. The city size distribution may temporarily deviate
from the power law due to idiosyncratic factors at the city and grid level, or due to
bifurcations of an equilibrium at the country level (e.g., births and deaths of cities).

Let Ut be the set of cities in time t, Pu,t represent the size of city u ∈Ut, and Ru,t its
ranking in terms of size in time t. The city sizes distribution is assumed to roughly
follow the power law, which is empirically expressed as

logPu,t = At+Bt log(Ru,t−0.5)+ϵPL
u,t, ϵPL

u,t ∼N(0,σ2
P,u), (1)

where “−0.5” is a bias correction (see Gabaix and Ibragimov, 2011), and σ2
P,u is a

variance parameter. The parameters At and Bt represent the population scale and
power coefficient, respectively.

Populations are concentrated in larger cities, as Bt becomes negatively larger as
in the case of the last half century in Japan (Fig. 6). As we have discussed in Section
3, to project population concentration/dispersion in the future, these parameters are
assumed to monotonically change over time, following the log-linear models,

At = aA
0 + aA

1 log t+ϵAu,t, ϵAt,u ∼N(0,σ2
A), (2)

Bt = aB
0 + aB

1 log t+ϵBu,t, ϵBt,u ∼N(0,σ2
B), (3)

where aA
0 ,a

A
1 ,a

B
0 ,a

B
1 ,σ

2
A, and σ2

B are the parameters to be estimated.
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PL: Power-law model

To obtain the growth process of a city consistent with the power law for the city size dis-
tribution, the conditional expectation E[Pu,t+1|Pu,t] = P̂u,t+1 is obtained by differencing
(1) with respect to t after substituting eqs. (2) and (3) as follows:

P̂PL
u,t+1 ≡ Pu,t+∆Pu,t = Pu,t+

aA
1 + aB

1 log(Rt,u−0.5)

t
Pu,t. (4)

This equation performs one-step-ahead prediction assuming faster (slower) population
growth in higher ranked city if aB

1 < 0(> 0).2

4.2 City-level models

In the PL model, future city size rankings remain constant. In reality, however, there are
deviations from the power law, and the size rankings of cities change. These deviations
may result from location-specific factors or from the bifurcation of the equilibrium of a
city system (e.g., Akamatsu et al., 2023) triggered by the change in parameter values.3

For example, Osaka, the second largest city in Japan, has been in decline since 2000.
Osaka is the only one among the top five that has experienced a population decline
since 2000. After the introduction of the faster and more frequent Nozomi express train
in 1992 on the bullet train line connecting Osaka and Tokyo, the economic distance
between these two cities decreased significantly. According to the theory of economic
agglomeration, Osaka became too close to Tokyo to maintain its current population
size, and thus its growth process deviated from the power law of city size.

To complement the PL model, we introduce time-series models to capture city-
specific growth factors. Relevant time-series models include the autoregressive inte-
grated moving average (ARIMA) model (Box et al., 2015), the state-space model (SSM;
see Durbin and Koopman, 2012), and recurrent neural networks (RNN; see Graves,
2013). The relevant observed time series data are typically too short for our forecasting
model (only 11 time steps in our case) to apply SSM and RNN. Even for the ARIMA
model, which is simpler than SSM and RNN, our preliminary analysis showed that
the projected population often takes extremely large or small values given our long
projection period of a century or more. Therefore, we use simpler time-series models.

Let ARIMA(p,d,q) represent an ARIMA model with an autoregressive process of

2Note that this growth process does not necessarily have a stationary state. However, since our
one-step-ahead projection procedure (introduced in Section 4.4) always converges, it empirically proves
to be a stationary process.

3The changes in the rankings of cities in terms of population size are often attributed to random
factors in the literature on city systems models (e.g., Duranton and Puga, 2014, 2023), there are actual
cases suggesting deterministic factors implied by the new economic geography models (e.g., Akamatsu
et al., 2023) as discussed below.
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order p, a moving average process of order q, and a difference of order d. We consider
the four models below to explain the growth of city u.

ARI1: the ARIMA(1,1,0) model

∆Pu,t+1 = ρu∆Pu,t+ϵ
ARI1
u,t , ϵARI1

u,t ∼N(0,σ2
u,ARI1). (5)

where ∆Pu,t+1 ≡ Pu,t+1−Pu,t. The auto-correlation coefficient ρu takes a positive value
in the presence of positive temporal correlation while the opposite is true for nega-
tive correlation. We used a difference auto-regressive process because differentiation
eliminates non-stationary trends such as depopulation in recent years. To estimate the
difference in population growth pattern by city, parameters are estimated by city using
a maximum likelihood method.

ARI2: the ARIMA(2,1,0) model

∆Pu,t+1 = ρ1,u∆Pu,t+ρ2,u∆Pu,t−1+ϵ
ARI2
u,t , ϵARI2

u,t ∼N(0,σ2
u,ARI2), (6)

which models second order time series using parameters ρ1,u and ρ2,u. Because of the
limited time periods, we do not consider higher order dependence. In addition, since
the moving average process only explains short-term dependence, we ignore it (e.g.,
the second-order moving average process only affects the second period ahead).

CS: Constant model

Pu,t+1 = Pt,u+ϵ
CS
u,t , ϵCS

u,t ∼N(0,σ2
u,CS), (7)

which assumes constant population in the future.

LL: Log-linear-in-time model (Smith et al., 2005)

Pu,t+1 = aLL
u,0+ aLL

u,1 log t+ϵLL
u,t, ϵLL

u,t ∼N

0, σ2
u,LL

t2

 , (8)

where aLL
u,0 and aLL

u,1 are regression coefficients. The model is estimated to minimize
the least squares error weighted by t2, with a greater weight in time t or just before.
Also, according to Smith et al. (2005), the estimated intercept âLL

u,0 is shifted to equate
the predicted value in 2020 with the observed value, so that the predictive function is
shifted, so that the function passes through the actual population in 2020.

All the time-series models are estimated by city and assume Gaussian predictive
distributions N(P̂M

u,t+1, V̂
M
u,t+1) where M ∈ {ARI1,ARI2,CS,LL}. As derived in Bromiley

(2003), Gaussian (predictive) distributions can be synthesized by taking the product
of their probability density functions (see also Cohen et al., 2020). The synthesized
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predictor of time-series (TS) models obeys a Gaussian distribution N(P̂TS
u,t+1, V̂

TS
u,t+1)

with predictive mean

P̂TS
u,t+1 =

ΣMWM
u,t+1P̂M

u,t+1

ΣMWM
u,t+1

, (9)

and the predictive variance V̂TS
u,t+1 =

1
ΣMWM

u,t+1
where WM

u,t+1 =
1

V̂M
u,t+1

. By assuming that

V̂M
u,t+1 ∝ V̂M

u,2020, i.e., the relative accuracy of the M-th model is unchanged over years,
it is imposed that WM

u,t+1 ∝ 1/Var(P̂M
u,2020) where the variance is evaluated by projecting

the UA population in 2020 by fitting each model to city populations up to 2015.
Unlike model selection, which is commonly used in ARIMA-based modeling, this

model aggregation/averaging reduces the predictive variance and improves the sta-
bility of the projection (Polikar, 2012). Since this property is helpful in our case with
limited time periods, we rely on model averaging.

Finally, the model for predicting the population size of each city u is obtained by
ensembling the PL and TS models, eqs. (4) and (9), as follows.

P̂u,t+1 =
WTS

u P̂TS
u,t+1+WPL

u P̂PL
u,t+1

WTS
u +WPL

u
. (10)

4.3 Grid-level models

Let G represent the set of grids in Japan. Based on the discussion in Section 4.2, we
again rely on simple time-series models, which are suitable in our setting, to project
population pi,t for t ∈ {12, . . .36} in grid i ∈G. The following models are considered to
predict the population growth pattern in each grid:

• ARI1 model, i.e., ARIMA(1,1,0) (see eq. (5))

• ARI2 model, i.e., ARIMA(2,1,0) (see eq. (6))

• CS model (see eq. (7))

• LL model (see eq. (8))

To capture the population growth pattern in the neighboring areas, the same models
are applied to the population qi,t in the 9 nearest neighbor grids (9NN):4

• ARI1N model: The ARI1 model for qi,t

• ARI2N model: The ARI2 model for qi,t

4The 9NN of a grid i includes the edge- and point-adjacent neighbors of grid i, including grid i itself.
While each 9NN of grid i has at most 9 grid cells, it may have fewer grid cells if, for example, grid i is
located at the coast.
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• CSN model: The CS model for qi,t

• LLN model: The LL model for qi,t

The above four models, which are estimated by using the 9NN population data up to
2020, are applied to project future population of the 9NNs. The projected population
q̂i,t is then used to predict the gridded population pi,t by substituting q̂i,t into

pi,t = biq̂i,t+ϵi,t, ϵi,t ∼N(0,s2). (11)

The parameter bi is estimated a priori by regressing the gridded population pi,t in 2020
on the 9NN population qi,t.

Since the eight models assume Gaussian errors, they can be synthesized by tak-
ing the product of their Gaussian predictive distributions, as done in the city-level
projection. The synthesized predictive distribution obeys N(p̂i,t, v̂i,t) with predictive
mean

p̂i,t =
Σmwm

i,tp̂
m
i,t

Σmwm
i,t

(12)

and predictive variance v̂i,t = Σm
1

v̂m
i,t

where m denotes the four grid-level time-series

models, {ARI1,ARI2,CS,LL}, and four 9NN-level time-series models, {ARI1N,ARI2N,

CSN,LLN}. v̂m
i,t is the predictive variance of model m in 2020 evaluated by another

population projection using data between 1970 and 2015. This model averaging step
implicitly determines the strength of the grid-specific growth pattern and the growth
pattern that is common across the 9NN based on the predictive accuracy.

4.4 Projection procedure

We use the gridded population data for the period 1970–2020 (every 5 years) from
the Population Census of Japan to estimate the baseline model (see Appendix B.1 for
details). We then start predicting for t = 12 from t = 11, which is the last time point
(year 2020) in the observed data. We are at Step 1 in the flowchart in Figure 9, where
P̂t ≡ {P̂u,t : u ∈Ut} and p̂t ≡ {p̂i,t : i ∈G}. For t= 11 (year 2020), P̂u,11 ≡ Pu,11 and p̂i,11 ≡ pi,11

are the observed values.
In Step 2, we perform a one-step-ahead prediction under each of the city-level and

grid-level models introduced in Sections 4.2 and 4.3. In Step 3, we ensemble them
according to eqs. (10) and (12). In Step 4 we simulate the stationary geographic pop-
ulation distribution over the grids, consistent with the country and city level growth
factors.

We first rescale the grid population to be consistent with the city population and the
city population to be consistent with the country population. For a given prediction
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{P̂t+1, p̂t+1} of Step 3 under Ut, we rescale the grid population p̂i,t+1 in the grid i ∈Uu,t

to be consistent with the city population P̂u,t+1 (see Appendix ??), and rescale the city
population {P̂t+1} to be consistent with the country population in t+1 (see Appendix
B.2).

Next, we re-identify cities based on the city definition (see Appendix A) to obtain
the new city set Ut+1. We then plug the rescaled {P̂t+1, P̂t+1} into Step2 to perform
a one-step-ahead projection to obtain the updated set of city and grid populations
{P̂ ′t+1, P̂

′

t+1}. as well as the updated city set U′t+1. This process is repeated until the
original and updated city sets coincide, i.e., Ut+1 =U′t+1 (see B.2 and B.3 for details).

In our application to Japanese cities, this iteration converges to a non-degenerate
geographic distribution of the population.

Figure 9. The projection procedure

4.5 Model validation and model selection

Our goal is to make a long-term projection of the geographic distribution of the pop-
ulation, based on the trends of population decline and reduction of distance frictions
that have become pronounced only in recent decades. Since it is particularly important
to extrapolate the new trends that threaten the regional economy, our training time
series data are necessarily short.

In this section, we show that it is particularly important to focus on city-level factors
in order to make a reasonable projection of population size not only at the city level,
but also at the grid level.

Consider predicting the grid- or city-level population distribution in 2020 by train-
ing the model on 1970–2015 data. Not surprisingly, the population size of each grid
and city does not change much over five years, so the model fit in terms of size is nearly
perfect. However, the population growth rates of the grids/cities are not necessarily
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correctly predicted.
Figure 10 shows the overidentification of the model regarding population growth

rates at the grid level under three choices of models. Panel A shows the case where
only the grid-level time series models are used. In panel B, the city-level time series
models are added to the grid-level models, and in panel C, the PL model is also added.
The 95% confidence intervals are quite tight in all cases.

Note that the proportion of correct signs for predicted population growth is sig-
nificantly improved (from 45% to 57%) when city-level time series models are added.
Thus, even at the grid level, city-level factors appear to be important in explaining
population growth.

Not surprisingly, adding the PL model does not improve the model fit much in the
short-run. However, it is important to confirm that the addition of the PL model does
not worsen the prediction. Since the PL model is intended to simulate the long-term
change in power law coefficients, its short-term role is limited.

Figure 10. Model performance for predicting population growth in grids

Notes: (A) The grid-level population in 2020 is predicted from the 1970–2015 data using the grid-level
time-series models in Section 4.3. (B) The result after adding the city-level time-series models in Section
4.2. (C) The result after adding the PL model in Section 4.1. The dashed line is the fitted linear regression
line, and the shaded area is its 95% confidence interval (the confidence bands are too narrow to visualize).

Figure 11 shows the model fit with respect to the population growth rate at the city
level. The model choices in the panels are the same as in Figure 10. Panel A shows
that the city-level population growth rates are not correctly predicted by the grid-
level time-series models alone, as the actual and predicted growth rates are negatively
correlated. In panel B, the model performance improves significantly after adding
the city-level time-series model. The correlation between actual and predicted growth
rates has the correct sign, and the proportion of correct signs of predicted city growth
improves significantly from 52% to 82%. In panel C, the addition of the PL model does
not worsen the model fit.
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Figure 11. Model performance for predicting population growth in cities

Notes: (A) The city-level population in 2020 is predicted from the 1970–2015 data using the grid-level
time-series models in Section 4.3. (B) The result after adding the city-level time-series models in Section
4.2. (C) The result after adding the PL model in Section 4.1. The dashed line is the fitted linear regression
line, and the shaded area is its 95% confidence interval.

Figure 12 illustrates the effectiveness of the city-level models. The figure compares
the actual and predicted growth rates of the grid population in the Tokyo UA for the
prediction of the grid population in 2020 from the 1970–2015 data. Panel A shows
that the population growth around Tokyo’s central business district (CBD) is under-
estimated when only grid-level models are used. Panel B shows the result when the
city-level time-series models are added. Although population growth at the core of
the CBD is still underestimated by the models, the fit of the model is significantly im-
proved. Panel C shows the result when the PL model is also added, which essentially
does not change the results of Panel B. We can see that the grid population is strongly
influenced by the city-level factors.

Although the PL model does not affect the short-term forecast when time-series
models are included at the city level, it is still selected by a significant number of cities.
Figure 13 shows the frequency distribution of the weights, WPL

u and WTS
u , for the PL

and TS models in the city-level model ensemble given by eq. (10). On average, the PL
weight is 0.37. Thus, on average, 37% of the comparative static effect, which changes
the power law coefficient for the city size distribution, will influence the growth process
of individual cities.
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Figure 12. Model performance for predicting the grid population growth in Tokyo

Notes: The ratio of the actual and predicted growth rates of the grid population in Tokyo UA for the
prediction of the 2020 population from the 1970–2015 data. (A) shows the result when only the grid-level
time-series models in Section 4.3 are used. (B) adds the city-level time-series models in Section 4.2, and
(C) further adds the PL model in Section 4.1.

Figure 13. Selection between the PL and time-series models at the city level

Notes: The histogram shows the frequency of cities that adopted the PL and TS models with a given pair
of weights, WPL

u and WTS
u , in eq. (10) to predict city sizes in 2020 from the 1970–2015 data. The average

values of WPL
u and WTS

u across all cities u are 0.37 and 0.63, respectively.

5 Baseline scenario

In this section, we present the result of our projection under the baseline scenario
for Japan’s population growth to 2200. We begin by summarizing the evolution of
the number of cities and the distribution of city sizes in Section 5.1, and show a broad
picture of the projected regional variation in future population growth in Section 5.2. In
Section 5.3, we look at the rise and fall of individual cities behind the regional variation
in population growth, and discuss the relationship between city growth and aging. In
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Section 5.4 we show how the spatial frequency of the focal cities will change in the
future. Their future geographic distribution suggests the geographic extent of future
regional coordination, replacing prefectures and municipalities. We take a closer look
at the depopulating rural regions in Section 5.6, and how the population distribution
in large cities will change in Section 5.7. Finally, we calculate the impact of population
decline on land prices in Section 5.8.

5.1 Evolution of city counts and city size distribution

The baseline scenario assumes that the fertility rate of 1.36 in 2020 will persist in the
future,5 while the pessimistic and optimistic scenarios assumes the fertility rate of 1.13
and 1.64, respectively, will persist in the future. Figure 14 shows the future number of
cities predicted in these three scenarios. In the baseline scenario, the number of cities
decreases by 18%, 24%, and 26% every 50 years from 2020 to 2070, 2070 to 2120, and
2120 to 2170, respectively.

Figure 14. Predicted numbers of cities

Notes: The realized number of cities in years 1970–2020, and the predicted number of cities in years
2025–2200 under the three alternative scenarios of Japan’s population projection (Fig. 8A).

Figure 15A shows the observed city-size distributions in 2020 together with the
projected ones in 2070, 2120, and 2170, under the baseline scenario. The power coeffi-
cient Bt increased from −1.30 to −1.19 from 2020 to 2120, despite the PL model predicts
a decrease in Bt. This is mainly due to the fact that large cities are divided into smaller
pieces as the total population decreases. However, the concentration towards largest
cities continues, as Tokyo’s population share in all cities increases from 34% in 2020 to
37% in 2120.

5This assumption may be too optimistic, as the fertility rate decreased to 1.30 and to 1.26 in 2021 and
2022, respectively (Ministry of Health, Labour and Welfare of Japan, 2022).
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Figure 15B supplements Figure 7 with the predicted average and maximum pop-
ulation density and area of cities for 2025-2200. The population density in cities is
projected to decrease much faster than the area of cities, i.e., the flattening of cities
will continue steadily, reflecting the projected trend of decreasing distance frictions.
Specifically, the average population density in a city will decrease by an average of
6.1% from 2020 to 2070 and 12.2% from 2020 to 2120, while the area of a city will
increase by 4.7% from 2020 to 2070 and 5.1% from 2020 to 2120. The population decline
associated with the flattening of cities suggests significant changes in housing demand
and land price, as will be discussed in Section 5.8.

Figure 15. Predicted city-size distributions, average and maximum population density
and area of cities (baseline)

5.2 Regional variation in city growth

To get a broad picture of the future organization of Japan’s regional economy, we look
at the projected evolution of the top five cities in 2020 in Figure 16A. While these
five cities will still be the top five by 2200, only Tokyo and Fukuoka will continue to
grow in population share. It is in line with the implication of the theory of economic
agglomeration that fewer, larger, and more distant cities will remain under decreasing
transportation costs (Akamatsu et al., 2023). In particular, Osaka and Nagoya will
become too close to Tokyo to maintain their population size.

Figure 16B shows the evolution of population shares in the seven traditional regions
shown in Figure 17. There is a clear dichotomy between the east and west sides of
Tokyo. In the east of Tokyo, both Hokkaido and Tohoku are expected to decline faster
than the western regions. These variations are picked up by the time-series models,
which take into account city and grid specific factors. We will see in Section 5.5 that
rapid aging in the eastern regions may have accelerated the depopulation of these
regions.
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Figure 16. Predicted population shares of the top five cities and traditional seven
regions

Notes: (A) The projected shares of the 5 largest cities in Japan as of 2020 in the total population of Japan.
(B) The projected shares of the traditional seven regions (Fig. 17) in the total population of Japan.

Figure 17. Traditional seven regions and the locations of top 5 cities in 2020

Notes: Each of the seven regions are named as follows. Blue: Hokkaido, Orange: Tohoku, Green: Kanto,
Red: Chubu, Purple: Kinki, Brown: Chugoku, Lavender: Kyushu. The 5 largest cities in 2020 are
shown, with the numbers in parentheses indicating their ranking in terms of population size.

5.3 Rise and fall of individual cities

We now compare the rise and fall of individual cities in the past half century and in
the coming century. Figure 18 shows the growth of the population share of individual
cities between 1970 and 2000. During this period, most cities increased their share,
except for the old industrial cities such as Kitakyushu and Shizuoka. Since it covers
both the high-growth period (1970–1975) and the bubble era (1980–1990) in Japan, this
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was the time when cities were particularly attractive, leading to rapid urbanization.
Figure 19 shows the growth of the population shares of cities in the period 2000–

2020. Most of the cities east of Tokyo, except those along the high-speed rail lines (see
Fig. 4A), began to decline. West of Tokyo, Osaka began to decline. In addition to the
bullet train line connecting all major western cities between Fukuoka and Tokyo in 1975,
frequent express trains, called the Nozomi Express, were introduced between Fukuoka
and Tokyo in 1992, bringing these cities closer to Tokyo economically. Especially the
improved connections between Tokyo and Osaka may have pushed Osaka into Tokyo’s
agglomeration shadow (e.g., Fujita and Krugman, 1995). Osaka has been in decline
since 2000.

Figure 18. Growth in population share of cities: 1970–2000

Figure 19. Population share growth of cities: 2000–2020

Figure 20 shows the evolution of cities in the period 2020–2070. The cities east of
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Tokyo continue to shrink and disappear, even along the bullet train lines. West of
Tokyo, smaller cities between Nagoya and Tokyo and around Osaka begin to decline.
Large cities such as Hiroshima and Okayama along the bullet train lines west of Tokyo
continue to grow in population share by absorbing population from the declining cities
around them.

Figure 21 shows the evolution in the period 2070–2120. The area between Osaka
and Tokyo is mostly shrinking, including the third largest Nagoya, and the region east
of Tokyo and the northern coast of the main island is shrinking, except for a few large
cities such as Sendai and Kanazawa.

Figure 20. Population share growth of cities: 2020–2070

Figure 21. Growth in urban population share: 2070–2120
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By 2170, only Tokyo, Fukuoka, and Hiroshima among the 10 largest cities manage
to increase their population share, as shown in Figure 22. Some small growing cities
that split off from nearby major cities, such as those around Nagoya, collect population
from the surrounding declining area, but may not have their own growth drivers.
Cities east of Tokyo, Shikoku Island, and the southern half of Kyushu Island appear to
be emptying out.

Figure 22. Growth in population share of cities: 2120–2170

5.4 Geographic distribution of focal cities

In this section, we present the future geographic distribution of focal cities that are
large cities expected to play the role of economic centers in their surrounding regions.
We consider cities in three size classes, those with at least 100,000, 500,000, and 1
million inhabitants. In particular, in the third National Spatial Strategy approved by the
Japanese government in 2023, the minimum threshold of population size is considered
to be 100,000 for a Life Zone to maintain basic infrastructure and functions for living,
such as public schools, basic medical and commercial facilities.

Theory suggests that these focal cities will be fewer and farther apart as the coun-
try’s population declines and distance frictions diminish. In order to design regional
development policies, it is crucial to know which of the current focal cities will be
viable in the future. Therefore, our aim in this section is to quantitatively predict their
future geographic distribution.

In 2020, Japan, with a total population of 124 million, has 83 cities with at least
100,000 inhabitants and 21 cities with at least 500,000 inhabitants, as shown in Figure
23A and B, respectively. To get a sense of the distance between them, the Voronoi
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partitions of the land area with respect to these cities are shown in the map.6 While
cities are more densely clustered in western Japan, they are spread throughout the
country. Cities of at least 500,000 inhabitants are similarly distributed throughout the
country, except that they are more dispersed than those of at least 100,000 inhabitants,
so that each of their Voronoi cells contains three or four cities of at least 100,000
inhabitants.

Since there are 46 prefectures on the map shown in the figure, at present, each of the
focal cities of at least 100,000 inhabitants serves roughly half the size of a prefecture,
while that of at least 500,000 inhabitants serves roughly the size of two prefectures.

After 50 years in 2070, Japan’s population is expected to decline by a third to 86
million. The number of cities with at least 100,000 and 500,000 inhabitants will decrease
to 70 and 15, respectively. The remaining cities are more dispersed.

One hundred years later, in 2120, Japan’s total population is projected to be ap-
proximately 40% that of 2020 (Fig. 25). The number of cities with at least 100,000 and
500,000 inhabitants will fall to 49 and 11, respectively, and will again be more widely
dispersed. This compares to 42 and 6, respectively, in the pessimistic scenario.

Figure 23. Geographic distribution of focal cities in 2020

Notes: In (A) and (B), the black dots indicate the location of cities with at least 100,000 and 500,000
inhabitants, respectively, in 2020. The cells on the map are those of the Voronoi partition of the country
with respect to these cities.

6In the Voronoi partition, each 1-km grid cell is assigned to the nearest of the cities with populations
of at least 100,000 and 500,000 in Panels A and B, respectively.
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Figure 24. Geographic distribution of focal cities in 2070

Notes: In (A) and (B), the black dots indicate the location of cities with at least 100,000 and 500,000
inhabitants, respectively, in 2070. The cells on the map are those of the Voronoi partition of the country
with respect to these cities.

Figure 25. Geographic distribution of focal cities in 2120

Notes: In (A) and (B), the black dots indicate the location of cities with at least 100,000 and 500,000
inhabitants, respectively, in 2120. The cells on the map are those of the Voronoi partition of the country
with respect to these cities.

Finally, Figure 26 shows the changes in the location of cities with at least 1 million
inhabitants. There are 11 in 2020, decreasing to 6 in 2070 and 4 in 2120. Again, they
will be further apart from each other, while concentrating in the west.
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Figure 26. Geographic distribution of million cities

Notes: In (A), (B), and (C), the yellow dots indicate the location of cities with at least 1 million inhabitants
in 2020, 2070, and 2120, respectively. The cells on the map are those of the Voronoi partition of the country
with respect to these cities.

5.5 Aging and city growth

The population decline of Japan is associated with aging and the decreasing fertility
rate. Figure 27 indicates the rapidly increasing share of the population aged 65 or
older, and the rapidly decreasing share of the population aged 14 or younger. The
share of population aged 65 or older will increase from 28% in 2020 to 55% in 2120,
whereas that of population aged 14 or younger will decrease from 12% to 8% in the
same period.

In addition, the age composition of the population is projected to vary across
regions according to the National Institute for Environmental Studies, Japan (NIES)
(2021). Figure 28 shows the regional variation in the dependency ratio, which is the ratio
of the population under the age of 15 or over the age of 64 to the working age population
between the ages of 15 and 64 in every 50 years during the period 2020-2120. Note
that eastern Japan appears to age more rapidly after 2070, which is consistent with the
rapid decline of cities in the region discussed in Section 5.3. Although our forecasting
model does not explicitly incorporate the aging factors, our time-series models should
have captured their effect on the growth process at both the grid and city levels.

Figure 29 confirms that cities with a higher rate of aging and a lower proportion of
children tend to have lower or negative population growth.
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Figure 27. Forecasts of age-group decomposition of total population in Japan

Notes: The projection of age-group decomposition was obtained for 2015–2045 from the NIES (2021).
We extraporated the projection to 2200 as follows: (1) the population share aged 14 or under is projected
by assuming log-linear function of time; (2) the population share aged 65 or older is projected by using
the same model; (3) the population share aged between 15 and 64 is projected by subtracting these two
share from 1.0.

Figure 28. Forecasts of dependency ratio at the grid level in Japan

Notes: The projection of the age group decomposition was obtained for 2015–2045 from the NIES (2021).
We extrapolated the projection to 2200. We then matched each grid to a municipality and assign the
age group shares in the municipality to the grid. The dependency ratio is calculated as the ratio of the
population younger than 15 or older than 64 to the population between 15 and 64. (A–D) show the
dependency ratios, D, at the grid level in the years 2020, 2070, 2120 and 2170, respectively. Blue: D ≤ 1,
Pink: 1 <D ≤ 2, Orange: 2 <D ≤ 3, Red: 3 <D ≤ 4, Crimson: 4 <D ≤ 5, Dark red: D > 5. The grayscale
colors indicate geographic altitude, where a darker color means higher.
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Figure 29. Age-group share and city-size growth

Notes: (A) A city’s 5-year population growth rate versus the share of the city’s population aged 65 or
older in years 2015,2020, . . . ,2195. (B) A similar plot with the horizontal axis indicating the share of the
city’s population aged 14 or younger. The dashed line in each panel is the fitted regression line with a
95% confidence interval as the shaded band.

5.6 Fate of rural regions

In this section, we take a closer look at the fate of rural regions by focusing on two
typical cases.

Depopulating peripheral regions

Kochi prefecture, shown on the map in Figure 30, is a typical peripheral prefecture, far
from major railways and highways, and facing rapid depopulation. The population
of this prefecture is expected to decline by 78% from 690,774 to 151,109 between 2020
and 2120, while the country’s population is expected to decline by 59% over the same
period. The proportion of the population over the age of 64 in this prefecture will
increase from 35% to 61% between 2020 and 2120, while that of the country will increase
from 29% to 55%. The graph in Figure 30 shows the evolution of the population size
of cities in Kochi prefecture.

The prefecture defines a naturally coherent region surrounded by mountains and
organized around the largest city, Kochi as shown in Figure 31. The figure shows the
locations of cities that existed in 1970 and 2020, as well as those predicted to exist in
2070 and 2120.

In 1970, there were seven cities scattered along the coastal areas of the prefecture.
By 2020, all the outlying cities except Shimanto have disappeared, and the cities are
clustered around the largest city, Kochi. By 2070, the only outlying city, Shimanto,
will disappear, and by 2120, only Kochi will remain. The population of Kochi city
will shrink from 284,237 in 2020 to just over 100,000 in 2120 (by 64%). Thus, Kochi as
a prefecture will face an existential crisis. Prefectures in southern Kyushu, along the
northern coast of the main island, and in eastern Japan are expected to have a similar
future.
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Figure 30. Projection of city sizes in Kochi prefecture

Notes: The graph shows the evolution of the population size of the cities during the period 1970–2200
in the Kochi prefecture, whose location is indicated on the map. Only the cities that existed for at least
10 consecutive years are shown in the graph.

Figure 31. Cities in Kochi prefecture

Notes: (A–D) show the map of cities that exist in Kochi prefecture in 1970, 2020, 2070, and 2120,
respectively.

Regions around major cities

Next, we consider the case of Okayama prefecture, shown in Figure 32. This prefecture
contains the 11th largest city, Okayama, in 2020. Although most of the outlying cities
will disappear by 2120 (Fig. 33) as in the case of Kochi prefecture, Okayama prefecture
will better maintain its population, as its population of 1,040,452 in 2020 will decline
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by only 44% to about 580,000 in 2120, compared to 59% for the country.

Figure 32. Projection of city sizes in Okayama prefecture

Notes: The graph shows the evolution of the population size of the cities during the period 1970–2200
in Okayama prefecture, whose location is indicated on the map. Only the cities that existed for at least
10 consecutive years are shown in the graph.

Figure 33. Cities in Okayama prefecture

Notes: (A–D) show the map of cities that exist in Okayama prefecture in 1970, 2020, 2070, and 2120,
respectively.

The prefecture’s population will decline from 1,885,645 in 2020 to about 768,000 in
2120 (a decline of 59%). While the prefecture will be more dominated by the largest

30



Okayama (Fig. 32), it will maintain a reasonable population for a prefecture.
The coastal prefectures between Tokyo and Fukuoka will follow a similar path, with

the major cities of these prefectures absorbing the population of the small, depopulated
surrounding cities. Although the progress is slower than in peripheral prefectures such
as Kochi, these coastal prefectures are still in decline compared to Tokyo and Fukuoka.

5.7 Inside the large cities

What will happen to the internal structure of the remaining cities? In our baseline
scenario, we assume that transportation costs will continue the declining trend of the
past 50 years and that total population will also decline at the projected rate. Theory
suggests that the population of each city will decline, while the geographic distribution
of the population within the city will flatten. In this section, we take a closer look at
the interior of the top 4 cities in 2020.

Tokyo

Figure 34 shows the change in the geographic distribution of Tokyo’s population from
1970 to 2120. Between 1970 and 2020, Tokyo’s population increased substantially by
67% from 205 million to 342 million, compared to the country’s population increase
of 22%. However, the maximum population density decreased by 20% from 40,680 to
32,706, while the area increased by 47%. Thus, Tokyo has clearly flattened out despite
its population growth.

Figure 34. Geographical distribution of population in Tokyo UA

Notes: (A–D) show the grid population around Tokyo UA in 1970, 2020, 2070, and 2120, respectively,
under the baseline scenario for the Japan’s population projection.

The geographic distribution of Tokyo’s population will continue to flatten from
2020 to 2070 and 2120. The population (maximum population density) in Tokyo is
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expected to decrease to 276 million (25,545) in 2070, and then to 170 million (16,110)
in 2120, halving between 2020 and 2120. Meanwhile, the area will only decrease by
16%. Thus, Tokyo will continue to flatten out as its population decreases in the coming
century, indicating the influence of the decrease in distance frictions over time.

Osaka

Let us take a closer look at the case of the second largest city, Osaka, shown in Fig. 35.
Between 1970 and 2020, Osaka’s population increased by 22% from 124 million to

151 million, the same as the country’s population growth. Thus, Osaka shows signs
of losing its appeal as a major metropolis relative to Tokyo. Otherwise, it shares the
trend of flattening out with Tokyo, as the maximum population density decreased by
29% from 40,635 to 29,033, while the area increased by 30%.

The geographical distribution of Osaka’s population will continue to flatten from
2020 to 2070 and 2120. The population (the maximum population density) in Osaka
is expected to decrease to 103 million (20,165) in 2070 and then to 59 million (12,428)
in 2120, a decrease of 61% (57%) between 2020 and 2120. Meanwhile, the area will
decrease by only 25%.

Figure 35. Geographical distribution of the population in Osaka, UA

Notes: (A–D) show the grid population around Osaka UA in 1970, 2020, 2070, and 2120, respectively,
under the baseline scenario for the Japan’s population projection.

Nagoya

Nagoya’s population density is significantly lower than that of Tokyo and Osaka at
all times during the study period. This is due to Nagoya’s specific postwar urban
planning to maintain a low population density. Otherwise, Nagoya shows a similar
declining trend as Osaka in the future.
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Between 1970 and 2020, Nagoya’s population increased by 64% from 4.46 million
to 7.32 million, while the maximum population density decreased by 28% from 23,925
to 18,054, and the area increased by 30%. Thus, over the past half-century, Nagoya
has experienced population growth similar to that of Tokyo, which is associated with
flattening within a city. However, Nagoya’s projected future is more like Osaka’s than
Tokyo’s. The population (the maximum population density) in Nagoya is expected to
decrease to 5.29 million (12,058) in 2070, and then to 3.06 million (8,120) in 2120; that
is, it will decrease by 58% (55%) between 2020 and 2120. Meanwhile, the area will
decrease by only 37%.

Note also that in 1970 there were several small distinct peaks of population ag-
glomeration in the outskirts of Nagoya. But they almost disappeared by 2020, being
absorbed into Nagoya. By 2120, Nagoya is almost a monocentric city.

Figure 36. Geographical distribution of population in Nagoya UA

Notes: (A–D) show the grid population around Nagoya UA in 1970, 2020, 2070, and 2120, respectively,
under the baseline scenario for the Japan’s population projection.

Fukuoka

As we have seen in Section 5.3, Fukuoka is the growth pole of Japan in the coming
century, next to Tokyo. Since the opening of the bullet train line to Tokyo in 1975,
Fukuoka has continued to grow in both area and population (Fig. 37A,B). Between
1970 and 2020, its population grew 184% from 19,380 to 28,306, while its area grew
46%. Unlike Osaka and Nagoya, Fukuoka will continue to maintain a high density in
the CBD. In 2120, Fukuoka’s maximum population density is expected to reach 18,759,
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which is higher than Tokyo’s 16,110, while the average population densities of these
cities are similar at 4,311 and 4,847, respectively.

Figure 37. Geographical distribution of population in Fukuoka UA

Notes: (A–D) show the grid population around Fukuoka UA in 1970, 2020, 2070, and 2120, respectively,
under the baseline scenario for the Japan’s population projection.

5.8 Land price

The declining population will naturally result in a decrease in the price of the land.
Using the predicted geographic distribution of the population in the country, and the
point data for the official land price in 1985–2020 (Ministry of Land, Infrastructure,
Transport, and Tourism of Japan, 1985–2020), we predict the geographic distribution
of the land price in the future.7

To this end, we assume that the price of residential land Li′,t evaluated at site i′ in
year t is assumed to obey the following semiparametric regression model (see Wood,
2017):

lnLi′,t =

K∑
k=1

Xi′,t,kβk+βu(i′,t)+ fel(Zi′,el)+ fsp(Zi′,sp)+ϵLi′t, ϵLi′,t ∼N(0,σ2
L) (13)

where Xi′,t,k is the k-th covariate assuming a linear association with Li′,t and βk is the
coefficient. The covariates include the logarithm of population density in the 1 km

7For 1985–2020, there are 25,000–49,700 points at which land prices have been officially evaluated
on January 1st every year. We use the data on every five years between 1985 and 2020 that match our
gridded population data.

34



grid that contains site i′ and logarithm of the average population densities in the
adjacent grids. Their log-linear functions assume that the incremental impact per unit
population declines as population increases. βu(i′,t) represents the fixed effect of the
city u containing site i′ in year t.

In addition, elevation Zi′,t,el and geographic coordinates Zi′,t,sp are included to im-
prove prediction accuracy. 8 A thin-plate spline fel(Zi′,t,el) is used to estimate the
nonlinear influence of elevation on land price, while a low-rank Gaussian process
fsp(Zi′,t,sp), widely used in spatial statistical modeling (e.g., Banerjee et al., 2008), is
used to model residual map patterns (e.g., high land prices near Tokyo).

The semiparametric model is fitted to the officially assessed residential land price
data for every five years between 1985 and 2020 provided by NLNI (N = 311,229) using
the R package mgcv (https://cran.r-project.org/web/packages/mgcv/index.html). The
resulting (conditional) R-squared value is 0.744.

After estimation, the land price at each grid in year t ∈ {2025,2030, . . . ,2200} is
predicted for each population scenario by substituting the gridded population (and
neighboring population) projected in each scenario into the estimated model. The
fixed effects by city are given based on the projected urban extent. In other words, the
fixed effect of the city u is assumed for the grids which are projected to be inside the
city u in each year. The other covariates are assumed constant over years.

Figure 38 shows the total price of land in the country along with that in all cities
during the 1970–1920 period in the baseline scenario. The total price of land will
decrease by 24% (30%) between 2020 and 2120, while that of cities will decrease by
35% (44%) in the baseline (pessimistic) scenario. Thus, in the baseline (pessimistic)
scenario, the urban area experiences greater land depreciation than the rural area. The
flattening of cities results in a relatively greater depreciation of land prices in larger
cities. Specifically, the total price of land in the three largest cities, Tokyo, Osaka and
Nagoya, will decrease by 38% (48%) in the baseline (pessimistic) scenario.

8Available from the NLNI: https://nlftp.mlit.go.jp/ksj/.
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Figure 38. Projected total land price in the country and cities

Notes: The blue, orange, and green graphs show the evolution of the (nominal) total land price in the
country, in the cities, and in the largest three cities, respectively, for the period 1970–2200. The values
between 1970 and 2020 are realized values, while those in later years are projected values under the
baseline projection of the country’s population.

6 Alternative scenarios for distance frictions

So far, we have assumed that the rate of reduction in distance frictions over the past
50 years will continue into the future. However, it may be accelerated by advances in
automated logistics systems and virtual communication technologies. To get to this
point, we consider two alternative scenarios, one in which distance frictions decrease
more substantially in the future than in the past 50 years, and the other in which the
2020 level of distance frictions persists in the future.

6.1 Faster reduction in distance frictions

First, we set the distance frictions to decrease faster than in the last 50 years, while
assuming the baseline scenario for population decline. This can be achieved by assum-
ing a faster decrease in the value of Bt in eq. (4), and hence a negatively larger value of
aB

1 in eq. (3). Since the steeper city-size distribution (due to a negatively larger value of
Bt) will reduce population size more for the smaller cities, some cities at the smallest
end of the city-size distribution will disappear, resulting in a smaller number of cities.
We set the rate of reduction in Bt so that the number of cities in 2120 is roughly the
same as in the pessimistic scenario.

Specifically, we replace the PL model (4) with

P̂Fast
u,t+1 = (1− gt+1)P̂u,t+1+ gt+1P̂Fast0

u,t+1 (14)

where P̂u,t+1 is the estimated population size of city u in time t+1 using eq. (4), while
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P̂Fast0
u,t+1 is obtained from an alternative power-law model that assumes a faster reduction

in distance frictions by replacing aB
1 in eq. (3) estimated in the baseline scenario with

50× aB
1 and adjusting aA

1 so that P̂u,11 = P̂Fast
u,11 (t=11 is the year 2020). The time-growing

weight gt+1 =
t−11

47−11 takes the value zero at t = 11 (2020) and one at t = 47 (2200). Thus,
the reduction in distance frictions gradually accelerates over time starting in 2020.

The blue graph in Figure 39 shows the number of cities over time in the current
scenario, while the orange graph is the baseline case. Compared to the baseline, the
faster decline in transportation costs facilitates concentration toward the largest cities,
as the theory suggests, and eliminates a number of the smallest cities. The number of
cities will decrease by 219 between 2020 and 2120 in the current scenario, compared to
162 in the baseline.

Figure 40 shows the city-size distribution in 2020 (in blue), along with that in 2120
under the baseline scenario (in light blue) and that in 2120 under the current scenario
(in orange). The figure shows that the largest cities are almost unaffected by the faster
decline in distance frictions. This is because the population sizes of the disappearing
small cities are very small compared to those of the largest cities. For example, Tokyo
almost halves in both population size and maximum population density between 2020
and 2120 in both the current and baseline scenarios. Thus, the faster reduction of
distance frictions essentially results in the elimination of a larger number of small
cities, making the regional economy more dominated by large cities.

Recall that we assumed that the number of cities in the current scenario is similar to
the number of cities in the pessimistic scenario in 2120. The main difference between
the current scenario and the pessimistic scenario is that the population sizes of cities
at the largest end of the city-size distribution become smaller in the latter scenario as a
result of the country’s population decline. For example, Tokyo’s population size will
decrease by 50% between 2020 and 2120 in the current scenario, while it will decrease
by 65% in the pessimistic scenario.

6.2 Invariant distance frictions

For comparison, we consider a scenario that assumes time-invariant values of At and
Bt so that the PL model assumes the power law coefficient as of 2020 persists into the
future. In this case, the expected difference between log(Pu,t+1) and log(Pu,t) is given
by taking the difference between the PL models (1) at time t+1 and t as follows:

E[log(Pu,t+1)− log(Pu,t)] = B̂(log(Ru,t+1−0.5)− log(Ru,t−0.5)) (15)

where B̂ is estimated by fitting eq. (1) on the data in 2020. The first and third terms in
eq. (1) are canceled out because their expectations are time invariant. Given Pu,t, the
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expectation of Pu,t+1 yields:

P̂Invariant
u,t+1 ≡ E[Pu,t+1] = Pu,t exp[B̂(log(Ru,t+1−0.5)− log(Ru,t−0.5))]. (16)

The expected population changes only if the city rank changes between the time periods
t+1 and t. We will use P̂Invariant

u,t+1 in the time-invariant scenario.
Compared to the baseline scenario, the smallest cities are more likely to survive

because there is less of a force facilitating concentration toward larger cities under
invariant distance frictions. The green graph in Figure 39 shows the number of cities
over time in the current scenario. The number of cities decreases by 141 in the current
scenario, while it is 162 in the baseline scenario between 2020 and 2120. The gray graph
in Figure 40 shows the distribution of city sizes in 2120 in the current scenario. As in
the case of the faster decline in distance frictions above, the future population sizes of
the largest cities are roughly the same as in the baseline scenario, since the population
sizes of the small cities that managed to survive but were eliminated in the baseline
scenario are small compared to those of the largest cities.

Thus, in the absence of future advances in transportation and communication
technologies, there will be more opportunities for small rural cities to survive.

Figure 39. Predicted numbers of cities under alternative scenarios for the reduction in
distance frictions

Notes: The predicted evolution of the number of cities under the three alternative scenarios regarding
the reduction of distance frictions. The total population growth is given by the baseline scenario as in
Section 5. The orange graph shows the baseline case as in Fig. 14. The blue graph shows the case of
faster reduction of distance frictions, where the PL model (4) is replaced by (14), and the green graph
shows the case where the power law coefficient Bt in eq. (1) is fixed at the value in 2020, i.e. the PL
model (4) is replaced by (16).
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Figure 40. City-size distributions under alternative scenarios regarding the decline of
distance frictions.

Notes: The blue and light blue scatter plots are the city-size distributions of the baseline case in 2020 and
2120, respectively, which are the blue and green plots, respectively, in Fig. 15A. The orange and grey
plots are the city-size distributions in 2120 under the fast reduction of distance frictions and under the
invariant distance frictions, respectively, with the baseline projection of the total population. Dashed
lines are the fitted regression lines.

7 Concluding remarks

In this paper, we have developed a statistical model to forecast the future distribution of
population across grid cells in a country. Specifically, our forecasting model ensembles
a statistical model that accounts for the country-level regularity of a power law for
city sizes and those that account for city- and grid-specific growth factors, where each
city is treated as an endogenous population agglomeration whose spatial area changes
over time.

Given the official projection of the country’s population decline, together with the
trend of decreasing distance frictions experienced in Japan over the past 50 years,
we predicted the population distribution over the 1-km grids in Japan in the coming
century.

Theoretical consistency – The estimated evolution of future geographic population
distribution in Japan is consistent with the equilibrium and comparative static prop-
erties implied by economic agglomeration theory, in which both inter- and intra-
agglomeration spaces are explicitly modeled (Akamatsu et al., 2023; Osawa and Aka-
matsu, 2020; Mori et al., 2023a).

Under the unprecedented population decline in Japan due to aging and decreasing
distance frictions, we found that regional populations do not simply decline propor-
tionally. The smaller cities tend to decline first, while the population of these depop-
ulated cities is absorbed by the largest cities. However, large cities are also subject to
crowding out due to tougher competition under decreasing distance frictions. As a

39



result, there will be fewer larger cities that are mutually farther apart.9

Place-based policies

The results in Section 5.2 suggest that the largest cities that are farther apart tend
to survive in the future. For example, in the west of Tokyo, the fourth largest city,
Fukuoka, continues to show positive growth in population share, while the second and
third largest, Osaka and Nagoya, will decline. This uneven growth of cities is consistent
with the country-level concentration in models of endogenous economic agglomeration,
where more globalized competition leads firms and households to concentrate in fewer
and larger cities as distance frictions decline. Namely, Osaka and Nagoya will become
too close to Tokyo for their size, entering Tokyo’s agglomeration shadow, while the
fourth largest city, Fukuoka, is far enough away to escape the shadow.

More generally, we are expected to see that the number of cities of a given size or
larger will decrease, and the surviving cities will be further apart from each other, as
we saw in the change in the geographic distribution of focal cities in Section 5.4. This
has important implications for the appropriateness of place-based policies promoted
across the country.

For a government-designated Life Zone to maintain basic infrastructure and func-
tions for living in Japan, the minimum threshold population size is considered to be
100,000. The number of cities with at least 100,000 was already 83 in 2020. It is then
predicted to decrease to 62 in 2070 and to 49 in 2120 in the baseline scenario. At present,
however, as many as 675 municipalities are trying to revitalize themselves as cities by
compacting their urban areas in accordance with the national “compact city policy.”10

However, rather than fighting for population and reurbanization, it may be prefer-
able for these communities to transform themselves into productive rural areas that
take advantage of their rich agricultural and natural resources in Japan without advo-
cating urbanism. Assuming that the population drops to 30–50 million in 100 years,
Japan may be able to become self-sufficient in many agricultural products if proper
farmland development is promoted now.

9This strong dependency between the population size and spacing of cities cannot be accounted for
by the systems-of-cities models (e.g., Behrens et al., 2014; Duranton and Puga, 2014, 2023), perhaps the
most popular framework today, as they lack the role inter-city space in determining the size and growth
of cities.

10It has been reported at the first meeting of the Study Group for Improving the Effectiveness of
the Location Appropriateness Plan by the MLIT on December 15, 2023 (https://www.mlit.go.jp/toshi/
city plan/content/001712725.pdf).
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Housing demand and policies

Within each city, population distribution generally flattens in the future, which is
consistent with the city-level dispersion exhibited by models of endogenous economic
agglomeration, where congestion costs are more pronounced with less distance fric-
tions within a city.

We found in Section 5.8 that between 2020 and 2120 in the baseline scenario, the
average and maximum population densities are projected to decrease by 12% and 23%,
respectively, on average for all cities, while these numbers are more substantial, 41%
and 51%, respectively, in Tokyo. As a result, the total price of land in the urban area
as of 2020 is expected to decrease by 35% between 2020 and 2120, while there will be a
decrease of 39% in Tokyo during the same period.

Here we consider two implications of these projections. First, the demand for high-
rise buildings in the central business districts of cities is expected to decline sharply
in the future. Since houses and office buildings are durable goods, it is desirable
for the government to proactively guide the shift to low-rise residential buildings.
Second, the lower land prices in the future may allow households to consume more
living space, which may ease the space constraints for households to have children. The
expected substantial decline in land prices, especially in large cities such as Tokyo, may
encourage higher fertility in these cities and mitigate the rate of population decline.

Soft landing of shrinking metropolises

Another important finding of this paper is that, with the exception of Tokyo and
Fukuoka, the population of most major cities is expected to decline more than the
population of the country. When a large city declines, the amount of housing and urban
infrastructure does not immediately decrease because housing and infrastructure are
durable. As a result, housing and office rents will drop. The lower rents cause
a vicious cycle in which the residents of these cities are replaced by lower-income
groups, thereby slowing the decline of the urban population while worsening public
safety. This problem is common to many cities, such as Detroit, that once specialized
in heavy manufacturing in the so-called rust belt of the United States (e.g., Glaeser and
Gyourko, 2005). These declining major cities require careful urban planning beyond
housing policies that anticipate future shrinkage and lower densities.

Future agenda

Based on the future projections of the geographic distribution of the population ob-
tained in this paper, future projections can be attempted for a variety of important
indicators. Below, we discuss two possible extensions of our model for future work.
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Industrial Location

The population size of a city has been shown to be a strong predictor of the presence
of a given industry in the city, with the set of industries present in a smaller city being
roughly the subset of those present in a larger city (Mori et al., 2008; Hsu, 2012; Schiff,
2015; Mori et al., 2023a). Such coordination of the location behavior of industries
has already been microfounded by the modern central place theory (e.g., Fujita et al.,
1999; Tabuchi and Thisse, 2011; Hsu, 2012; Davis and Dingel, 2020; Mori et al., 2023a).
Using this strong regularity, it is in principle possible to determine the future industrial
composition of cities. From the industry’s point of view, it is possible to predict the
future set of feasible cities for operation in the shrinking economy.

Pollution and disaster risk management

The intensity of carbon dioxide emissions can be estimated from the population density
of each location and the population size of the city to which the location belongs from
future projections of the geographic distribution of the population. An earlier attempt
in this direction can be found in Yamagata et al. (2017). Similarly, disaster risk at any
point in time can be predicted from the geographic distribution of population, and,
for example, those of earthquake and flood risk. As population decline eases space
constraints for both commercial and residential locations, carbon dioxide emissions
and disaster risk can be reduced through appropriate zoning. By incorporating zoning
constraints into the forecasting model developed in this paper, it is possible to simulate
optimal zoning and quantitatively evaluate its effects.
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Appendix

A Urban agglomerations

Each Urban Agglomeration (UA) in a given time t = {1, . . . ,36} (corresponding to years,
1970,1975, . . . ,2200) is identified as the set of 1km grid cells that (i) have a population
density of at least 1,000 per square kilometer, (ii) are geographically contiguous, and
(iii) have a total population of at least 10,000 in time t.

The set of UAs is updated every t = {1, . . . ,36}. We keep track of each UA over time
by assigning it a unique identifier (ID) throughout the study period as follows:

1. IDs of UAs in time t = 1 are set to be their city size ranking in t. For those with
the same population size, UAs are ranked according to their average population
density in descending order.

2. A UA at time t and a UA at time t+ 1 are considered the same if they share the
largest population as of time t in their areal intersection. (If there are multiple
ties, the pair with the largest population density in their areal intersection takes
the precedence.) In this case, their IDs at time t+1 are inherited from time t.

3. If UA i in time t has the largest population at time t in the areal intersection
with UA j in time t+ 1, and UA j in time t+ 1 has the largest population in the
areal intersection with a UA other than i in time t, then UA i is considered to be
absorbed by UA j in time t+1.

4. If UA j in time t+ 1 has no intersection with any UA in time t, then UA j is
considered to be either a newly formed UA or a UA split from an existing UA.
For a newly formed UA or a split UA with no predecessor in older time< t, a new
ID is assigned in the descending order of their population size in time t+ 1 (in
the case of a tie, the one with the highest average population density is assigned
an ID first).

5. If a UA is split from the existing UA at time t+ 1, but has a predecessor at time
before t, the ID of the latest predecessor is restored. If there are multiple most
recent predecessors, the one with the largest population in the areal intersection
with the UA is chosen (again, in the case of a tie, the predecessor with the largest
average population density is chosen). Thus, a UA i that was absorbed once by
another UA j and later split from UA j will be renamed i again.
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B Projection procedure

We project city populations in 2025–2200 by 5 year corresponding to the time index
t ∈ {12, . . . ,36}, by using the population data in 1970–2020 corresponding to t ∈ {1, . . . ,11}.
First, we perform the following pre-processing:

B.1 Parameter estimation

We first estimate the model parameters as follows.

1. Identify cities in t ∈ {1, . . . ,11} through the procedure explained in Section A.

2. For each city existing in t = 11, fit ARI1, ARI2, CS, and LL on the data in t ∈
{1, . . . ,11}, and estmate their parameters.

3. Estimate the parameters of the PL model as follows:

(a) By t ∈ {1, . . . ,11}, fit the PL model (1) on the city population data to estimate
the parameters Ât|t ∈ {1, . . .11} and B̂t|t ∈ {1, . . .11}.

(b) Forecast Ât|t ∈ {12, . . .36} by fitting the LL model (2) on Ât|t ∈ {1, . . .11}. Fore-
cast B̂t|t ∈ {12, . . .36} in the same manner.

B.2 City-level projection

1. PL-model projection – For each city u, project P̂PL
u,t+1 by substituting the param-

eters Ât, B̂t, the rank Ru,t, and the previous population P̂u,t into the PL model
(4).

2. Model ensemble – For each city u, average the time-series model-based predictor
P̂TS

u,t+1 given by (9) and the PL-based predictor P̂PL
u,t+1 given by (4) to obtain Pu,t+1

given by (10).

3. Population rescaling – For each t, rescale P̂u,t+1|u ∈U to equate their sum to the
total urban population that is exogenously given (Section 3).

For cities which are newly born, time-series models are not available because of the
absence of past observations. For cities formed after 2025, zero weights (WM

u = 0) are
assumed for ARI1, ARI2, and LL in step 2, and only the PL model is used for the
prediction of their future population size.

44



B.3 Grid-level projection

The grid populations pi,t in t ∈ {11, . . . ,35} corresponding to {2025, . . . ,2195} are projected
to those in time t+1 in the procedure below. In particular, given the geographic popu-
lation distribution pi,t over the grids G in time t, we compute an expected geographic
distribution of the population over G in time t+ 1 (see steps 3–6 below), taking into
account the growth factors at the city and country levels.

1. Projection by each model – By grid, project populations p̂m
i,t+1|m∈ {ARI1,ARI2,CL,LL,

SARI1,SARI2,SCL,SLL} by using the parameters estimated a priori using the data
up to 2020.

2. Model ensemble – By grid, substitute the projected populations into eq. (12) to
obtain the expected population projection p̂i,t+1.

3. City reidentification – Identify cities using p̂i,t+1|i ∈ {1, . . . ,n}, according to the
procedure explained in Section A. Denote the reidentified set of cities U′t+1. Then,
update the city ranking Ru,t+1 for u ∈U′t+1.

4. City-level projection update – Using the updated ranking Ru,t+1 of cities, perform
the city-level projection (Step 1 in Section B.2) to evaluate the P̂u,t+1 of the updated
city u.11 Note that in general the reidentified set of cities, U′t+1, and the original
one are not the same, i.e., U′t+1 ,Ut+1. For cities u ∈U′t+1\Ut+1, we do not have the
observed time-series data. For these cities, we use only the PL model to obtain
P̂u,t+1, i.e., we set WPL

u = 1 and WM
u = 0∀M ∈ {ARL1,ARL2,CS,LL}.

5. Rescaling – For each city u ∈ U′t+1, rescale the population p̂i,t+1 in grid i ∈ U′u,t+1
in the city, to equate their sum with P̂u,t+1. In addition, rescale the projected grid
populations outside cities p j,t+1 for j < U′u,t+1 ∀u ∈ U′t+1 to equate the total popu-
lation of grids with the total population in Japan in t+ 1, which is exogenously
given.

6. Smoothing – The projected population p̂i,t+1 is smoothed to avoid discontinu-
ity at the city borders. The smoothing is done by taking the weighted aver-
age of the projected population p̂i,t+1 and the average of the population Q̂i,t+1 =
1
9Σi9NN p̂t+1,i9NN in the 9NNs. The weight for p̂t+1,i is given by Σm∈{ARI1,ARI2,CS,LL}wm

i,t
which is the cumulative weight for the four pure time-series models while the
weight for Q̂i,t+1 is given by Σm∈{SARI1,SARI2,SCS,SLL}wm

i,t which is the cumulative
weight for the spatial time-series models.

11Here, the city-level projection is to find a stationary state of the city-size distribution, rather than
the prediction of the next-period city sizes.
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7. Iterations – If U′t+1 ,Ut+1, we set U′t+1BUt+1, and repeat steps 3–6 until the city
set converges, i.e., U′t+1 =Ut+1.

C Predicted geographic population distributions

Figures 41–45 show the population distribution over the 1km grid cells around Tokyo
in years, 2050, 2070, 2120, and 2170, in each scenario considered in the main text. Each
panel in the figures is linked to a web map showing the geographic distribution of
the population in the entire study area of Japan which can be scrolled and zoomed
in. Figure 41 additionally contains the maps of the realized population distribution in
1970 and 2020 in Panels A and B, respectively.
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A. 1970 B. 2020

C. 2050 D. 2070

E. 2120 F. 2170

Figure 41. Geographic population distribution: 1970–2170 (Baseline)

Notes: ( A–F ) show the projected population distribution over 1km grid cells around Tokyo UA in 1970,
2020, 2050, 2070, 2120, and 2170, respectively, in the baseline scenario. Each panel is linked to a web map
showing the geographic distribution of population in Japan, which can be scrolled and zoomed. Yellow
and warmer colors indicate the grid cells with a population density of at least 1,000. The correspondence
between the color of the bar and the population density in a grid cell is the same as shown in Fig. 34.
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A. 2050 B. 2070

C. 2120 D. 2170

Figure 42. Geographic population distribution: 1970–2170 (Pessimistic)

Notes: ( A–F ) show the projected population distribution over 1km grid cells around Tokyo UA in
2050, 2070, 2120, and 2170, respectively, in the pessimistic scenario. Each panel is linked to a web map
showing the geographic distribution of population in Japan, which can be scrolled and zoomed. Yellow
and warmer colors indicate the grid cells with a population density of at least 1,000. The correspondence
between the color of the bar and the population density in a grid cell is the same as shown in Fig. 34.
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A. 2050 B. 2070

C. 2120 D. 2170

Figure 43. Geographic population distribution: 2050–2170 (Optimistic)

Notes: ( A–F ) show the projected population distribution over 1km grid cells around Tokyo UA in 2050,
2070, 2120, and 2170, respectively, in the optimistic scenario. Each panel is linked to a web map showing
the geographic distribution of population in Japan, which can be scrolled and zoomed. Yellow and
warmer colors indicate the grid cells with a population density of at least 1,000. The correspondence
between the color of the bar and the population density in a grid cell is the same as shown in Fig. 34.
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A. 2050 B. 2070

C. 2120 D. 2170

Figure 44. Geographic population distribution: 2050–2170 (Fast reduction in distance
frictions)

Notes: ( A–F ) show the projected population distribution over 1km grid cells around Tokyo UA in
2050, 2070, 2120, and 2170, respectively, in the scenario with faster reduction of distance frictions. Each
panel is linked to a web map showing the geographic distribution of population in Japan, which can be
scrolled and zoomed. Yellow and warmer colors indicate the grid cells with a population density of at
least 1,000. The correspondence between the color of the bar and the population density in a grid cell is
the same as shown in Fig. 34.
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Figure 45. Geographic population distribution: 1970–2170 (Invariant distance frictions)

Notes: ( A–F ) show the projected population distribution over 1km grid cells around Tokyo UA in 2050,
2070, 2120, and 2170, respectively, in the scenario with invariant distance frictions. Each panel is linked
to a web map showing the geographic distribution of population in Japan, which can be scrolled and
zoomed. Yellow and warmer colors indicate the grid cells with a population density of at least 1,000.
The correspondence between the color of the bar and the population density in a grid cell is the same as
shown in Fig. 34.
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